JPS62196080A - Ultrasonic motor - Google Patents
Ultrasonic motorInfo
- Publication number
- JPS62196080A JPS62196080A JP61035962A JP3596286A JPS62196080A JP S62196080 A JPS62196080 A JP S62196080A JP 61035962 A JP61035962 A JP 61035962A JP 3596286 A JP3596286 A JP 3596286A JP S62196080 A JPS62196080 A JP S62196080A
- Authority
- JP
- Japan
- Prior art keywords
- unit
- driving body
- driving
- driving unit
- piezoelectric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/16—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
- H02N2/166—Motors with disc stator
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は圧電体を用いて駆動力を発生する超音波モータ
に関する。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an ultrasonic motor that generates driving force using a piezoelectric material.
従来の技術
近年、圧電セラミック等の圧電体を用いた駆動体に弾性
振動を励起し、これを、駆動力とした超音波モータが注
目されている。2. Description of the Related Art In recent years, ultrasonic motors have attracted attention, in which elastic vibrations are excited in a driving body using a piezoelectric body such as a piezoelectric ceramic, and this vibration is used as a driving force.
以下、図面を参照しながら超音波モータの原理について
説明を行う。The principle of the ultrasonic motor will be explained below with reference to the drawings.
第3図は超音波モータの1例であり、円環形の弾性体1
0円環面の一方に円環形圧電セラミック2を貼合せて、
圧電駆動体3を構成している。4は耐磨耗性材料のスラ
イダ、6は弾性体であり、互いに貼合せられて動体6を
構成している。動体6はスライダ4を介して駆動体3と
接触している。Figure 3 shows an example of an ultrasonic motor, with an annular elastic body 1
A toroidal piezoelectric ceramic 2 is laminated on one side of the toric surface.
It constitutes a piezoelectric drive body 3. 4 is a slider made of a wear-resistant material, and 6 is an elastic body, which are pasted together to form the moving body 6. The moving body 6 is in contact with the driving body 3 via the slider 4.
圧電セラミック2に電界を印加すると、駆動体30周方
向に曲げ振動の進行波が励起されて、動体6を駆動する
。尚、同図中の矢印は動体6の回転方向を示す0
第4図は第3図の超音波モータに使用した圧電セラミッ
ク2の電極構造の1例を示している。同図では円周方向
に曲げ振動が9波のるようにしである。同図において、
A、 Bはそれぞれ2分の1波長相当の小領域から成
る電極群で、C,Dはそれぞれ4分の3波長、4分の1
波長の長さの電極である。従って、ムの電極群とBの電
極群とけ周方向に4分の1彼長(=90度)の位相ずれ
がある。電悼郡部、B内の隣合う小電極部は互いに反対
方向に厚み方向に分極されている。圧電セラミック2の
弾性体1との接着面は第4図に示された面と反対の面で
あり、電極はベタ電極である。使用時には電極郡部、B
は第4図に斜線で示されたように、それぞれ短絡して用
いられ、ペタ電極が共通電極として用いられる。When an electric field is applied to the piezoelectric ceramic 2, a traveling wave of bending vibration is excited in the circumferential direction of the driving body 30, thereby driving the moving body 6. Note that the arrow in the figure indicates the rotation direction of the moving body 6. FIG. 4 shows an example of the electrode structure of the piezoelectric ceramic 2 used in the ultrasonic motor of FIG. 3. In the figure, nine waves of bending vibration are applied in the circumferential direction. In the same figure,
A and B are electrode groups each consisting of a small area equivalent to 1/2 wavelength, and C and D are electrode groups consisting of 3/4 wavelength and 1/4 wavelength, respectively.
It is an electrode with a wavelength length. Therefore, there is a phase shift of one quarter length (=90 degrees) between the electrode group M and the electrode group B in the circumferential direction. Adjacent small electrode portions within B are polarized in opposite directions to each other in the thickness direction. The bonding surface of the piezoelectric ceramic 2 with the elastic body 1 is the surface opposite to the surface shown in FIG. 4, and the electrodes are solid electrodes. When using the electrode group, B
As indicated by diagonal lines in FIG. 4, these electrodes are short-circuited and the peta electrode is used as a common electrode.
