JPS6223173A - Mos type nonvolatile semiconductor memory - Google Patents
Mos type nonvolatile semiconductor memoryInfo
- Publication number
- JPS6223173A JPS6223173A JP16333885A JP16333885A JPS6223173A JP S6223173 A JPS6223173 A JP S6223173A JP 16333885 A JP16333885 A JP 16333885A JP 16333885 A JP16333885 A JP 16333885A JP S6223173 A JPS6223173 A JP S6223173A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- sio2 layer
- clusters
- sio
- substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims description 16
- 239000000758 substrate Substances 0.000 claims abstract description 20
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 abstract description 48
- 229910052681 coesite Inorganic materials 0.000 abstract description 25
- 229910052906 cristobalite Inorganic materials 0.000 abstract description 25
- 229910052682 stishovite Inorganic materials 0.000 abstract description 25
- 229910052905 tridymite Inorganic materials 0.000 abstract description 25
- 239000000377 silicon dioxide Substances 0.000 abstract description 23
- 235000012239 silicon dioxide Nutrition 0.000 abstract description 23
- 230000003647 oxidation Effects 0.000 abstract description 13
- 238000007254 oxidation reaction Methods 0.000 abstract description 13
- 230000001590 oxidative effect Effects 0.000 abstract description 7
- 239000011261 inert gas Substances 0.000 abstract description 2
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 238000007493 shaping process Methods 0.000 abstract 1
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 10
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 6
- 229910052814 silicon oxide Inorganic materials 0.000 description 4
- 229910052581 Si3N4 Inorganic materials 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000007800 oxidant agent Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000005641 tunneling Effects 0.000 description 1
Landscapes
- Non-Volatile Memory (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明はMOS型不揮発性半導体記憶装置に関し、特に
、ゲート絶縁層の構造に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a MOS type nonvolatile semiconductor memory device, and particularly to the structure of a gate insulating layer.
MOS型不揮発性半導体記憶装置は、ゲート絶縁場内に
存在する電荷捕獲中心に捕獲される電荷による閾値電圧
の変化を利用するものである。したがって、MOS型不
揮発性半導体記憶装置はゲート絶縁層の構造によりて特
徴づけられる。A MOS type nonvolatile semiconductor memory device utilizes a change in threshold voltage caused by charges captured at a charge trapping center existing in a gate insulating field. Therefore, a MOS type nonvolatile semiconductor memory device is characterized by the structure of the gate insulating layer.
従来のMOS型不揮発性半導体記憶装置のゲート絶縁層
は大別して次の二種類の構造を有している。Gate insulating layers of conventional MOS type nonvolatile semiconductor memory devices have the following two types of structures.
第一はMNO8(Metal −N1tride −0
xide −5i−1icon )に代表される二重誘
電体構造を有するゲート絶縁層であり、第二は浮遊ゲー
ト構造である。The first is MNO8 (Metal -N1tride -0
The second is a gate insulating layer having a double dielectric structure represented by xide-5i-1icon), and the second is a floating gate structure.
二重誘電体構造のゲート絶縁層は第3図(alに示す通
り、Si基板1表面に第一の誘電体層として15〜30
人の厚さtD S i O2層31が形成され、さらに
第一の誘電体層の表面に第二の誘電体層として、450
〜800人の厚さの非晶質Si3N4層32が形成され
ている。さらに第二の誘電体層表面にAIlま几は多結
晶Si層からなるゲート絶縁層33が形成されている。As shown in FIG. 3 (al), the gate insulating layer of the double dielectric structure has a thickness of 15 to 30 nm as the first dielectric layer on the surface of the Si substrate 1.
A tD SiO2 layer 31 with a thickness of 450 mm is formed as a second dielectric layer on the surface of the first dielectric layer.
An amorphous Si3N4 layer 32 of ~800 nm thick is formed. Further, a gate insulating layer 33 made of a polycrystalline Si layer is formed on the surface of the second dielectric layer.
