[go: up one dir, main page]

JPS6223168A - semiconductor equipment - Google Patents

semiconductor equipment

Info

Publication number
JPS6223168A
JPS6223168A JP16184585A JP16184585A JPS6223168A JP S6223168 A JPS6223168 A JP S6223168A JP 16184585 A JP16184585 A JP 16184585A JP 16184585 A JP16184585 A JP 16184585A JP S6223168 A JPS6223168 A JP S6223168A
Authority
JP
Japan
Prior art keywords
impurity
concentration
source
region
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16184585A
Other languages
Japanese (ja)
Inventor
Toru Kaga
徹 加賀
Yoshio Sakai
芳男 酒井
Masaaki Aoki
正明 青木
Yasuo Igura
井倉 康雄
Haruhiko Tanaka
田中 治彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP16184585A priority Critical patent/JPS6223168A/en
Publication of JPS6223168A publication Critical patent/JPS6223168A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To design impurity concentration in both an impurity region for controlling threshold voltage and low-concentration impurity regions for source-drain independently and optimally by changing the depth of both regions. CONSTITUTION:An N channel MOS transistor is formed onto a P-type Si substrate 13, and high-concentration N-type impurity layers 14 and low- concentration N-type impurity layers 12 are used as source-drain diffusion layers. The concentration of the impurity layer 12 is brought to 10<16>-10<19>cm<-3>, and an impurity layer 15 consists of an impurity layer having the same P-type as the substrate, and concentration thereof is brought to 10<16>-10<19>cm<-3>. The superposing sections of the impurity layers 15 and the impurity layers 12 can be reduced extremely. Accordingly, both impurity distribution of the impurity layer for controlling threshold voltage and the low-concentration source-drain diffusion layer adjacent to a gate electrode can precisely by controlled independently, thus designing a MOS transistor having high reliability and high performance.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は微細なMoSトランジスタ構造に係り、特に従
来よりも高信頼度なトランジスタ構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fine MoS transistor structure, and particularly to a transistor structure with higher reliability than conventional transistor structures.

〔発明の背景〕[Background of the invention]

MoSトランジスタ微細化に伴ってホットキャリアによ
るトランジスタ劣化が問題になっている。
With the miniaturization of MoS transistors, transistor deterioration due to hot carriers has become a problem.

これに対処するため、第2図(特開昭51−61117
76参照)に示すようにゲート電極1に隣接したソース
・ドレーン領域にソース・ドレインと同導電形の低不純
物濃度領域2を形成してドレイン近傍の電界を低減しホ
ットキャリアの発生を低下させる方法が採られている。
In order to deal with this, Fig. 2 (Japanese Unexamined Patent Publication No. 51-61117
76), a method of forming a low impurity concentration region 2 of the same conductivity type as the source/drain in the source/drain region adjacent to the gate electrode 1 to reduce the electric field near the drain and reduce the generation of hot carriers. is taken.

第2図の5はMOSトランジスタのしきい電圧制御用に
不純物イオン打ち込みして形成した半導体基板3とは同
じ導電形の不純物層である。この構造の場合、不純物層
5と低濃度不純物層2が重なるため、不純物層2の不純
物濃度が実質的に減少し、抵抗が増大するなど最適設計
が困難となる欠点があった。
2 is an impurity layer having the same conductivity type as the semiconductor substrate 3 formed by implanting impurity ions for controlling the threshold voltage of a MOS transistor. In this structure, since the impurity layer 5 and the low concentration impurity layer 2 overlap, the impurity concentration of the impurity layer 2 is substantially reduced, resulting in an increase in resistance, which makes it difficult to achieve an optimal design.

〔発明の目的〕[Purpose of the invention]

本発明の目標は、前記の問題点を解決し、かつ高信頼度
で高性能な微細なMOSトランジスタ構造を提供するこ
とにある。
An object of the present invention is to solve the above-mentioned problems and provide a fine MOS transistor structure with high reliability and high performance.

(発明の概要) 上記の目的を達成する為に1本発明ではしきい電圧制御
用の不純物領域と、ソース・ドレーンの低濃度不純物領
域の深さを変えることによって、両不純物領域の不純物
濃度を独立に最適設計可能としている。
(Summary of the Invention) In order to achieve the above object, the present invention reduces the impurity concentration of both impurity regions by changing the depths of the impurity region for threshold voltage control and the low concentration impurity regions of the source/drain. Optimum design is possible independently.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を図を用いて説明する。 Embodiments of the present invention will be described below with reference to the drawings.

