JPS6118369A - Piezoelectric motor - Google Patents
Piezoelectric motorInfo
- Publication number
- JPS6118369A JPS6118369A JP59138151A JP13815184A JPS6118369A JP S6118369 A JPS6118369 A JP S6118369A JP 59138151 A JP59138151 A JP 59138151A JP 13815184 A JP13815184 A JP 13815184A JP S6118369 A JPS6118369 A JP S6118369A
- Authority
- JP
- Japan
- Prior art keywords
- piezoelectric
- elastic body
- piezoelectric motor
- rotor
- thickness
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/16—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
- H02N2/163—Motors with ring stator
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
本発明は圧電体を用いて駆動力を発生するモータに関す
る。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a motor that generates driving force using a piezoelectric material.
従来例の構成とその問題点
近年圧電セラミ〜クス等の圧電体を用いて超音1波振動
を励振するとによシ、回転あるいは直線または曲線運動
をする圧電モータが発表され、構成部品数の少なさ、高
効率および形状が小さくできること等の点で注目されて
いる。Conventional configurations and their problems In recent years, it has been difficult to use piezoelectric materials such as piezoelectric ceramics to excite single-wave ultrasonic vibrations, but piezoelectric motors that perform rotational, linear, or curved motion have been announced, and the number of component parts has increased. It is attracting attention because of its small size, high efficiency, and ability to be made small.
以下に図面を参照しながら従来の圧電モータについて説
明を行なう。A conventional piezoelectric motor will be explained below with reference to the drawings.
第1図は日経メカニカル(58,2,28)などに掲載
された従来の圧電モータの1例であシ、円環形弾性体1
の表面に円環形圧電セラミクス2を貼合せて、円環状圧
電セラミクス2が円環状弾性体1を励振して一体として
振動するようにしている。Figure 1 is an example of a conventional piezoelectric motor published in Nikkei Mechanical (58, 2, 28), etc.A circular elastic body 1
An annular piezoelectric ceramic 2 is bonded to the surface of the annular piezoelectric ceramic 2, and the annular piezoelectric ceramic 2 excites the annular elastic body 1 so that the annular elastic body 1 vibrates as a unit.
円環形圧電セラミクス2は、第2図に示すように例えば
22.5°あるいは11.25°の分割比にょシ、17
個の領域に分割し、分極の方向が隣シ合う領域で逆方向
となるように分極している。その後、圧電体、表面を導
電性塗料などで、第2図のように電極を覆うことにより
2つの部分A、Bにまとめる。ここで、第2図のEはア
ース端子である。第1図に示すように、前記円環形弾性
体1の上部には、スライダ3を固着された動体4が位置
している。The annular piezoelectric ceramic 2 has a division ratio of 22.5° or 11.25°, for example, as shown in FIG.
The polarization is performed so that the direction of polarization is opposite in adjacent regions. Thereafter, the surface of the piezoelectric body is combined into two parts A and B by covering the electrodes with conductive paint or the like as shown in FIG. Here, E in FIG. 2 is a ground terminal. As shown in FIG. 1, a moving body 4 to which a slider 3 is fixed is located above the annular elastic body 1. As shown in FIG.