以上のように構成された超音波モータについて、その動
作を以下に説明する。前記圧電体2の電極群ムに電圧
V = Vq−gin (wt) −・・・・・
(1)を印加すると、駆動体3は円周方向に曲げ振動を
する。第5図は第3図の超音波モータの駆動体を直線で
近似した時の斜視図であり、同図(&)は圧電体2に電
圧を印加していない時、同図(b)は圧電体2に電圧を
印加した時の様子を示す。The operation of the ultrasonic motor configured as above will be described below. Voltage V = Vq-gin (wt) -... on the electrode group of the piezoelectric body 2
When (1) is applied, the driving body 3 bends and vibrates in the circumferential direction. FIG. 5 is a perspective view of the driving body of the ultrasonic motor shown in FIG. 3 when it is approximated by a straight line. The situation when a voltage is applied to the piezoelectric body 2 is shown.
第6図は動体6と駆動体3の接触状況を拡大して描いた
ものである。前記圧電体2の電極群AにVo−sin
(wt) 、電極群BにVo−cos (wt)の互い
に位相がπ/2だけずれた電圧を印加すれば1.駆動体
3の円周方向に曲げ振動の進行波を作ることができる。FIG. 6 is an enlarged depiction of the contact situation between the moving body 6 and the driving body 3. Vo-sin is applied to the electrode group A of the piezoelectric body 2.
(wt), and voltages Vo-cos (wt) whose phases are shifted by π/2 from each other are applied to the electrode group B. A traveling wave of bending vibration can be created in the circumferential direction of the driving body 3.
一般に進行波は振幅をξとすればξ=ξQ−Cog(W
t −kx) −−−−−−(2)で表せる。(巧式
は
ξ=ξ(、−(cos(wt)−cos Qcx)+s
in (wt)−sin(kx))・・・・・・ (3
)
と書き直せ、(3)式は進行波が時間的にπ/2だけ位
相のずれた波cog(wt)とSin (Wt)、およ
び位置的にπ/2だけ位相のずれたcos(kx)と5
inQcx)との、それぞれの積の和で得られることを
示している。前述の説明より、圧電体2は互いに位置的
にπ/2(二λ/4)だけ位相のずれた電極郡部。Generally speaking, if the amplitude of a traveling wave is ξ, then ξ=ξQ−Cog(W
t −kx) −−−−−−(2). (The clever formula is ξ=ξ(,-(cos(wt)-cos Qcx)+s
in (wt)-sin(kx))... (3
), Equation (3) is a traveling wave with waves cog (wt) and sin (Wt) whose phase is shifted by π/2 in time, and cos (kx) whose phase is shifted by π/2 in position. and 5
inQcx). From the above explanation, the piezoelectric body 2 is a group of electrodes whose phases are shifted from each other by π/2 (two λ/4).
Bを持っているので、前記電極群のそれぞれにπ/2だ
け位相のずれた電圧を印加すれば、駆動体3に曲げ振動
の進行波を作れる。B, a traveling wave of bending vibration can be created in the driving body 3 by applying voltages with a phase difference of π/2 to each of the electrode groups.
第6図は駆動体3の表面入点が進行波の励起により、長
軸2w、短軸2uの隋円運動をしている様子を示し、駆
動体3上に置かれた動体6が楕円の頂点で接触すること
により、波の進行方向とは逆方向にV=W−U の速度
で運動する様子を示している。即ち、動体6は任意の静
圧で駆動体3に押し付けられて、駆動体3の表面に接触
し、動体6と駆動体3との摩擦力で波の進行方向と逆方
向に速度Vで駆動される。゛両者の間に滑りがある時に
は、速度は上記のVよりも小さくなる。Figure 6 shows that the surface entry point of the driving body 3 is moving in a circular motion with the long axis 2w and the short axis 2u due to the excitation of the traveling wave, and the moving body 6 placed on the driving body 3 is shaped like an ellipse. It shows how the waves move at a speed of V=W-U in the opposite direction to the traveling direction of the waves due to contact at the apex. That is, the moving body 6 is pressed against the driving body 3 with an arbitrary static pressure, comes into contact with the surface of the driving body 3, and is driven at a speed V in the direction opposite to the direction of wave propagation due to the frictional force between the moving body 6 and the driving body 3. be done. ``When there is slippage between the two, the velocity becomes smaller than the above V.