本構造において1−1.を荷捕謹中心は非晶質5iaN
a層32中に存在し、捕Xlされる電荷はSi基板1表
面から直接トンネリング効果によりSi0g層31を通
って非晶質Si3N4層32に注入される。In this structure, 1-1. The loading center is amorphous 5iaN
Charges existing in the a layer 32 and captured by Xl are directly injected from the surface of the Si substrate 1 through the Si0g layer 31 into the amorphous Si3N4 layer 32 by a tunneling effect.
ま几、浮遊ゲート構造のゲート絶縁層は第3図(blに
示す通り、Si基板1表面に第一の誘電体層として50
〜200人の厚さのSiO2層41が形成され、さらに
第一の誘電体層表面に300〜ioo。As shown in FIG.
A SiO2 layer 41 with a thickness of ˜200 μm is formed, and an additional 300 μm thick SiO2 layer 41 is formed on the surface of the first dielectric layer.
人の厚さの多結晶Si膚42が形成されている。A polycrystalline Si skin 42 with a human thickness is formed.
さらに多結晶Si層42の表面には第二の誘電体層とし
て1000〜5000人の厚さのSi02層43が形成
され、さらに第二の誘電体層の表面に多結晶5iNIか
らなるゲート電極44が形成されている。本構造におい
ては電荷捕獲中心は多結晶StI曽42にあり、補償さ
れる電荷はドレイン(図には示していない)とSi基板
lとで構成されるp−n接合のアバランチ降伏にこり高
エネルギーに励起され第一のSiO層41を通って多結
晶Si層42に注入される。Further, on the surface of the polycrystalline Si layer 42, a Si02 layer 43 having a thickness of 1000 to 5000 layers is formed as a second dielectric layer, and furthermore, a gate electrode 44 made of polycrystalline 5iNI is formed on the surface of the second dielectric layer. is formed. In this structure, the charge trapping center is in the polycrystalline StI layer 42, and the compensated charge is generated at high energy by avalanche breakdown of the p-n junction composed of the drain (not shown) and the Si substrate 1. It is excited and injected into the polycrystalline Si layer 42 through the first SiO layer 41.
いずれの構造においても、Si基板lと電荷捕獲中心全
内包する層である非晶質Si3N4層32あるいは多結
晶Si層42とを、電荷の自由移動に対する障壁となる
5i027曽31あるいは41で分離する構造となって
いる点が共通している。In either structure, the Si substrate 1 and the amorphous Si3N4 layer 32 or polycrystalline Si layer 42, which contains the entire charge trapping center, are separated by 5i027 so 31 or 41, which acts as a barrier to the free movement of charges. What they have in common is that they have a structure.
上述した従来のMOS型不揮発性半導体装置のゲート絶
縁層は、その構造から明らかなように、異種の物質の積
層構造を有している。この几め、ゲート絶縁層の形成に
は複数の装置を順次用いなければならない。As is clear from its structure, the gate insulating layer of the conventional MOS type nonvolatile semiconductor device described above has a stacked structure of different materials. For this purpose, a plurality of devices must be sequentially used to form the gate insulating layer.
例えば、二重誘電体構成のゲート絶縁層を形成するには
、まず、Si基板lを酸化装置中で熱酸化して15〜3
0Aの厚さのSiO/131’に形成し、次いでLPC
vD装置中で450〜800人の厚さの非晶質5izN
4層32を形成する。For example, to form a gate insulating layer with a double dielectric configuration, a Si substrate 1 is first thermally oxidized in an oxidizer to
0A thick SiO/131', then LPC
Amorphous 5izN with a thickness of 450-800 in vD equipment
Four layers 32 are formed.
ま几、浮遊ゲート構造のゲート絶縁層を形成するには、
まず、Si基板lを酸化装置中で熱酸化して50〜20
0人の厚さの第一のSiO層41を形成シ、次いでLP
CvD装置中で2000〜5000人の厚さの多結晶S
i層42を形成し、さらに酸化装置中で再び熱酸化して
tooo〜5000人の厚さの第二のSiO層43を形
成する。第二の8iOz層43は多結晶Si/142t
−酸化することによって得られるものであるから、第二
〇熱酸化の結果、多結晶S i /It 42の厚さは
、300〜1000人となる。However, to form the gate insulating layer of the floating gate structure,
First, a Si substrate 1 is thermally oxidized in an oxidizer to give a
Form a first SiO layer 41 with a thickness of
Polycrystalline S with a thickness of 2000-5000 in CvD equipment
The i-layer 42 is formed and then thermally oxidized again in an oxidizer to form a second SiO layer 43 with a thickness of 5,000 to 5,000 nm. The second 8iOz layer 43 is polycrystalline Si/142t
- Since it is obtained by oxidation, the thickness of the polycrystalline S i /It 42 is 300 to 1000 as a result of the 20th thermal oxidation.