第1の実施例を第1図に示す0図はp型Si基板13上
に形成したnチャンネルMOSトランジスタであり、高
濃度n型不純物層14.低濃度n型不純物層12をソー
ス・ドレーン拡散層として用いている。不純物層12の
濃度は101@〜101sl″3である。不純物層15
は基板と同じp型の不純物層であり、濃度はl O” 
〜1−0 ” aI+−”である。
The first embodiment shown in FIG. 1 is an n-channel MOS transistor formed on a p-type Si substrate 13, with a heavily doped n-type impurity layer 14. A low concentration n-type impurity layer 12 is used as a source/drain diffusion layer. The concentration of impurity layer 12 is 101@~101sl''3. Impurity layer 15
is the same p-type impurity layer as the substrate, and the concentration is l O”
~1-0 "aI+-".

この不純物層15は不純物層12より深い領域にあるた
め、不純物層15と不純物層12の重複部分を極力減ら
すことが可能である。このため両不純物領域の不純物濃
度分布を最適設計、制御可能であり、トランジスタの高
信頼性と高性能を合ねせ実現可能である。
Since this impurity layer 15 is located in a deeper region than the impurity layer 12, it is possible to reduce the overlapping portion between the impurity layer 15 and the impurity layer 12 as much as possible. Therefore, it is possible to optimally design and control the impurity concentration distribution in both impurity regions, and it is possible to achieve both high reliability and high performance of the transistor.

第2の実施例を第3図に示す。図はp型Si基板23上
に形成したnチャンネルMOSトランジスタであり、高
濃度n型不純物層24.低濃度n型不純物層22をソー
ス・ドレーン拡散層として用いている。不純物層22の
濃度は101@〜1019cn−’である。不純物層2
5は基板と同じp型の不純物層であり、濃度は1016
〜IQ”cm−’である。この不純物層25は不純物層
22より浅い領域にあるため1両不純物層の重複部分を
極力減らすことが可能であり、両不純物層の濃度分布を
最適設計、制御可能である。
A second embodiment is shown in FIG. The figure shows an n-channel MOS transistor formed on a p-type Si substrate 23, with a high concentration n-type impurity layer 24. The low concentration n-type impurity layer 22 is used as a source/drain diffusion layer. The concentration of the impurity layer 22 is 101@ to 1019cn-'. Impurity layer 2
5 is the same p-type impurity layer as the substrate, and the concentration is 1016
~IQ"cm-'. Since this impurity layer 25 is in a shallower region than the impurity layer 22, it is possible to reduce the overlapping portion of both impurity layers as much as possible, and the concentration distribution of both impurity layers can be optimally designed and controlled. It is possible.

第4図に前記実施例(第1図参照)の製造プロセスを示
す。p型Si基板上にゲート酸化膜(例えば20nm)
を熱酸化法により形成した後、ボロン33をイオン打込
み法(例えば打込み加速電圧120kV、ドーズ量5 
X 10”am−3) テ打ち込み(第1図a)、Si
内部にボロンの高濃度層35を形成した後、ゲート電極
36(例えばリンをドープした多結晶Si)を形成する
(第1図b)。
FIG. 4 shows the manufacturing process of the embodiment (see FIG. 1). Gate oxide film (e.g. 20 nm) on p-type Si substrate
After forming by thermal oxidation method, boron 33 is formed by ion implantation method (for example, implantation acceleration voltage 120 kV, dose amount 5
X 10”am-3) Te driving (Fig. 1a), Si
After forming a high concentration layer 35 of boron inside, a gate electrode 36 (for example, polycrystalline Si doped with phosphorus) is formed (FIG. 1b).

次にリン37をイオン打ち込み法(例えば打ち込み加速
電圧30 KV、ドース量I X I O”am−”)
で打ち込み、ゲート電極36に対して自己調合的に低濃
度n型不純物領域38を形成する(第1図c)、次にC
VD (ケミカル・ベーパー・デポジションChemi
cal Vapor Deposition)法により
Next, phosphorus 37 was added by ion implantation method (for example, implantation acceleration voltage 30 KV, dose amount I X I O"am-")
A low concentration n-type impurity region 38 is formed in a self-mixing manner with respect to the gate electrode 36 (FIG. 1c), and then C.
VD (Chemical Vapor Deposition Chemi)
cal Vapor Deposition) method.