発明が解決しようとする問題点
第7図は円環形の駆動体の変位分布を示す図である。同
図より、変位は外径に向うにつれて大きくなる。超音波
モータの速度マは
v=w@uocw−ξoIIh……(4)で表せる。従
って、第7図に示したような円環形の周方向に3次以上
、径方向に1次の曲げ撮動モードを使う時には、動体が
外周部に接触するように設置すれば、速度が最も大きい
。しかし、外周部は自由端であるので、ここに動体を負
荷として配置すれば振動に大きな影響を及ぼす。また、
円環形態動体は同一占有空間内での体積が小さいので、
駆動体のもつエネルギーを大きくできない。Problems to be Solved by the Invention FIG. 7 is a diagram showing the displacement distribution of an annular driving body. From the figure, the displacement increases toward the outer diameter. The speed of the ultrasonic motor can be expressed as v=w@uocw-ξoIIh (4). Therefore, when using a bending mode of 3rd order or higher in the circumferential direction of an annular shape and 1st order in the radial direction as shown in Fig. 7, if the moving object is installed so that it is in contact with the outer periphery, the speed will be maximized. big. However, since the outer periphery is a free end, placing a moving object there as a load will have a significant effect on vibration. Also,
Since toric-shaped moving objects have a small volume within the same occupied space,
The energy of the driving body cannot be increased.
従って、負荷によるモータ特性の変動が大きい、機械出
力が大きくとれないなどの欠点がある。Therefore, there are drawbacks such as large fluctuations in motor characteristics due to load and inability to obtain large mechanical output.
問題点を解決するための手段
駆動体として中心部に穴のおいている円板か、または穴
のおいていない円板を用い、該駆動体に円周方向に3次
以上、径方向に2次の曲げ撮動モードの進行波を励起し
、該駆動体の動体との接触面側の該曲げ振動の腹の位置
を含むように突起体を設け、該突起体を介して動力伝達
を行なう。Means for solving the problem A disk with a hole in the center or a disk without a hole is used as the drive body, and the drive body has three or more orders in the circumferential direction and a second order in the radial direction. Excite the traveling wave in the next bending imaging mode, provide a protrusion so as to include the antinode of the bending vibration on the contact surface side of the driving body with the moving body, and transmit power via the protrusion. .
作用
駆動体として同一占有空間で質量の大きくできる円板の
使用と高次の曲げ振動モードの採用により、駆動体内の
蓄積エネルギーを大きくし、周方向3次以上、径方向2
次の曲げ振動モードの腹の位置を含むように突起体を設
けることにより、大きな速度を安定に実現し、また機械
的出力を大きくする。By using a disk that can increase the mass in the same space as the action driving body and by adopting a high-order bending vibration mode, the accumulated energy within the driving body is increased, and the energy accumulated in the driving body is increased, and
By providing the protrusion so as to include the antinode position of the next bending vibration mode, high speed can be stably achieved and mechanical output can be increased.
実施例
以下、図面に従って本発明の一実施例について説明する
。EXAMPLE An example of the present invention will be described below with reference to the drawings.
第1因は本発明の1実施例の超音波モータの切欠き斜視
図である。同図において、7は圧電体で8の弾性体と貼
合せて同一空間内で質量の大きい円板形の、駆動体9を
構成している。10は駆動体9の表面に設けられた突起
体で、駆動体1oに励起された円周方向に3次以上、径
方向2次の曲げ振動モードの腹の位置を必ず含むように
同心円状に設けている。11は耐磨耗性のスライダで突
起体1oの先端に接触して配され、弾性体12に貼付け
られて動体13を構成している。14は回転軸で、圧電
体7に駆動体9の上記曲げ振動の共振周波数近傍で2相
の交流電界を印加すれば、動体13は回転軸14を中心
にして回転する。なお、曲げ振動モードは、電極構成と
の関係において外部駆動周波数を適当に設定することに
より選択可能である。The first factor is a cutaway perspective view of an ultrasonic motor according to an embodiment of the present invention. In the figure, a piezoelectric body 7 is bonded to an elastic body 8 to form a disc-shaped driving body 9 with a large mass in the same space. Reference numeral 10 denotes a protrusion provided on the surface of the driving body 9, which is arranged concentrically so as to always include the antinode of the third or higher order bending vibration mode in the circumferential direction and the second order in the radial direction excited by the drive member 1o. It is set up. Reference numeral 11 denotes a wear-resistant slider, which is disposed in contact with the tip of the projection 1o, and is attached to the elastic body 12 to constitute a moving body 13. Reference numeral 14 denotes a rotating shaft, and when a two-phase alternating current electric field is applied to the piezoelectric body 7 near the resonance frequency of the bending vibration of the driving body 9, the moving body 13 rotates around the rotating shaft 14. Note that the bending vibration mode can be selected by appropriately setting the external drive frequency in relation to the electrode configuration.