さらに、浮遊ゲート構造においては多結晶Si層42は
ゲート絶縁層内に選択的に形成する必要がある几め、L
PCVD装置による多結晶Si層42の形成工程と第二
〇熱酸化工程との間に多結晶Si層42を選択的に除去
する工程が必要である。Furthermore, in the floating gate structure, the polycrystalline Si layer 42 must be selectively formed within the gate insulating layer;
A step of selectively removing the polycrystalline Si layer 42 is required between the step of forming the polycrystalline Si layer 42 using the PCVD apparatus and the 20th thermal oxidation step.
上述したように、従来のMOS型不揮発性半導体装置に
おいてはゲート絶縁層は複数の装置を用い窺複数の工程
により形成されるという欠点を有する。As described above, the conventional MOS type nonvolatile semiconductor device has the disadvantage that the gate insulating layer is formed using a plurality of devices and through a plurality of steps.
本発明の目的は、上記従来のMO3型不揮発性半導体装
置のゲート絶縁層形成工程の煩雑さを排し、一台の酸化
装置のみを用いて、電荷捕獲中心を内包するゲート絶縁
層の形成が可能な新規な構造のゲート絶縁層を有するM
OS型不揮発性半導体記憶装置を提供することにある。An object of the present invention is to eliminate the complexity of the gate insulating layer forming process of the conventional MO3 type nonvolatile semiconductor device, and to form a gate insulating layer containing a charge trapping center using only one oxidation device. M with a gate insulating layer of possible novel structure
An object of the present invention is to provide an OS type nonvolatile semiconductor memory device.
本第1の発明のMOS型不揮発性半導体記憶装置は、S
i基板表面に形成された第一のSiO層と、この第一の
SiO2層上に形成されtSiクラスタを多量に含む第
二のS i Oz層と、この第二のSiO2層上に形成
されたゲート電極とを含んで構成される。The MOS type nonvolatile semiconductor memory device of the first invention includes S
A first SiO layer formed on the surface of the i-substrate, a second SiOz layer formed on this first SiO2 layer and containing a large amount of tSi clusters, and a second SiOz layer formed on this second SiO2 layer. The gate electrode is configured to include a gate electrode.
本第2の発明のMOS型不揮発性半導体記憶装置は、S
i基板表面に形成された第一のS iOz層と、この第
一のSiO2層上に形成されtSiクラスタを多量に含
む第二のSiO層と、この第二のSiO2層上に形成さ
れ念第三のSiO層と、この第三のSiO層上に形成さ
れtゲート電極とを含んで構成される。The MOS type non-volatile semiconductor memory device of the second invention includes S
A first SiOz layer formed on the surface of the i-substrate, a second SiO layer formed on the first SiO2 layer containing a large amount of tSi clusters, and a second SiO2 layer formed on the second SiO2 layer. The structure includes three SiO layers and a t-gate electrode formed on the third SiO layer.
次に、本発明の実施例について図面を参照して説明する
。Next, embodiments of the present invention will be described with reference to the drawings.
本発明は、Si基板の熱酸化において、(11酸化は5
i−8iOz界面で起る化学反応であり、したがって酸
化の進行は5i−8iOz界面のSi側へ進む。In the thermal oxidation of a Si substrate, (11 oxidation is 5
This is a chemical reaction that occurs at the i-8iOz interface, and therefore oxidation progresses toward the Si side of the 5i-8iOz interface.
(2)酸化の条件(温度、水蒸気分圧等)によって形成
されるSiO層の構造は異なり、特に低温・高水蒸気分
圧下での酸化によって形成されるSiO層中には酸化さ
れずに残っ九S1クラスタが多量に存在する。(2) The structure of the SiO layer formed differs depending on the oxidation conditions (temperature, water vapor partial pressure, etc.). There are a large number of S1 clusters.