以上のように構成された従来の圧電モータについてその
動作を以下に説明する。前記圧電体2の片側の電極A
K VoSIIl ωt 、他方の電&B I/CVO
cosωtの互いに位相がπ/2ずれた交流信号をそれ
ぞれ印加する。すると分割した領域が交互に周方向に伸
縮し、円環形弾性体1に曲げ振動が発生する。第3図は
第2図の圧電モータの1部分の斜視図であり、分極方向
が逆である隣り合う部分が上記のような駆動により、曲
率が逆の曲げ振動している様子を示す。第4図は動体と
弾性体の接触状況を拡大して描いたもので、表面波に伴
う粒子の楕円運動として周知である(例えば御子柴宣夫
著「音波物性」昭和48年三省堂社発行を参照)。弾性
体の表面上の1つの点Aに着目すると、点Aは長軸2
w 、短軸2uの楕円状の軌跡を描いているっ弾性体が
動点と接触する頂点で、点AはX軸の負の方向にV=2
πfuの速度を持つ。ここでfは駆動周波数で、ω=2
πf の関係を持つ。この結果、動体は弾性体との摩擦
力で波の進行と逆方向に速度■で駆動される。このよう
に弾性体の表面に推力としての楕円軌跡を描かせるには
弾性表面波のレイリー波か、捷たは弾性体の曲げ振動を
進行波として励起させることが考えられる。しかし、駆
動周波数を決定すれば、弾性表面波では曲げ振動よシも
波長が長い。前述したように圧電モータは弾性体の弾性
波の頂点が動体と接触して動体を駆動するので、この接
触面積が大きい程大きなトルクが得られるこ七になる。The operation of the conventional piezoelectric motor configured as described above will be described below. Electrode A on one side of the piezoelectric body 2
K VoSIIl ωt, other electric & B I/CVO
AC signals of cos ωt whose phases are shifted by π/2 from each other are respectively applied. Then, the divided regions alternately expand and contract in the circumferential direction, and bending vibration occurs in the annular elastic body 1. FIG. 3 is a perspective view of a portion of the piezoelectric motor shown in FIG. 2, showing how adjacent portions with opposite polarization directions undergo bending vibration with opposite curvatures due to the above driving. Figure 4 is an enlarged depiction of the contact situation between a moving body and an elastic body, which is well known as the elliptical motion of particles accompanied by surface waves (for example, see Nobuo Mikoshiba's "Sonic Properties", published by Sanseidosha in 1972). . Focusing on one point A on the surface of the elastic body, point A is along the long axis 2
w, the vertex where the elastic body drawing an elliptical locus with the minor axis 2u contacts the moving point, and point A is V = 2 in the negative direction of the X axis.
It has a speed of πfu. Here f is the driving frequency and ω=2
It has a relationship of πf. As a result, the moving body is driven by the frictional force with the elastic body in the direction opposite to the direction of wave propagation at a speed of ■. In order to draw an elliptical locus as a thrust on the surface of an elastic body in this way, it is conceivable to excite Rayleigh waves of surface acoustic waves or bending or bending vibrations of the elastic body as traveling waves. However, once the driving frequency is determined, surface acoustic waves have longer wavelengths than bending vibrations. As mentioned above, in the piezoelectric motor, the peak of the elastic wave of the elastic body contacts the moving body and drives the moving body, so the larger the contact area, the greater the torque that can be obtained.
従って、曲げ振動を使った方が同じ大きさなら接触面積
が犬きくなシ圧電モータとして好ましい。Therefore, it is preferable to use bending vibration for a piezoelectric motor because the contact area is smaller for the same magnitude.
上記に述べた従来例では、圧電素子2の1部にアース端
子Eを設けることによシ、曲げ振動を進行波として用い
ている。進行eは一般にξ=cosωt*coskx+
sinωt*5inky: −−−−=−、(1)(
k:波数)
で表わされる。0)式よシ、進行波は時間的に〜々だけ
位相のずれたCOSωtとS!noJt、および位置的
にπ/2 だけ位相のずれたcos k xとsin
k xとのそれぞれの積の和で進行波が得られ、前述の
説明よシ従来例の圧電モータがこのような構成と駆動法
をとっていることがわかる。In the conventional example described above, the bending vibration is used as a traveling wave by providing a ground terminal E in a part of the piezoelectric element 2. The progression e is generally ξ=cosωt*coskx+
sinωt*5inky: −−−−=−, (1)(
k: wave number). 0) According to the equation, the traveling wave is COSωt and S! whose phase is temporally shifted by ~~. noJt, and cos k x and sin positionally out of phase by π/2
A traveling wave is obtained by the sum of the respective products with k x, and it can be seen from the above explanation that the conventional piezoelectric motor has such a configuration and driving method.
しかしながら、上記のような構成においては、以下のよ
うな欠点が存在する。However, the above configuration has the following drawbacks.
