JPH01177877A - Oscillatory wave motor - Google Patents
Oscillatory wave motorInfo
- Publication number
- JPH01177877A JPH01177877A JP63001889A JP188988A JPH01177877A JP H01177877 A JPH01177877 A JP H01177877A JP 63001889 A JP63001889 A JP 63001889A JP 188988 A JP188988 A JP 188988A JP H01177877 A JPH01177877 A JP H01177877A
- Authority
- JP
- Japan
- Prior art keywords
- stator
- vibration
- rotor
- amplitude
- annular
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 230000003534 oscillatory effect Effects 0.000 title abstract 2
- 230000007935 neutral effect Effects 0.000 claims abstract description 13
- 230000010355 oscillation Effects 0.000 abstract 5
- 230000000750 progressive effect Effects 0.000 abstract 1
- 239000000758 substrate Substances 0.000 abstract 1
- 238000005452 bending Methods 0.000 description 10
- 238000010586 diagram Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 230000008859 change Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000010287 polarization Effects 0.000 description 2
- 229910000906 Bronze Inorganic materials 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 239000010974 bronze Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000008602 contraction Effects 0.000 description 1
- KUNSUQLRTQLHQQ-UHFFFAOYSA-N copper tin Chemical compound [Cu].[Sn] KUNSUQLRTQLHQQ-UHFFFAOYSA-N 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920005749 polyurethane resin Polymers 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 230000002123 temporal effect Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N2/00—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction
- H02N2/10—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors
- H02N2/16—Electric machines in general using piezoelectric effect, electrostriction or magnetostriction producing rotary motion, e.g. rotary motors using travelling waves, i.e. Rayleigh surface waves
- H02N2/163—Motors with ring stator
Landscapes
- General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は振動波モータ、特に超音波振動を駆動源とし
た超音波モータに関するものである。DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a vibration wave motor, particularly an ultrasonic motor using ultrasonic vibration as a driving source.
(従来の技術)
近年、圧電セラミックなどの電気機械結合素子を用いて
超音波振動を励起することにより、回転または走行運動
を得る超音波モータが、小型で高効率と高応答特性を実
現できるモータとして注目されている。この超音波を用
いたモータに関しては、例えば「日経メカニカルJ (
1983年2月28日号、1985年9月23日号)等
で解説されている。以下、図面を参照しながら、従来の
超音波モータの一例とその原理について説明する。(Prior art) In recent years, ultrasonic motors that obtain rotational or running motion by exciting ultrasonic vibrations using electromechanical coupling elements such as piezoelectric ceramics have become small-sized motors that can achieve high efficiency and high response characteristics. It is attracting attention as Regarding the motor using this ultrasonic wave, for example, "Nikkei Mechanical J (
It is explained in the February 28, 1983 issue and the September 23, 1985 issue). An example of a conventional ultrasonic motor and its principle will be described below with reference to the drawings.
第7図に示す超音波モータは進行波回転型または円環型
と呼ばれるもので、・円環状の弾性振動板(ステータ1
)の裏面に前記ステータ1と同様な形状の円環状の圧電
素子5を接着し、一体化している。但し、圧電素子5の
板厚はステータ1の板厚と同じでなくてもよい。前記電
素子5は第8図に示すように、圧電素子の電極をA、H
の2つの電極群に区分し、)J4(λはステータ1の固
有振動モードの波長)だけ周方向にずらして配置する。The ultrasonic motor shown in Fig. 7 is called a traveling wave rotation type or annular type.
) An annular piezoelectric element 5 having the same shape as the stator 1 is bonded to the back surface of the stator 1 and integrated. However, the thickness of the piezoelectric element 5 may not be the same as the thickness of the stator 1. As shown in FIG. 8, the electric element 5 has electrodes of the piezoelectric element A and H.
The electrodes are divided into two groups of electrodes, and arranged so as to be shifted by J4 (λ is the wavelength of the natural vibration mode of the stator 1) in the circumferential direction.