という実験的事実に基づくものである。This is based on the experimental fact that.
第1図は本発明の第1の実施例の縦断面図である。FIG. 1 is a longitudinal sectional view of a first embodiment of the invention.
第1図においてSi基板1表面には15〜30人の厚さ
の第一の8io2層2が形成され、さらに第一の5iC
)+層2の表面にSiクラスタ11を多量に含む厚さ4
50〜800人の第二のSiO2層3が形成されている
。さらに第二のSi02層3の六回にはゲート電極5と
して多結晶St層が形成されている。In FIG. 1, a first 8io2 layer 2 with a thickness of 15 to 30 layers is formed on the surface of a Si substrate 1, and a first 5iC layer 2 is formed on the surface of a Si substrate 1.
) + thickness 4 containing a large amount of Si clusters 11 on the surface of layer 2
A second SiO2 layer 3 of 50-800 layers is formed. Further, a polycrystalline St layer is formed as a gate electrode 5 on the sixth layer of the second Si02 layer 3.
本実施例においては、第一のSiO2層2が電荷の自由
移動に対する障壁となり、第二のSiO2層3中のSi
クラスタ11が電荷の擁護中心としてはたらく。In this example, the first SiO2 layer 2 acts as a barrier to free movement of charges, and the SiO2 layer 3 in the second SiO2 layer 3 acts as a barrier to free movement of charges.
Cluster 11 serves as a charge center.
本実施例の構造は、Si基板1を酸化装置中に設置し、
まず、低温・高水蒸気圧下で酸化することによりSiク
ラスタ1lt−多量に含むSiO層3を形成し友後、高
水蒸気圧の酸化雰囲気を不活性気体によりパージし、昇
温して高温低水蒸気圧下で再び酸化することにより、既
に形成されているSiO2層3とSi基板1との界面に
Si クラスタを含まないSi0g層2を形成すること
により得ることができる。SiO層2の形成時にS i
oz層3中のSiクラスタ11も酸化されるが、SiO
層2の厚さが15〜30人と他めで薄いものである限り
、Siクラスタitの大きさの若干の縮少、あるいは数
の若干の減少は起っても、Siクラスタが消滅すること
はない。In the structure of this embodiment, a Si substrate 1 is installed in an oxidation device,
First, by oxidizing at low temperature and high water vapor pressure, a Si cluster 1lt-SiO layer 3 containing a large amount is formed. After that, the oxidizing atmosphere with high water vapor pressure is purged with an inert gas, and the temperature is raised to under high temperature and low water vapor pressure. This can be obtained by oxidizing the Si0g layer 2 containing no Si clusters at the interface between the SiO2 layer 3 and the Si substrate 1, which have already been formed. When forming the SiO layer 2, Si
Although the Si clusters 11 in the oz layer 3 are also oxidized, SiO
As long as the thickness of layer 2 is thin, such as 15 to 30 people, the Si clusters will not disappear even if the size of the Si clusters it or the number of them decreases slightly. do not have.
第2図は本発明の第2の実施例の縦断面図である。FIG. 2 is a longitudinal sectional view of a second embodiment of the invention.
本実施例においては第2図に示すように、第1の実施例
に示した第二のSiO膚3とゲート電極50間に、Si
クラスタを含まない第三の8 i Oz層4が形成され
ている。本実施例の構造によれば、第二のSiO層3中
のSiクラスタ11に捕1された電荷がホッピング伝導
によりゲート電極5側へ移動しさらには、ゲート電極5
へと放出されるのを第三のSiO層4が阻止できること
から、不揮発性記憶装置の主眼点である不揮発性をより
強化できることになる。In this embodiment, as shown in FIG. 2, a Si
A third 8 i Oz layer 4 without clusters is formed. According to the structure of this embodiment, the charges trapped in the Si clusters 11 in the second SiO layer 3 move to the gate electrode 5 side by hopping conduction, and further, the charges are transferred to the gate electrode 5 side.
Since the third SiO layer 4 can prevent the release of hydrogen into the air, nonvolatility, which is the main point of a nonvolatile memory device, can be further strengthened.