第6図は前述した圧電モータの弾性体1の表面に励起さ
れた曲げ振動の振幅の分布を、径方向に計測したもので
、外径部の一番振幅の大きい所で正規化している。同図
よシ内径を変えても振幅分布の正規化後の関数形はほぼ
同じである。・兼だ第6図は圧電モータの弾性体1の内
径/外径比を変化させた時の、同一駆動電流密度値(電
流を電極面積で割ったもの)での外径部における振幅分
布である。第5図、第6図に示した変位は第4図のWK
あたるものである。し妙コし、今扱っている圧電モータ
においては、形状材質、が決まれば(圧電素子2と弾性
体の厚みおよびそれぞれの材質が決まれば)、WとUは
一定の関係にある。故に第5図より、外径周辺での駆動
速度は大きいが、内径周辺での駆動速度は小さく、スラ
イダ3の円環面全面が弾性体1に接触している従来の形
の圧電モータは、外周部での駆動速度よりも、実際には
小さい速度でしか回転しない。また外周部での駆動に対
して、内周部ではブレーキの役目をするので、入力エネ
ルギーが消費され効率が悪くなる。また摩擦による機械
的損傷が大となり寿命が短かくなる。第6図より、内径
が小さく(円環の幅が広く)なれば、同一駆動電流密度
に対して小さな振幅しか得られない。つまり、圧電素子
2の内周側は変位に寄与しているのではなく、制動作用
を行なっていることになる。このため弾性体1.圧電素
子20幅は小さい方が速度の速い圧電モータが得られる
が、従来例の圧電モータの構造では、接触面積が小さく
なるので出力トルクが小さくなるため、円環の幅を小さ
くすることはできない。FIG. 6 shows the distribution of the amplitude of the bending vibration excited on the surface of the elastic body 1 of the piezoelectric motor described above, measured in the radial direction, and normalized at the point of the largest amplitude on the outer diameter. As shown in the figure, even if the inner diameter is changed, the function form after normalization of the amplitude distribution is almost the same.・Figure 6 shows the amplitude distribution at the outer diameter at the same drive current density value (current divided by electrode area) when the inner diameter/outer diameter ratio of the elastic body 1 of the piezoelectric motor is changed. be. The displacement shown in Figures 5 and 6 is WK in Figure 4.
It's appropriate. However, in the piezoelectric motor that we are currently dealing with, if the shape and material are determined (the thicknesses of the piezoelectric element 2 and the elastic body, and the materials of each are determined), W and U have a certain relationship. Therefore, from FIG. 5, the drive speed around the outer diameter is high, but the drive speed around the inside diameter is low, and the piezoelectric motor of the conventional type in which the entire annular surface of the slider 3 is in contact with the elastic body 1, It actually rotates at a lower speed than the driving speed at the outer periphery. Furthermore, since the inner circumferential portion acts as a brake while the outer circumferential portion is driving, input energy is consumed and efficiency deteriorates. Furthermore, mechanical damage due to friction becomes large and the life span is shortened. From FIG. 6, if the inner diameter becomes smaller (the width of the ring becomes wider), only a smaller amplitude can be obtained for the same drive current density. In other words, the inner peripheral side of the piezoelectric element 2 does not contribute to displacement, but performs a braking action. For this reason, elastic body 1. The smaller the width of the piezoelectric element 20, the faster a piezoelectric motor can be obtained. However, in the structure of a conventional piezoelectric motor, the contact area becomes smaller and the output torque becomes smaller, so the width of the ring cannot be made smaller. .
以上述べたように従来の圧電モータは種々の問題点を有
していた。As described above, conventional piezoelectric motors have had various problems.
発明の目的
本発明の目的は、円環の内径部と外径部の振幅の差に起
因する駆動の損失を解消して、出力トルクの大きい、回
転速度の太き枠、高効率・長寿命の圧電モータを提供す
ることにある。Purpose of the Invention The purpose of the present invention is to eliminate drive loss caused by the difference in amplitude between the inner and outer diameter portions of an annular ring, and to achieve a high output torque, a wide range of rotational speed, high efficiency, and a long service life. Our purpose is to provide piezoelectric motors.