Sin、39を堆積しく第1図d)、異方性ドライエツ
チング法を用いてゲート電極の側壁部のSin、40を
残してCvDSi02をエツチングする(第1図e)。
After depositing the Sin, 39 (FIG. 1d), the CvDSi02 is etched using an anisotropic dry etching method, leaving the Sin, 40 on the sidewalls of the gate electrode (FIG. 1e).

次にイオン打ち込み法(例えば打ち込み加速電圧40 
kV、ドース量5×101s■−2を用いてヒ素41を
打ち込み高濃度n型不純物層42を形成する(第1図f
)0以上により、所望のMOSトランジスタ構造を実現
可能である。なお、ボロン33のイオン打ち込み加速電
圧を下げ約10kV程度にし、かつ、リン37の打ち込
み加速電圧を上げ200kV程度以上とすることにより
、第3図に示した構造をも実現可能である。
Next, ion implantation method (for example, implantation acceleration voltage 40
Arsenic 41 is implanted at a dose of 5 x 101 s-2 to form a highly concentrated n-type impurity layer 42 (see Fig. 1 f).
)0 or more, it is possible to realize a desired MOS transistor structure. Note that the structure shown in FIG. 3 can also be realized by lowering the ion implantation acceleration voltage of boron 33 to about 10 kV and increasing the implantation acceleration voltage of phosphorus 37 to about 200 kV or more.

本実施例では、nチャンネルMOSトランジスタを例に
本発明を説明したが、pチャンネルMOSトランジスタ
に対しても本発明を適用することによって本発明の効果
を発揮出来ることはいうまでもない、さらに1本発明に
よる構造を採用したnチャンネルMOSトランジスタと
pチャンネルMOSトランジスタとを組み合わせた相補
形MO3も実現可能である。
In this embodiment, the present invention has been explained using an n-channel MOS transistor as an example, but it goes without saying that the effects of the present invention can be exhibited by applying the present invention to a p-channel MOS transistor. It is also possible to realize a complementary MO3 that combines an n-channel MOS transistor and a p-channel MOS transistor employing the structure according to the present invention.

〔発明の効果〕〔Effect of the invention〕

本発明の構造を用いることによって、しきい電圧制御用
不純物層とゲート電極に隣接する低濃度ソース・ドレー
ン拡散層の、両者の不純物分布を独立に正確に制御可能
となり、これによって高信頼かつ高性能なMOSトラン
ジスタ設計を可能とする効果がある。
By using the structure of the present invention, it becomes possible to independently and accurately control the impurity distribution of both the threshold voltage control impurity layer and the low concentration source/drain diffusion layer adjacent to the gate electrode. This has the effect of enabling high-performance MOS transistor design.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第3図は本発明の実施例になるMOSトランジ
スタの断面図、第2図は従来構造MOSトランジスタの
断面図、第4図は第2図のMOSトランジスタの製造プ
ロセスを示す。 1.11,21.36・・・ゲート電極、2,12゜2
2.38・・・低濃度ソース・ドレーン拡散層、3゜1
、.3,23.31・・・P型Si基板、4,14゜2
4.42・・・高濃度ソース・ドレーン拡散層、5゜1
5.25,34.35・・・しきい電圧調整用p型不純
物W、6,16,26.32−・・グー1−絶a膜、3
3・・・ボロン、37・・・リン、39.40・・・C
VD5jO2,41・・・ヒ素。 代理人 弁理士 小川勝馬71、 す。 \−−2〆 第 / 図 /l □亦ノ +7已1ノ ]
1 and 3 are cross-sectional views of a MOS transistor according to an embodiment of the present invention, FIG. 2 is a cross-sectional view of a conventionally structured MOS transistor, and FIG. 4 shows a manufacturing process of the MOS transistor of FIG. 2. 1.11, 21.36...gate electrode, 2,12°2
2.38...Low concentration source/drain diffusion layer, 3゜1
,. 3,23.31...P-type Si substrate, 4,14°2
4.42...High concentration source/drain diffusion layer, 5゜1
5.25, 34.35...p-type impurity W for threshold voltage adjustment, 6,16,26.32-...Goo 1-absolute a film, 3
3...Boron, 37...phosphorus, 39.40...C
VD5jO2,41...Arsenic. Agent: Patent attorney Katsuma Ogawa 71. \−−2〆次/Fig/l □亦ノ+7已1ノ】

Claims (1)