この第2の実施例の構造は、第1の実施例と同様に、S
i基板lを酸化装置内に設置し、まず高温・低水蒸気圧
下でSiクラスタを含まない8 i0z層4を形成した
後、低水蒸気圧の酸化雰囲気をパージし、降温する。以
降第一の実施例と同様の手順にしたがってSiクラスタ
lit”多量に含むS iOz層3と15〜30A厚さ
のSiO層2とを順次形成することにより得られる。The structure of this second embodiment is similar to that of the first embodiment.
The i-substrate I is placed in an oxidation apparatus, and after forming an 8I0z layer 4 containing no Si clusters at high temperature and low water vapor pressure, the oxidizing atmosphere at low water vapor pressure is purged and the temperature is lowered. Thereafter, the SiOz layer 3 containing a large amount of Si clusters lit'' and the SiO layer 2 having a thickness of 15 to 30 Å are sequentially formed in accordance with the same procedure as in the first embodiment.
以上説明したように、本発明のMOS型不揮発性半導体
記憶装置においては、ゲート絶縁層が本質的には等質の
物質の積層構造であるから、一台の酸化装置内で連続的
に形成できる。し比がって、従来のMOS型不揮発性半
導体記憶装置におけるゲート絶縁層と異なりゲート絶縁
層の形成工程を簡略化できる効果を有する。As explained above, in the MOS type nonvolatile semiconductor memory device of the present invention, since the gate insulating layer has a layered structure of essentially homogeneous materials, it can be formed continuously in one oxidation device. . In comparison, unlike the gate insulating layer in a conventional MOS type nonvolatile semiconductor memory device, the process for forming the gate insulating layer can be simplified.
第1図は本発明の第1の実施例の縦断面図、第2図は本
発明の第2の実施例の縦断面図、第3図(al 、 (
blは従来のMOS型不揮発性半導体記憶装置のゲート
絶縁層の縦断面図である。
1゛°・・・・Si基板、2.4.31・・・・・・S
iO層、3・・・・・・Siクラスタを含むSing層
s 5 、3s 。
44・・・・・・ゲート電極、11・・・・・・Siク
ラスタ、32・・・・・・S i 3N4層、42・・
・・・・多結晶Si層。
゛、′
V3回FIG. 1 is a vertical cross-sectional view of a first embodiment of the present invention, FIG. 2 is a vertical cross-sectional view of a second embodiment of the present invention, and FIG.
bl is a vertical cross-sectional view of a gate insulating layer of a conventional MOS type nonvolatile semiconductor memory device. 1゛°・・・Si substrate, 2.4.31・・・S
iO layer, 3... Sing layer s 5 , 3s containing Si clusters. 44... Gate electrode, 11... Si cluster, 32... Si 3N4 layer, 42...
...Polycrystalline Si layer.゛、′ V3 times
Claims (2)
該第一のSiO_2層上に形成されたSiクラスタを多
量に含む第二のSiO_2層と該第二のSiO_2層上
に形成されたゲート電極とを含むことを特徴とするMO
S型不揮発性半導体記憶装置。(1) A first SiO_2 layer formed on the surface of the Si substrate, a second SiO_2 layer containing a large amount of Si clusters formed on the first SiO_2 layer, and a second SiO_2 layer formed on the second SiO_2 layer. A MO characterized by comprising a gate electrode.
S-type nonvolatile semiconductor memory device.
該第一のSiO_2層上に形成されたSiクラスタを多
量に含む第二のSiO_2層と、該第二のSiO層上に
形成された第三のSiO_2層と、該第三のSiO_2
層上に形成されたゲート電極とを含むことを特徴とする
MOS型不揮発性半導体記憶装置。(2) A first SiO_2 layer formed on the surface of the Si substrate, a second SiO_2 layer containing a large amount of Si clusters formed on the first SiO_2 layer, and a second SiO_2 layer formed on the second SiO layer. a third SiO_2 layer; and a third SiO_2 layer.