また、各々の電極の周方向の長さはλの172の長さに
し、゛各々の隣あう電極においてその分極の方向は第8
図中の+−の記号で示すように互い違いにする。そして
、電極群A、Bの表面をそれぞれ導電性塗料などで覆う
かまたは、導線でつなぐことにより、電極群A、Bのな
かの各々の電極をそれぞれ一つの電極にまとめる。In addition, the circumferential length of each electrode is 172 of λ, and the polarization direction of each adjacent electrode is 8th.
Alternate them as shown by the + and - symbols in the figure. Then, by covering the surfaces of electrode groups A and B with conductive paint or the like or connecting them with conductive wires, the electrodes in electrode groups A and B are combined into one electrode.
そしてステータ1の上に同じ円環状の動体(ロータ9)
がばね等の手段によって所定の圧力で押し付けられてい
る。そのロータ9の摺動面には耐磨耗性のある材料、例
えば芳香族ポリアミド繊維を充填材とし、ポリウレタン
樹脂をマトリックスとした複合プラスチック材料で形成
されたライニング面14を設けることにより1.ステー
タ1との磨耗を防止する。次に電極群AとBにそれぞれ
時間的位相を90度ずらした交流電圧を印加すると、各
電極が交互に周方向に伸縮し、バイメタル効果によりス
テータ1にたわみ振動が発生する。その結果、電極Aと
電極Bに位置、位相とも互いに90度づつずれた電極2
個の長さに相当する波長を持つ二つの定在波が発生し、
それが合成されて進行波となる。ステータ1上の進行波
は、第9図に示すように、ステータ1の表面上の1つの
点Cに着目すると、その点Cは楕円状の軌跡を描く。ラ
イニング面14はステータの進行波の頂点に接触してい
るので、ロータ9は楕円の頂点部分りの軌跡の方向への
摩擦による移動がきくため、ロータ9は進行波の進行方
向とは逆に左に進む。従って、ロータ9はステータ1上
の進行波の進行方向とは逆に回転し、その回転速度は楕
円状の軌跡の速度に関係し、出力トルクはステータ1と
ライニング面14との摩擦係数によって決まる。And above the stator 1 is the same annular moving body (rotor 9).
is pressed with a predetermined pressure by means such as a spring. The sliding surface of the rotor 9 is provided with a lining surface 14 made of a wear-resistant material, for example, a composite plastic material with aromatic polyamide fiber as a filler and a polyurethane resin as a matrix.1. Prevents wear with the stator 1. Next, when alternating current voltages whose temporal phases are shifted by 90 degrees are applied to electrode groups A and B, each electrode alternately expands and contracts in the circumferential direction, and bending vibration occurs in the stator 1 due to the bimetallic effect. As a result, electrode 2 is shifted by 90 degrees in position and phase from electrode A and electrode B.
Two standing waves with wavelengths corresponding to the length of
These waves are combined to form a traveling wave. As shown in FIG. 9, the traveling wave on the stator 1 draws an elliptical locus when focusing on one point C on the surface of the stator 1. Since the lining surface 14 is in contact with the apex of the traveling wave of the stator, the rotor 9 can be moved by friction in the direction of the trajectory of the apex of the ellipse, so the rotor 9 is moved in the opposite direction to the traveling direction of the traveling wave. Go left. Therefore, the rotor 9 rotates opposite to the direction of travel of the traveling wave on the stator 1, its rotational speed is related to the speed of the elliptical trajectory, and the output torque is determined by the coefficient of friction between the stator 1 and the lining surface 14. .
(発明が解決しようとする問題点)
従来の超音波モータの回転数と回転トルクとの゛関係を
表したモータの特性曲線を、第10図に示す。この特性
は電磁式の直流モータと同様回転数が低いほどトルクが
大きいという特徴を持っている。(Problems to be Solved by the Invention) FIG. 10 shows a motor characteristic curve representing the relationship between the rotational speed and rotational torque of a conventional ultrasonic motor. This characteristic is similar to that of an electromagnetic DC motor, in that the lower the rotation speed, the greater the torque.