発明の構成
本発明の圧電モータは、外周に行くに従って厚さの厚く
なる円環形の弾性体の平面側に、円環形の圧電体を貼合
せて成る駆動体の他方の面に、上記の他方の面の形状と
同様の形状面を持つ回転子を接触させることにより、損
失の小さい、しかも出力トルクと回転速度の大きい圧電
モータを提供するものである。Composition of the Invention The piezoelectric motor of the present invention has a drive body formed by laminating a toroidal piezoelectric body on the flat side of a toroidal elastic body whose thickness increases toward the outer periphery. By bringing a rotor having a surface shape similar to that of the surface into contact with each other, a piezoelectric motor with low loss and high output torque and rotational speed is provided.
実施例の説明
以下図に従って本発明の実施例について詳細な説明を行
々う。第7図は本発明の一実施例である圧電モータの断
面図である。同図において、7は固定台であり、円環形
圧電体5と円環形弾性体6とを貼り合わせて作った駆動
体11を固定する役目と、回転軸9を固定する役目を兼
ねている。圧電体5に電圧を印加して駆動することによ
り、駆動体11の円周方向に第8図に示すような曲は振
動が励起されて、これか進行波として円周方向に伝搬す
る。これにより1駆動体11の弾性体6の円環面の点が
楕円運動を行ない、この上に設置された回転子8が、回
転軸9を中心として回転する。DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 7 is a sectional view of a piezoelectric motor that is an embodiment of the present invention. In the figure, reference numeral 7 denotes a fixing base, which serves both the role of fixing the driving body 11 made by pasting together the annular piezoelectric body 5 and the annular elastic body 6, and the role of fixing the rotating shaft 9. By applying a voltage to the piezoelectric body 5 and driving it, a vibration as shown in FIG. 8 is excited in the circumferential direction of the driving body 11, and this vibration propagates in the circumferential direction as a traveling wave. As a result, a point on the toric surface of the elastic body 6 of the driving body 11 performs an elliptical motion, and the rotor 8 installed thereon rotates around the rotation axis 9.
回転軸9の上端には突起が設けてあり、回転子8の位置
決めをし回転子8を一定荷重で弾性体6に接触させてお
くだめのバネ1oを固定するための役目を果している。A projection is provided at the upper end of the rotating shaft 9, and serves to fix a spring 1o that positions the rotor 8 and keeps the rotor 8 in contact with the elastic body 6 with a constant load.
前述したように圧電モータは駆動体の表面の点が楕円運
動をし、この上に接触して置かれた回転子を摩擦力によ
って移動させるので、圧電モ〜りを一定速度、一定出力
トルク特性とするためには、回転子8と駆動体11をバ
ネ10によって一定の荷重で安定に接触させておく必要
がある。図中の12はスライダで回転子8と一体化され
ている。スライダ12は耐摩耗性の良い材質で作られて
おり、駆動体11との間でわずかに起こる相対運動に帰
因する摩耗を小さくするために存在する。As mentioned above, in a piezoelectric motor, a point on the surface of the driving body moves in an ellipse, and the rotor placed in contact thereon is moved by frictional force, so the piezoelectric motor has constant speed and constant output torque characteristics. In order to achieve this, it is necessary to keep the rotor 8 and the driving body 11 in stable contact with each other with a constant load using the spring 10. 12 in the figure is a slider that is integrated with the rotor 8. The slider 12 is made of a material with good wear resistance, and exists to reduce wear caused by slight relative movement between the slider 12 and the drive body 11.
本実施例で用いている圧電体は第2図に示したものと同
様、円環の全周を偶数個の大きさに分割し、そのうちの
1つをさらに2分割して、第2図と同様な構成をとり大
きい領域の円周方向の長さが半波長となるような共振周
波数近辺で駆動する。The piezoelectric body used in this example is similar to that shown in Fig. 2, in which the entire circumference of the ring is divided into an even number of sizes, and one of them is further divided into two, as shown in Fig. 2. It has a similar configuration and is driven near the resonant frequency such that the length of the large area in the circumferential direction is half a wavelength.