1. A MOS type nonvolatile semiconductor memory device, comprising: a gate electrode formed on the layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16333885A JPS6223173A (en) | 1985-07-23 | 1985-07-23 | Mos type nonvolatile semiconductor memory |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16333885A JPS6223173A (en) | 1985-07-23 | 1985-07-23 | Mos type nonvolatile semiconductor memory |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6223173A true JPS6223173A (en) | 1987-01-31 |
Family
ID=15771965
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16333885A Pending JPS6223173A (en) | 1985-07-23 | 1985-07-23 | Mos type nonvolatile semiconductor memory |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6223173A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04137564A (en) * | 1990-08-08 | 1992-05-12 | Rohm Co Ltd | Semiconductor storage device |
WO1999038213A1 (en) * | 1998-01-26 | 1999-07-29 | Sony Corporation | Memory device and method of manufacturing the same, and integrated circuit and method of manufacturing semiconductor device |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4922356A (en) * | 1972-06-23 | 1974-02-27 |
-
1985
- 1985-07-23 JP JP16333885A patent/JPS6223173A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4922356A (en) * | 1972-06-23 | 1974-02-27 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04137564A (en) * | 1990-08-08 | 1992-05-12 | Rohm Co Ltd | Semiconductor storage device |
WO1999038213A1 (en) * | 1998-01-26 | 1999-07-29 | Sony Corporation | Memory device and method of manufacturing the same, and integrated circuit and method of manufacturing semiconductor device |
JPH11274420A (en) * | 1998-01-26 | 1999-10-08 | Sony Corp | Memory element and manufacturing method thereof, and integrated circuit and semiconductor device manufacturing method |
EP0971416A1 (en) * | 1998-01-26 | 2000-01-12 | Sony Corporation | Memory device and method of manufacturing the same, and integrated circuit and method of manufacturing semiconductor device |
EP0971416A4 (en) * | 1998-01-26 | 2000-08-09 | Sony Corp | MEMORY DEVICE AND CORRESPONDING MANUFACTURING METHOD, AND INTEGRATED CIRCUIT AND CORRESPONDING MANUFACTURING METHOD |
US6285055B1 (en) | 1998-01-26 | 2001-09-04 | Sony Corporation | Memory device and method of manufacturing the same, and integrated circuit and method of manufacturing semiconductor device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6946346B2 (en) | Method for manufacturing a single electron memory device having quantum dots between gate electrode and single electron storage element | |
TW587331B (en) | Double densed core gates in SONOS flash memory | |
TWI259560B (en) | Process for forming thick oxides on Si or SiC for semiconductor devices | |
TW502397B (en) | Memory cell | |
JPH10163348A (en) | Manufacturing method of nonvolatile semiconductor memory device | |
TW452922B (en) | Methods of fabricating an integrated circuit device with composite oxide dielectric | |
CN105531828A (en) | Complementary SONOS integration flow into CMOS | |
KR940022790A (en) | Separator Formation Method of Semiconductor Device | |
CN112331668B (en) | A visible-infrared two-dimensional charge-trapping memory and its preparation method | |
JPS6223173A (en) | Mos type nonvolatile semiconductor memory | |
JPS60239053A (en) | Semiconductor ram device | |
US6429109B1 (en) | Method to form high k dielectric and silicide to reduce poly depletion by using a sacrificial metal between oxide and gate | |
CN115084360A (en) | Ferroelectric multivalued memory with local regulation and control characteristics and preparation method thereof | |
JPH02129956A (en) | Manufacture of semiconductor memory device | |
CN100349298C (en) | Non-volatile storage device with increased coupling ratio and method of manufacturing the same | |
TWI282149B (en) | Method of forming a floating gate in a flash memory device | |
JP2004336059A (en) | Method for manufacturing semiconductor device | |
JPH04102375A (en) | Thin film transistor | |
JPS5823482A (en) | Manufacturing method of semiconductor device | |
KR100795683B1 (en) | Capacitor manufacturing method of semiconductor device | |
JPH04286152A (en) | Manufacture of semiconductor memory | |
KR20080104783A (en) | Method of forming nonvolatile memory device | |
JPS61127177A (en) | Semiconductor device and manufacture thereof | |
JPH01152650A (en) | Manufacture of semiconductor integrated circuit device | |
KR20180090656A (en) | Fabrication method of 3-dimensional flash memory device |