また、超音波モータの場合、ステータはステータ固有振
動数とそれに対応した圧電素子の電極によって励起され
る振動モードが設計時において決定されているので、ス
テータそのものが固有の特性を持っており、第10図に
示すように回転数に対するトルクの特性曲線の傾きは入
力電圧によらない。In addition, in the case of an ultrasonic motor, the stator's natural frequency and the corresponding vibration mode excited by the electrodes of the piezoelectric element are determined at the time of design, so the stator itself has unique characteristics and As shown in FIG. 10, the slope of the characteristic curve of torque versus rotational speed does not depend on the input voltage.
もちろん、モータを機器に組み込む際に減速比を調整し
てモータの特性を変えることは可能であるが、一般に、
超音波モータは直接駆動を前提としており、このような
調整は不可能である。したがって、機器の要求性能に応
じて設計しなければならず、工数がかかるという問題が
あった。Of course, it is possible to change the characteristics of the motor by adjusting the reduction ratio when incorporating the motor into equipment, but in general,
Ultrasonic motors are premised on direct drive, and such adjustment is not possible. Therefore, it is necessary to design according to the required performance of the equipment, which poses a problem of requiring a lot of man-hours.
またステータに凹部を複数個設け、凹部の深さを変える
ことにより、ステータの振幅が変化し、回転数を制御す
ることができる。しかし、同時に凹部の深さはステータ
の固有振動数も変化させる。このためステータの内径、
外径を修正しなければステータの固有振動数を望ましい
加振周波数の範囲に設定できない場合が生ずる。このこ
とはステータを設計する際の制限となり円環状超音波モ
ータの問題点であった。なお、ここでいう望ましい加振
周波数とは、ひとの可聴域を越す20kHzから電源の
性能により制限される周波数、例えば200kHzまで
の範囲を有する超音波領域の周波数である。Further, by providing a plurality of recesses in the stator and changing the depth of the recesses, the amplitude of the stator can be changed and the rotation speed can be controlled. However, at the same time, the depth of the recess also changes the natural frequency of the stator. Therefore, the inner diameter of the stator,
Unless the outer diameter is corrected, the natural frequency of the stator may not be able to be set within the desired excitation frequency range. This is a limitation when designing the stator and is a problem with toroidal ultrasonic motors. Note that the desirable excitation frequency here is a frequency in the ultrasonic range ranging from 20 kHz, which exceeds the human audible range, to a frequency limited by the performance of the power source, for example, 200 kHz.
本発明の目的は同一のステータでトルクと回転数の特性
を任意に選択でき、かつステータの外形が限定された場
合においても駆動周波数が超音波領域から逸脱すること
な〈従来より広範なトルクと回転数を設定できる振動波
モータを提供することにある。The object of the present invention is to be able to arbitrarily select torque and rotational speed characteristics using the same stator, and to prevent the drive frequency from deviating from the ultrasonic range even if the stator has a limited external shape. An object of the present invention is to provide a vibration wave motor whose rotation speed can be set.