故に分割の数はいくつでも良く、駆動周波数を変えれば
同様の動作ができる。第2図において、E端子をアース
端子として、A、B端子にそれぞれVsinωt 、
Vcosωt −−−(2)■=電圧の
瞬時値
ω:駆動角周波数
t:時間
で表わされる電圧を印加すれは、駆動体11は第8図に
示すような振動をする。Therefore, the number of divisions can be any number, and the same operation can be achieved by changing the driving frequency. In Fig. 2, the E terminal is set as the ground terminal, and the A and B terminals have Vsinωt, respectively.
V cos ωt --- (2) ■ = Instantaneous value of voltage ω: Drive angular frequency t: When a voltage expressed in time is applied, the driver 11 vibrates as shown in FIG.
しかし、前述したように駆動体11を構成する弾性体6
が均一の厚さであると、駆動体11の表面の変位分布は
外径部で最大とな9内周部で最小となる(第5図参照)
。駆動体110表面の点の楕円軌跡の回転子8の運動方
向成分(11214ち回転子8を回転きせる速度に寄与
する成分)は、駆動体11の構成材質と厚さによって楕
円軌跡の長軸と短軸の比が決捷るので、表面の変位が大
きい程太きい。故に外周付近で接触した場合は回転子8
0回転速度が犬になり、内周付近で接触した場合は回転
子9の回転速度は小さくなる。回転速度を太きくしよう
として外周付近のみで接触させれば、駆動体11と回転
子8のスライダ12との摩擦力が小さく′f!、、b出
力トルクが小さくなる。また出力トルクを大きくするた
め内周、外周付近共接触させれば、回転子90回転速度
は小さくなる。また内周に行くに従って変位が小さくな
っているため、この部分ではエネルギーの損失が犬きく
、入力エネルギーのほとんどが熱に変って、回転には寄
与が小さくなる。However, as described above, the elastic body 6 constituting the driving body 11
If the thickness is uniform, the displacement distribution on the surface of the driving body 11 will be maximum at the outer circumference and minimum at the inner circumference (see Fig. 5).
. The motion direction component of the rotor 8 of the elliptical locus of the point on the surface of the driving body 110 (11214, the component that contributes to the speed at which the rotor 8 rotates) is determined by the material and thickness of the driving body 11, and the long axis of the elliptical locus. Since the ratio of the short axis is determined, the larger the displacement of the surface, the thicker it is. Therefore, if contact occurs near the outer periphery, rotor 8
The 0 rotation speed becomes a dog, and when contact occurs near the inner circumference, the rotation speed of the rotor 9 becomes small. If you try to increase the rotational speed and make contact only near the outer periphery, the frictional force between the drive body 11 and the slider 12 of the rotor 8 will be small and 'f! ,,b output torque becomes smaller. Furthermore, if the inner and outer circumferences are brought into contact in order to increase the output torque, the rotational speed of the rotor 90 will be reduced. Furthermore, since the displacement decreases toward the inner circumference, energy loss is greater in this area, and most of the input energy is converted to heat, making less contribution to rotation.
本発明の一実施例では第7図に示したように、外周に行
くに従って厚さの厚くなる弾性体6で駆動体を構成する
。それにより、第9図に示すように内径部と外径部との
振幅比率を変えることができる。第9図のAは駆動体1
1を構成する弾性体6の厚畑が均一な時の振幅分布であ
シ、B、C。In one embodiment of the present invention, as shown in FIG. 7, the driving body is composed of an elastic body 6 that becomes thicker toward the outer periphery. Thereby, the amplitude ratio between the inner diameter part and the outer diameter part can be changed as shown in FIG. A in Fig. 9 is the driver 1
Amplitude distributions when the thickness of the elastic body 6 constituting the elastic body 1 is uniform.