第2図1は第1図の実施例の、駆動体9を直線化した時
の図で、突起体10による駆動体9の曲げ剛性の増加は
小さく、しかも中性面NLの位置の変化も小さいので、
同図中に示すように距離hHh’と大きくなり、同一駆
動に対して大きな横方向成分が得られ、(4)式より動
体13の速度は大きくなる。また、この時動体13の速
度を最大にしようとすれば、曲げ振動の振幅ξ0の大き
い振動の腹の部分が必ず突起体1oの内にあるようにす
ればよい。FIG. 2 1 is a diagram of the embodiment shown in FIG. 1 when the driving body 9 is straightened, and the increase in bending rigidity of the driving body 9 due to the protrusion 10 is small, and the change in the position of the neutral plane NL is also small. Because it is small,
As shown in the figure, the distance hHh' becomes large, a large lateral component is obtained for the same drive, and the speed of the moving body 13 becomes large according to equation (4). In addition, in order to maximize the speed of the moving body 13 at this time, it is only necessary to ensure that the antinode of the bending vibration having a large amplitude ξ0 is located within the protrusion 1o.
ところが、第8図に示すように、駆動体9を径方向2次
で用いても円周方向の次数によって振動の腹の位置が変
わる。第8図は円板の周方向3次、径方向2次の時の駆
動体9の振動の様子とその径方向変位分布を示し、周方
向の次数が6次になった時には、その変位分布が変化し
振動の腹の位置が外周方向へ移動することを示している
。一般に、径方向2次固定で周方向の次数が上るに従い
、振動の腹の位置は外側に移動する。故に、周方向の任
意の次数に対して常に最高速度を得ようとすれば、突起
体1oの位置は、振動の腹が突起体1゜内にあるように
、周方向の次数につれて突起体10を同心円状に設置せ
ねばならない。However, as shown in FIG. 8, even if the driver 9 is used in the second order in the radial direction, the position of the antinode of vibration changes depending on the order in the circumferential direction. Figure 8 shows the state of vibration of the drive body 9 and its radial displacement distribution when the disc is 3rd order in the circumferential direction and 2nd order in the radial direction, and the displacement distribution when the circumferential order becomes 6th order. changes, and the position of the antinode of vibration moves toward the outer circumference. Generally, as the order in the circumferential direction increases with secondary fixation in the radial direction, the position of the antinode of vibration moves outward. Therefore, if you try to always obtain the maximum speed for any order in the circumferential direction, the position of the protrusion 1o will increase as the order in the circumferential direction increases so that the antinode of vibration is within 1° of the protrusion. must be placed in concentric circles.
尚、上記の実施例の駆動体は穴なし円板を用い、円板の
中心はほとんど振動しないことを利用して、回転軸を」
動体の中心からとっているが、駆動体の中心部に穴をあ
けて、機械的振動を阻害しないようなフェルトのような
もので土台に固定し、その土台から回転軸を取出しても
同様の効果が得られる。The drive body in the above embodiment uses a disk without a hole, and the center of the disk hardly vibrates, so that the rotation axis can be adjusted.
Although it is taken from the center of the moving body, the same result can be obtained by drilling a hole in the center of the driving body, fixing it to a base with something like felt that does not inhibit mechanical vibration, and then taking out the rotating shaft from the base. Effects can be obtained.