(問題点を解決するための手段)
両端面を軸方向と垂直な面にもつ弾性体で構成された円
環状共振子の一端面に振動波形を有する入力電気信号を
機械振動に変換する振動子を接着した構造の円環状ステ
ータと、円環状ロータとを加圧接触する構成をもつ振動
波モータにおいて、前記円環状共振子の他端面に凹部を
複数個設け、前記凹部は円環状共振子の内縁の開き角に
対して外縁の開き角が同じかあるいは小さいことを特徴
とし、前記凹部の開口部を有する片端面とステータ側面
との交線より前記ステータ中立面とステータ側面との交
線に至る範囲をステータ側面に、円環の内側または外側
側面を摺動面にもつ前記円環状ロータの摺動面が加圧接
触する構成を特徴とする振動波モータ。(Means for solving the problem) A vibrator that converts an input electrical signal into mechanical vibration, which has a vibration waveform on one end face of a toroidal resonator made of an elastic body with both end faces perpendicular to the axial direction. In a vibration wave motor having a structure in which an annular stator and an annular rotor are brought into pressurized contact with each other, a plurality of recesses are provided on the other end surface of the annular resonator, and the recesses The opening angle of the outer edge is the same or smaller than the opening angle of the inner edge, and the line of intersection between the neutral plane of the stator and the side surface of the stator is greater than the line of intersection between the side surface of the stator and one end surface having the opening of the recess. A vibration wave motor characterized in that a sliding surface of the annular rotor, which has a sliding surface on the inner or outer side of the ring, comes into pressure contact with the stator side surface.
(作用)
両端面を軸方向と垂直な面にもつ弾性体で構成された円
環状共振子の一端面に第1図(b)のステータ上面斜視
図に示すように円環の内縁の開き角2に対する外縁の開
き角3が同じかあるいは小い凹部4を複数個設けたステ
ータ1に、ステータ1の軸方向に振幅を有する屈曲振動
を円環状の弾性体下面より励振すると、前記ステータ1
は弾性体の中立面を境にして屈曲振動が伝達する方向に
対して垂直の方向、すなわち径方向に振幅を有する振動
が励振される。これは前記の特徴を持つ凹部4を複数個
設けたステータにおいてはステータの内側と外側では曲
げ剛性が異なり、屈曲振動が伝達すると前記ステータの
内側と外側とでは弾性体の伸縮量が異なるのでステータ
に生じる曲げ歪が径方向に振幅を有する振動となるため
である。この径方向の振動と、軸方向と平行に振幅を有
する進行波によって周方向の振動が得られ、この2つの
振動を組み合わせることにより円環の側面と中立面との
交線部分を除いた内側あるいは外側の質点は楕円軌道を
描く振動となる。従って、ステータの内側あるいは外側
にロータを加圧接触することにより回転方向の駆動力を
得る。回転方向は円環の内側と外側とでは逆向き、中立
面の上側と下側とでは逆向きとなる。なお、上記の径方
向の振動を励振する振動は進行波でなく定在波でもよい
が、軸方向と平行に振幅を有する進行波を用いることで
径方向の振動と周方向の振動を同時に得ることができる
。(Function) As shown in the top perspective view of the stator in FIG. 1(b), an opening angle of the inner edge of the ring is formed on one end surface of the annular resonator made of an elastic body with both end surfaces perpendicular to the axial direction. When a bending vibration having an amplitude in the axial direction of the stator 1 is excited from the lower surface of the annular elastic body to the stator 1 provided with a plurality of recesses 4 having the same or smaller opening angle 3 of the outer edge with respect to the stator 1, the stator 1
Vibration is excited that has an amplitude in the direction perpendicular to the direction in which the bending vibration is transmitted, that is, in the radial direction, with the neutral plane of the elastic body as the boundary. This is because in a stator provided with a plurality of recesses 4 having the characteristics described above, the bending rigidity is different between the inside and outside of the stator, and when bending vibration is transmitted, the amount of expansion and contraction of the elastic body is different between the inside and outside of the stator. This is because the bending strain that occurs in the radial direction causes vibrations that have an amplitude in the radial direction. Vibration in the circumferential direction is obtained by this radial direction vibration and a traveling wave having an amplitude parallel to the axial direction, and by combining these two vibrations, the intersection line between the side surface of the ring and the neutral plane is removed. The inner or outer mass points vibrate in an elliptical orbit. Therefore, by bringing the rotor into pressure contact with the inside or outside of the stator, driving force in the rotational direction is obtained. The direction of rotation is opposite on the inside and outside of the ring, and opposite on the upper and lower sides of the neutral plane. Note that the vibration that excites the above-mentioned radial direction vibration may be a standing wave instead of a traveling wave, but by using a traveling wave with an amplitude parallel to the axial direction, radial direction vibration and circumferential direction vibration can be obtained at the same time. be able to.