Dと行くに従って外径部での厚さを内径部に対して厚く
していった時の特性である。尚第9図のA。This is the characteristic when the thickness at the outer diameter portion becomes thicker relative to the inner diameter portion as D increases. Note that A in Figure 9.
B、C,Dはいずれも外径部の振幅で正規化して示して
いる。B, C, and D are all normalized by the amplitude of the outer diameter portion.
本発明の一実施例では、駆動体11の内径部と外径部の
厚さを次のように決めている。内径r1+外径r2 と
すれば、半径rにおける点の回転子8の回転数への寄与
は、半径rの円周長を速度で割ったものであり、
n=2πr/K・ξ−f −−−(3)K
:比例定数
ξ:変位
f:駆動周波数
n:回転数
で表わせる。故に各点の回転子8.の回転数への寄与が
同一にするためには、r 、r および、その間の
任意のrに対して(3)式か常に同一値となるように厚
さを外周に行くに従って厚くする。In one embodiment of the present invention, the thicknesses of the inner diameter portion and the outer diameter portion of the driving body 11 are determined as follows. If inner diameter r1 + outer diameter r2, the contribution of a point at radius r to the rotation speed of rotor 8 is the circumferential length of radius r divided by the speed, n=2πr/K·ξ−f − --(3)K
: Proportionality constant ξ : Displacement f : Drive frequency n : Can be expressed as the number of rotations. Therefore, the rotor at each point8. In order to make the contribution to the rotation speed the same, the thickness is increased toward the outer periphery so that the equation (3) always has the same value for r, r, and any r between them.
また別の実施例では以−下のように決める。円環の幅が
非常に小さい時は、その厚さを19周方向の一波長の長
さを4.振動の次数をnとすれは、共振周波数ft−1
例する。駆動体11の内径r と外径r2の間の任意の
間で、(4)式が成立するようにすれば、即ち半径rの
点での厚さtを
t2:外径部での厚さ
で表わせるように、外周に行くに従って厚くするように
すれば、駆動周波数である共振周波数での機械的Qが大
きくなシ、損失が小さくなる。第101 図は駆動
体11の厚さが均一な時の駆動体11の圧電体5の電気
端子から見たアドミッタンスの周波数特性Aと、(6)
式が成立するように駆動体11の厚さを外周に行くに従
って厚くした時のアドミッタンスの周波数特性である。In another embodiment, it is determined as follows. When the width of the ring is very small, its thickness is 19. The length of one wavelength in the circumferential direction is 4. For example, if the order of vibration is n, then the resonance frequency is ft-1. If the formula (4) is made to hold between the inner diameter r and the outer diameter r2 of the driving body 11, the thickness t at the radius r can be expressed as t2: the thickness at the outer diameter. As can be expressed by, if the thickness is increased toward the outer periphery, the mechanical Q at the resonant frequency, which is the driving frequency, becomes large and the loss becomes small. FIG. 101 shows the frequency characteristic A of the admittance seen from the electric terminal of the piezoelectric body 5 of the driving body 11 when the thickness of the driving body 11 is uniform, and (6)
This is the frequency characteristic of admittance when the thickness of the driving body 11 is increased toward the outer periphery so that the formula holds true.
第11図は本発明の実施例の圧電モータと従来例の圧電
モータの特性比較である。同図のCは従来モータであり
、Dは実施例の圧電モータの特性である。FIG. 11 is a comparison of characteristics between a piezoelectric motor according to an embodiment of the present invention and a conventional piezoelectric motor. In the figure, C is a conventional motor, and D is a characteristic of the piezoelectric motor of the embodiment.
発明の効果
本発明では、前述したように駆動体の厚さを外周に行く
に従って厚くしていくことにより、駆動周波数での機械
的Qを大きくしたり、共に内周付近の変位を大きくとれ
るようにしているので、損失の小さい、また出力トルク
と回転速度が共に太き、い圧電モータを提供できる。Effects of the Invention In the present invention, as described above, by increasing the thickness of the driving body toward the outer periphery, it is possible to increase the mechanical Q at the driving frequency and to increase the displacement near the inner periphery. Therefore, it is possible to provide a piezoelectric motor with low loss and high output torque and rotational speed.