【特許請求の範囲】 1、半導体基板の第1導電型領域に形成した第2導電型
のソース・ドレイン領域を有するMISトランジスタに
おいて、該トランジスタのソース・ドレイン領域のうち
ゲート電極に隣接する表面部分の不純物濃度が他のソー
ス・ドレイン領域の不純物濃度よりも低く、該低濃度ソ
ース・ドレーン領域よりも浅くない領域でかつゲート電
極及び該低濃度ソース・ドレイン領域直下に半導体基板
の第1導電型不純物領域よりも高濃度の第1導電型不純
物領域を設けた事を特徴とする半導体装置。 2、ソース・ドレイン領域のうちゲート電極に隣接する
低濃度不純物領域が基板内部にあり、該低濃度ソース・
ドレイン領域よりも深くない領域でかつゲート電極直下
及び該低濃度ソース・ドレイン領域直上に半導体基板の
第1導電極不純物領域よりも高濃度の第1導電形の不純
物領域を設けた事を特徴する特許請求の範囲第1項記載
の半導体装置。
[Claims] 1. In a MIS transistor having a second conductivity type source/drain region formed in a first conductivity type region of a semiconductor substrate, a surface portion of the source/drain region of the transistor adjacent to the gate electrode. The first conductivity type of the semiconductor substrate is a region where the impurity concentration of A semiconductor device comprising a first conductivity type impurity region having a higher concentration than the impurity region. 2. Among the source/drain regions, the low concentration impurity region adjacent to the gate electrode is inside the substrate, and the low concentration impurity region is adjacent to the gate electrode.
A first conductivity type impurity region having a higher concentration than the first conductive electrode impurity region of the semiconductor substrate is provided in a region not deeper than the drain region and directly below the gate electrode and directly above the low concentration source/drain region. A semiconductor device according to claim 1.
JP16184585A 1985-07-24 1985-07-24 semiconductor equipment Pending JPS6223168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16184585A JPS6223168A (en) 1985-07-24 1985-07-24 semiconductor equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16184585A JPS6223168A (en) 1985-07-24 1985-07-24 semiconductor equipment

Publications (1)

Publication Number Publication Date
JPS6223168A true JPS6223168A (en) 1987-01-31

Family

ID=15743034

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16184585A Pending JPS6223168A (en) 1985-07-24 1985-07-24 semiconductor equipment

Country Status (1)

Country Link
JP (1) JPS6223168A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190764A (en) * 1986-02-17 1987-08-20 Seiko Epson Corp semiconductor equipment
JPS6453461A (en) * 1987-05-19 1989-03-01 Seiko Epson Corp Semiconductor device and manufacture thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62190764A (en) * 1986-02-17 1987-08-20 Seiko Epson Corp semiconductor equipment
JPS6453461A (en) * 1987-05-19 1989-03-01 Seiko Epson Corp Semiconductor device and manufacture thereof

Similar Documents

Publication Publication Date Title
US7301208B2 (en) Semiconductor device and method for fabricating the same
JP2663402B2 (en) Method for manufacturing CMOS integrated circuit device
JP2000174135A (en) Semiconductor device and manufacturing method thereof
JPH0519979B2 (en)
JPS6223168A (en) semiconductor equipment
JPH09312397A (en) Semiconductor device and method of fabricating the same
JPH0969576A (en) C-MOS manufacturing method
JPS6025028B2 (en) Manufacturing method of semiconductor device
JP3063692B2 (en) Semiconductor device and manufacturing method thereof
JP4186247B2 (en) Method for manufacturing semiconductor device and method for forming conductive silicon film
JPH1012870A (en) Semiconductor device and its manufacture
JPH09191106A (en) Semiconductor device and its manufacture
JP2757491B2 (en) Method for manufacturing semiconductor device
JPH0612826B2 (en) Method of manufacturing thin film transistor
JPH067556B2 (en) MIS type semiconductor device
JP2953915B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JP2506947B2 (en) Semiconductor device and manufacturing method thereof
JPH04255233A (en) Semiconductor device and manufacture thereof
JP2001274382A (en) Semiconductor device and manufacturing method thereof
JPH02219237A (en) Mis type semiconductor device
JPH04330782A (en) Fine semiconductor device and manufacture thereof
JP3272596B2 (en) Semiconductor device and manufacturing method thereof
JP2000260983A (en) Semiconductor device and manufacture thereof
JPH08274324A (en) Semiconductor device and method of manufacturing semiconductor device
JPS63142866A (en) Manufacture of insulated gate field-effect transistor