上記の径方向に振幅を有する振動は弾性体の中立面を境
にして振動の位相が逆転するために中立面においては振
幅はゼロとなり中立面より離れるに従って大きくなり弾
性体上面あるいは下面で最大となる。従ってロータの加
圧接触する位置を変化させることによりトルクと回転数
の両者の関係を規定することができる。すなわちロータ
の加圧接触位置が中立面に近い場合は回転数に対するト
ルク近似直線の傾きは急になり回転数よりもトルクを優
先にした特性が得られ、またロータの加圧接触位置から
離れている場合は回転数対トルク近似直線の傾きは緩や
かになりトルクよりも回転数を優先した特性が得られる
。従って、同一のステータで特性の異なる振動波モータ
が得られる。The above vibration having an amplitude in the radial direction reverses its phase at the neutral plane of the elastic body, so the amplitude is zero at the neutral plane and increases as the distance from the neutral plane increases. Maximum at . Therefore, by changing the position of the rotor in pressure contact, the relationship between both torque and rotation speed can be defined. In other words, when the pressure contact position of the rotor is close to the neutral plane, the slope of the torque approximation straight line with respect to the rotation speed becomes steep, resulting in a characteristic that prioritizes torque over the rotation speed. In this case, the slope of the rotational speed vs. torque approximation straight line becomes gentle, and a characteristic that prioritizes the rotational speed over the torque is obtained. Therefore, vibration wave motors with different characteristics can be obtained using the same stator.
更に本発明ではステータの寸法に規定がある場合にも、
凹部4の形状を変化させることで回転数とトルクを変化
させることができる。Furthermore, in the present invention, even when there are regulations regarding the dimensions of the stator,
By changing the shape of the recess 4, the rotation speed and torque can be changed.
すなわち、前記凹部4の内縁での開き角2と外縁での開
き角3の差は大きいほど円周まわり軸方向の曲げ剛性の
内外周での差も大きい。したがって開・き角の差の大小
に応じて径方向の振動振幅の大きさも変化し、そのため
にモータの回転数が変化する。従来は凹部4の深さを変
えてモータの回転数を変化させていたが、凹部4の深さ
を変えることは開き角の差を変化させることに比べてス
テータの固有振動数を大きく変化させる。ステータの固
有振動数に許される領域は20kHz〜200kHz程
度の超音波の周波数領域に限られており固有振動数を大
きく変化させることは好ましいことではない。その点本
発明では、前記凹部4の内縁での開き角2と外縁での開
き角3の差を変化させているのでステータの共振周波数
に及ぼす影響が少なく、効果が大きい。That is, the larger the difference between the opening angle 2 at the inner edge and the opening angle 3 at the outer edge of the recess 4, the larger the difference in bending rigidity in the axial direction around the circumference between the inner and outer circumferences. Therefore, the magnitude of the vibration amplitude in the radial direction changes depending on the magnitude of the difference between the opening and opening angles, and therefore the rotation speed of the motor changes. Conventionally, the rotation speed of the motor was changed by changing the depth of the recess 4, but changing the depth of the recess 4 changes the natural frequency of the stator more than changing the difference in opening angle. . The range allowed for the natural frequency of the stator is limited to the ultrasonic frequency range of approximately 20 kHz to 200 kHz, and it is not desirable to greatly change the natural frequency. In this regard, in the present invention, since the difference between the opening angle 2 at the inner edge and the opening angle 3 at the outer edge of the recess 4 is changed, the effect on the resonance frequency of the stator is small and the effect is large.