第9図は本実施例に用いた圧電体の電極構造を示す平面
図で、図中のA/、 B/はそれぞれ互いに周方向に
π/2だけ位相の異なる電極で、双方の電極h/、
B/はそれぞれ周方向に1/2波長相当の長さを有し、
隣接する小電極部は厚さ方向に逆方向に分極されている
小電極より成っている。c/、 D/はそれぞれ周方
向に3/4.174波長の長さをもつ領域である。駆動
時には、電極A/、 B/はそれぞれ短絡されて、そ
れぞれsin波、cos波の交流電圧が印加される。つ
まり(3)式により、曲げ振動の進行波が駆動体中に励
起される。FIG. 9 is a plan view showing the electrode structure of the piezoelectric material used in this example. In the figure, A/ and B/ are electrodes whose phase differs from each other by π/2 in the circumferential direction, and both electrodes h/ ,
B/ each has a length equivalent to 1/2 wavelength in the circumferential direction,
Adjacent small electrode portions are composed of small electrodes polarized in opposite directions in the thickness direction. c/ and D/ are regions each having a length of 3/4.174 wavelength in the circumferential direction. During driving, electrodes A/ and B/ are short-circuited, and sine wave and cosine wave alternating current voltages are applied, respectively. In other words, according to equation (3), a traveling wave of bending vibration is excited in the driving body.
尚、上の実施例では周方向に3次を使ったが、3次以上
であれば任意の次数を選んでも、その動作上問題はない
。In the above embodiment, the third order was used in the circumferential direction, but any order higher than the third order may be selected without any problem in operation.
発明の効果
以上述べたように本発明では、駆動体として円板の採用
により、同一占有空間内で駆動体の質量を大きくし、円
板の円周方向3次以上、径方向2次の曲げ振動モードを
進行波として励起し、該振動の腹が必ず突起体内にある
ように突起体を該駆動体上に同心円状に設けることによ
り、横方向成分を拡大することによって、速度の太きい
、しかも機械的出力の大きい超音波モータを提供できる
。Effects of the Invention As described above, in the present invention, by employing a disk as the driving body, the mass of the driving body is increased within the same occupied space, and the bending of the disk is tertiary or higher in the circumferential direction and secondary in the radial direction. By exciting the vibration mode as a traveling wave, and by providing the protrusions concentrically on the driving body so that the antinode of the vibration is always within the protrusion, the lateral component is expanded, and the velocity becomes large. Moreover, it is possible to provide an ultrasonic motor with a large mechanical output.
第1図は本発明の1実施例の超音波モータの切欠き斜視
図、第2図は突起体の動作説明のための直線化モデル図
、第3図は従来の超音波モータの切欠き斜視図、第4図
は第3図の従来例に用いた圧電体の平面図、第5図は超
音波モータの駆動体の振動状態を示すモデル図、第6図
は超音波モータの原理説明図、第7図は円環形超音波モ
ータの1図の実施例に用いる圧電体の平面図である。
7・・・・・・圧電体、8・・・・・・弾性体、9・・
・・・・駆動体、10・・・・・・突起体、11・・・
・・・スライダ、12・・・・・・弾性体、13・・・
・・・動体、14・・・・・・回転軸、ム′、B′・・
・・・・電極。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第
1 図
第2図
第 3 図
WJ4図
第5図
第6図
第7図
ネε方向心叫1rFig. 1 is a cutaway perspective view of an ultrasonic motor according to an embodiment of the present invention, Fig. 2 is a linear model diagram for explaining the operation of the protrusion, and Fig. 3 is a cutaway perspective view of a conventional ultrasonic motor. Figure 4 is a plan view of the piezoelectric body used in the conventional example shown in Figure 3, Figure 5 is a model diagram showing the vibration state of the driving body of the ultrasonic motor, and Figure 6 is a diagram explaining the principle of the ultrasonic motor. , FIG. 7 is a plan view of a piezoelectric body used in the embodiment of the annular ultrasonic motor shown in FIG. 7...Piezoelectric body, 8...Elastic body, 9...
...Driver, 10...Protrusion, 11...
...Slider, 12...Elastic body, 13...
...Moving object, 14...Rotation axis, M', B'...
····electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person
1 Figure 2 Figure 3 Figure WJ4 Figure 5 Figure 6 Figure 7
Claims (1)
ることにより、上記駆動体上に接触して設置された動体
を移動させる超音波モータにおいて、駆動体として円板
を使用し、該駆動体に円周方向に3次以上、径方向に2
次の曲げ振動モードの進行波を励起し、該駆動体の動体
との接触面側の該曲げ振動の腹の位置を含む位置に同心
円状に突起体を設け、該突起体を介して動体に動力伝達
をすることを特徴とする超音波モータ。In an ultrasonic motor that moves a moving body placed in contact with the driving body by exciting an elastic traveling wave in the driving body made of an elastic body and a piezoelectric body, a disk is used as the driving body, and the The driving body has three or more orders in the circumferential direction and two orders in the radial direction.
A traveling wave in the next bending vibration mode is excited, and a protrusion is provided concentrically at a position including the antinode of the bending vibration on the contact surface side of the driving body with the moving body, and the traveling wave is transmitted to the moving body via the protrusion. An ultrasonic motor characterized by power transmission.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61035962A JPS62196080A (en) | 1986-02-20 | 1986-02-20 | Ultrasonic motor |
US07/126,105 US4829209A (en) | 1986-02-18 | 1987-02-17 | Ultrasonic motor with stator projections and at least two concentric rings of electrodes |
DE8787901637T DE3782301T2 (en) | 1986-02-18 | 1987-02-17 | ULTRASONIC MOTOR. |
EP87901637A EP0258449B1 (en) | 1986-02-18 | 1987-02-17 | Ultrasonic motor |
PCT/JP1987/000102 WO1987005166A1 (en) | 1986-02-18 | 1987-02-17 | Ultrasonic motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61035962A JPS62196080A (en) | 1986-02-20 | 1986-02-20 | Ultrasonic motor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62196080A true JPS62196080A (en) | 1987-08-29 |
Family
ID=12456584
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61035962A Pending JPS62196080A (en) | 1986-02-18 | 1986-02-20 | Ultrasonic motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62196080A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6477482A (en) * | 1987-09-18 | 1989-03-23 | Nec Corp | Ultrasonic motor |
JPS6454795U (en) * | 1987-09-30 | 1989-04-04 | ||
JPH0226277A (en) * | 1988-07-12 | 1990-01-29 | Matsushita Electric Ind Co Ltd | Ultrasonic motor |
-
1986
- 1986-02-20 JP JP61035962A patent/JPS62196080A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6477482A (en) * | 1987-09-18 | 1989-03-23 | Nec Corp | Ultrasonic motor |
JPS6454795U (en) * | 1987-09-30 | 1989-04-04 | ||
JPH0226277A (en) * | 1988-07-12 | 1990-01-29 | Matsushita Electric Ind Co Ltd | Ultrasonic motor |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4723085A (en) | Vibration wave motor | |
JPH01129782A (en) | Ultrasonic motor | |
JPS62196080A (en) | Ultrasonic motor | |
JPH01177877A (en) | Oscillatory wave motor | |
JP2769151B2 (en) | Ultrasonic motor | |
JPS62196085A (en) | Ultrasonic motor | |
JPS62193576A (en) | Ultrasonic motor | |
KR100661311B1 (en) | Piezoelectric ultrasonic motor | |
EP0539969B1 (en) | Ultrasonic motor | |
JP2507083B2 (en) | Ultrasonic motor | |
JPS62196081A (en) | Ultrasonic motor | |
JPS60174078A (en) | Piezoelectric motor | |
JPS62193573A (en) | Ultrasonic motor | |
JPS6118370A (en) | Piezoelectric motor | |
JPS63240382A (en) | Ultrasonic motor | |
JP2506859B2 (en) | Ultrasonic motor | |
JP2523634B2 (en) | Ultrasonic motor | |
JPH01177878A (en) | Oscillatory wave motor | |
JPH04178179A (en) | ultrasonic motor | |
JP2537848B2 (en) | Ultrasonic motor | |
JPS62193574A (en) | Ultrasonic motor | |
JP2558661B2 (en) | Ultrasonic motor | |
JPS62196078A (en) | Ultrasonic motor | |
JPS60207468A (en) | Supersonic motor | |
JPS6118369A (en) | Piezoelectric motor |