第1図は従来の圧電モーjの断面図、第2図は第1図に
用いられている圧電体の形状と電極構造へを示す平面図
、抛3図は圧電モータの駆動体部の振動状態を示すモデ
ル図、第4図は圧電モータの原理の説明図、第5図は円
環形層動体の半径方向の変位分布図(正規化後〕、第6
図は円環形層動体の内径/外径比を変えた時の同一駆動
電流密度による外径部での振幅特性、第7図は本発明の
一実施例の圧電モータの断面図、第8図は駆動体の振動
状態を示す図、第9図は駆動体の径方向の厚さを変えた
時の半径方向の振幅分布図(外径部の振幅で正規化)、
第10図は本発明の一実施例の駆動体のアドミッタンス
の周波数特性を示すクラス、第11図は従来例と本発明
の一実施例の回転数−出力トルク特性比較のグラフであ
る。
5・・・・・・圧電体、す・・・弾性体、7・・・・・
固定台、8・・・・・回転子、9・・・・・回転軸、1
Q・・・・バネ、11・・・・・・駆動体、12・・・
・スライダ。
代理人の氏名 弁理士 中 尾 敏 男 ほか1名第4
B
第3図
+−一
5図
半径方向 タト膵
第6図
内イそ/タトネ蚤光
第8図
第9図
半径方向Figure 1 is a cross-sectional view of a conventional piezoelectric motor, Figure 2 is a plan view showing the shape and electrode structure of the piezoelectric body used in Figure 1, and Figure 3 is a vibration of the drive body of the piezoelectric motor. A model diagram showing the state, Figure 4 is an explanatory diagram of the principle of a piezoelectric motor, Figure 5 is a radial displacement distribution diagram of an annular layered moving body (after normalization), Figure 6
The figure shows the amplitude characteristics at the outer diameter part with the same driving current density when the inner diameter/outer diameter ratio of the annular layered moving body is changed. Fig. 7 is a cross-sectional view of a piezoelectric motor according to an embodiment of the present invention. Fig. 8 is a diagram showing the vibration state of the driving body, and Figure 9 is a radial amplitude distribution diagram when the radial thickness of the driving body is changed (normalized by the amplitude of the outer diameter part).
FIG. 10 is a class showing the frequency characteristics of the admittance of the driving body according to an embodiment of the present invention, and FIG. 11 is a graph comparing the rotation speed-output torque characteristics between the conventional example and the embodiment of the present invention. 5...Piezoelectric body, S...Elastic body, 7...
Fixed base, 8... Rotor, 9... Rotating shaft, 1
Q... Spring, 11... Drive body, 12...
·Slider. Name of agent: Patent attorney Toshio Nakao and one other person No. 4 B Fig. 3 + - 15 Radial direction Tato Pancreatic Fig. 6 Inner side / Tatone Mitsu Fig. 8 Fig. 9 Radial direction
Claims (3)
体の外径に略等しい円環形の圧電体を、外径が一致する
ように貼合わせて圧電駆動体を構成し、上記圧電体に電
圧を印加することにより、上記駆動体を周方向の曲げ振
動を励起して進行波を作り、上記弾性体の他方の主面上
の質点を楕円運動させることにより、上記他方の主面上
に置かれた回転子を回転させる圧電モータにおいて、上
記駆動体を構成する円環形の弾性体の上記回転子のあた
る面を外径に行くに従って厚さの厚くなる形状とし、上
記回転子の弾性体にあたる面を上記弾性体の面と接触す
るように同形状としたことを特徴とする圧電モータ。(1) A piezoelectric drive body is constructed by bonding a toroidal piezoelectric body whose outer diameter is approximately equal to the outer diameter of the elastic body to one of the principal surfaces of the annular elastic body so that the outer diameters match. By applying a voltage to the piezoelectric body, the driving body is excited to bend in a circumferential direction to create a traveling wave, and the mass point on the other main surface of the elastic body is caused to move in an elliptical manner. In a piezoelectric motor that rotates a rotor placed on the main surface of the piezoelectric motor, the surface of the annular elastic body constituting the drive body that is in contact with the rotor has a shape that becomes thicker toward the outer diameter, and A piezoelectric motor characterized in that a surface of the rotor that contacts the elastic body has the same shape as the surface of the elastic body.