(実施例)
第1図(a)は本発明の実施例を示す斜視図であり、図
中において1は弾性材例えば燐青銅で構成された厚さ5
mmの円環状のステータであり、ステータ1の下面に接
着された第8図の説明図に示す電極構造を持った圧電素
子5に電気信号、例えば44kHzの周波数をもつ電気
信号を入力しステータの軸方向に振幅を有する屈曲進行
波を励振する。なお、ステータ1には第1図(b)の斜
視図に示すように溝深さ2.2mm、ステータ円環の内
縁の開き角2が4.5度、外縁の開き角3を1.5度と
した凹部4を複数個間隔に設ける。この場合ステータ1
と圧電素子5の形状寸法はその固有振動が目的とする入
力電気信号の周波数(今の場合44kHz)と一致させ
るように予め定められている。また圧電素子5について
は前記の第8図に示す圧電素子の電極群Aと電極群Bに
互いに位相が90度異なった振動波形を有する電気信号
を入力することにより進行波を発生させる。そして進行
波にともなう前記ステータ軸方向の振動により第2図(
a)の平面図、(b)の断面図に示すようにステータ1
の円環の内側面と外側面にステータ周方向の振動振幅6
を得ることができる。同時に第2図(c)の平面図に示
すような径方向に振幅をもった振動7が生ずる。円環状
ステータ1の形状は前記径振幅7が得られやすくするた
めにステータ軸方向の厚みと円環の径方向の幅との比は
0.5から3が望ましい。そして進行波による第2図(
b)の周方向の振動振幅6と第2図(d)の径方向の振
動振幅7が組み合わさることにより第2図(e)のステ
ータ上面図に示すようにステータ1の中立面との光線部
分を除いた側面に楕円軌道をもつ振動8が生ずる。ステ
ータ1の外側側面に生じた前記振動8に、第1図(a)
の断面図に示すようにロータ9をステータ1の側面に対
して加圧接触する構造をとることにより振動8の楕円軌
道のうち頂点付近の周方向の運動がロータ9の回転運動
に変換される。ロータ9においてステータ1と接触する
部分については耐磨耗性に浸れた部材、たとえば芳香族
ポリアミド系の合成樹脂を用いる。なお回転駆動力はロ
ータ9に設けられた軸10により得られる。(Embodiment) FIG. 1(a) is a perspective view showing an embodiment of the present invention, in which 1 is made of an elastic material such as phosphor bronze and has a thickness 5.
An electric signal, for example, an electric signal having a frequency of 44 kHz is input to the piezoelectric element 5, which is an annular stator with a diameter of 1.5 mm and has an electrode structure shown in the explanatory diagram of FIG. Excite a bending traveling wave with amplitude in the axial direction. As shown in the perspective view of FIG. 1(b), the stator 1 has a groove depth of 2.2 mm, an opening angle 2 of the inner edge of the stator ring of 4.5 degrees, and an opening angle 3 of the outer edge of the stator ring of 1.5 degrees. A plurality of concave portions 4 are provided at intervals. In this case stator 1
The shape and dimensions of the piezoelectric element 5 are predetermined so that its natural vibration matches the frequency of the target input electric signal (44 kHz in this case). Further, as for the piezoelectric element 5, a traveling wave is generated by inputting electric signals having vibration waveforms whose phases are different from each other by 90 degrees to the electrode group A and the electrode group B of the piezoelectric element shown in FIG. 8. Then, due to the vibration in the axial direction of the stator due to the traveling wave, as shown in Fig. 2 (
As shown in the plan view of a) and the cross-sectional view of (b), the stator 1
Vibration amplitude 6 in the stator circumferential direction on the inner and outer surfaces of the ring
can be obtained. At the same time, a vibration 7 having an amplitude in the radial direction as shown in the plan view of FIG. 2(c) is generated. The shape of the annular stator 1 is preferably such that the ratio of the thickness in the axial direction of the stator to the width in the radial direction of the annular ring is 0.5 to 3 in order to facilitate obtaining the radial amplitude 7 described above. And Fig. 2 (
The combination of the circumferential vibration amplitude 6 in b) and the radial vibration amplitude 7 in FIG. A vibration 8 having an elliptical orbit is generated on the side surface excluding the light beam portion. The vibration 8 generated on the outer side surface of the stator 1 causes
As shown in the cross-sectional view, by adopting a structure in which the rotor 9 is brought into pressure contact with the side surface of the stator 1, the circumferential motion near the apex of the elliptical orbit of the vibration 8 is converted into rotational motion of the rotor 9. . For the portion of the rotor 9 that comes into contact with the stator 1, a material that is highly wear-resistant, such as an aromatic polyamide synthetic resin, is used. Note that the rotational driving force is obtained by a shaft 10 provided on the rotor 9.