部と外周部とで半径比に等しくなる様に、設定したこと
を特徴とする特許請求の範囲第1項記載の圧電モータ。(2) The thickness of the annular elastic body is set so that the amplitude of the surface of the driving body is equal to the radius ratio between the inner circumference and the outer circumference. Piezoelectric motor.
環の半径の2乗で割った値が一定になるように、外周に
行くに従って厚くしたことを特徴とする特許請求の範囲
第2項記載の圧電モータ。(3) A patent claim characterized in that the thickness of the annular elastic body constituting the driving body is increased toward the outer periphery so that the value obtained by dividing the thickness by the square of the radius of the annular ring becomes constant. A piezoelectric motor according to range 2.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59138151A JPS6118369A (en) | 1984-07-03 | 1984-07-03 | Piezoelectric motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP59138151A JPS6118369A (en) | 1984-07-03 | 1984-07-03 | Piezoelectric motor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6118369A true JPS6118369A (en) | 1986-01-27 |
Family
ID=15215206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP59138151A Pending JPS6118369A (en) | 1984-07-03 | 1984-07-03 | Piezoelectric motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6118369A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0223073A (en) * | 1988-07-12 | 1990-01-25 | Matsushita Electric Ind Co Ltd | Ultrasonic motor |
US5440192A (en) * | 1987-06-04 | 1995-08-08 | Seiko Instruments Inc. | Ultrasonic motor |
US9099941B2 (en) | 2010-07-15 | 2015-08-04 | Canon Kabushiki Kaisha | Vibration type driving device |
-
1984
- 1984-07-03 JP JP59138151A patent/JPS6118369A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5440192A (en) * | 1987-06-04 | 1995-08-08 | Seiko Instruments Inc. | Ultrasonic motor |
JPH0223073A (en) * | 1988-07-12 | 1990-01-25 | Matsushita Electric Ind Co Ltd | Ultrasonic motor |
US9099941B2 (en) | 2010-07-15 | 2015-08-04 | Canon Kabushiki Kaisha | Vibration type driving device |
US9654029B2 (en) | 2010-07-15 | 2017-05-16 | Canon Kabushiki Kaisha | Vibration type driving device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH01129782A (en) | Ultrasonic motor | |
JPS6118369A (en) | Piezoelectric motor | |
JPS6122778A (en) | Piezoelectric motor | |
JPS6118370A (en) | Piezoelectric motor | |
JP2532425B2 (en) | Ultrasonic motor | |
JP2574284B2 (en) | Ultrasonic motor | |
JP2769151B2 (en) | Ultrasonic motor | |
JPS63277482A (en) | Ultrasonic motor | |
JP2523634B2 (en) | Ultrasonic motor | |
JP2543144B2 (en) | Ultrasonic motor | |
JP2885802B2 (en) | Ultrasonic motor | |
JPS62196080A (en) | Ultrasonic motor | |
JP2689425B2 (en) | Ultrasonic motor | |
JP2537874B2 (en) | Ultrasonic motor | |
JPH0479238B2 (en) | ||
JP2558661B2 (en) | Ultrasonic motor | |
JPS62193576A (en) | Ultrasonic motor | |
JP2537848B2 (en) | Ultrasonic motor | |
JP2506859B2 (en) | Ultrasonic motor | |
JPH07194154A (en) | Ultrasonic motor and torsional oscillation generating device | |
JPH02142366A (en) | Ultrasonic motor | |
JPS62196081A (en) | Ultrasonic motor | |
JPS62193574A (en) | Ultrasonic motor | |
JPS62193573A (en) | Ultrasonic motor | |
JPH02131374A (en) | Ultrasonic motor |