また、第1図(a)においてロータ9のステータ1の側
面における加圧接触位置を変更することが可能な構成を
採用すれば第10図に示す振動波モータの垂下特性にお
いて、トルクに対する回転数の近似直線の傾きが同一の
ステータであっても変更することが可能であり、回転数
あるいはトルク優先のモータが同一のステータにより実
現できる。In addition, if a configuration is adopted in which the pressure contact position of the rotor 9 on the side surface of the stator 1 can be changed in FIG. 1(a), in the drooping characteristic of the vibration wave motor shown in FIG. It is possible to change the slope of the approximate straight line even if the stator is the same, and a motor that prioritizes rotation speed or torque can be realized using the same stator.
第3図は第1図(a)におけるステータとロータの位置
関係を変えた他の実施例を示す断面図である。FIG. 3 is a sectional view showing another embodiment in which the positional relationship between the stator and rotor in FIG. 1(a) is changed.
この実施例によればロータ9と接触する部分についてス
テータ1の内側と外側の楕円軌道の向きは逆であるので
、ステータの内側にロータを加圧接触する構成をもつ第
3図のモータは第1図(a)の構成をとったモータに対
して回転方向が逆となる。According to this embodiment, the directions of the inner and outer elliptical orbits of the stator 1 are opposite in the portion that contacts the rotor 9, so the motor of FIG. The rotation direction is opposite to that of the motor configured as shown in FIG. 1(a).
第4図はステータ1に設ける凹部4の開き角についての
別の実施例である。ステータ1の寸法、凹部4の深さ、
個数は第1図(b)のものと同じであるが、凹部4の側
面が平行な構成をとり、凹部の内縁の開き角2を2.7
度、外縁の開き角3を2.0度となっている。第1図(
b)に示した先の凹部4の実施例と第4図に示した凹部
4の実施例において同一の強さの振動をステータ1の下
面により加振しそれぞれの第5図に示す凹部の先端外縁
部の径方向の振動13を比べると、第4図に示した凹部
の径方向の振動に対して第1図(b)に示した凹部の径
方向の振動はその振幅は小さくなり、従って第4図に示
す凹部を有するモータは低回転高トルクの特性をもつ。FIG. 4 shows another example of the opening angle of the recess 4 provided in the stator 1. FIG. Dimensions of stator 1, depth of recess 4,
The number is the same as that in Fig. 1(b), but the side surfaces of the recess 4 are parallel, and the opening angle 2 of the inner edge of the recess is 2.7.
degree, and the opening angle 3 of the outer edge is 2.0 degrees. Figure 1 (
In the embodiment of the recessed portion 4 shown in b) and the embodiment of the recessed portion 4 shown in FIG. Comparing the radial vibration 13 of the outer edge, the radial vibration of the recess shown in FIG. 1(b) has a smaller amplitude than the radial vibration of the recess shown in FIG. The motor having the recess shown in FIG. 4 has characteristics of low rotation and high torque.
なお、目的を逸脱しない範囲内においてどのような変形
を行っても差しつかえなく、例えば第6図の斜視図に示
すようにステータ上面より見た凹部の形状を楕円形の一
部としてもよく、上記実施例が本発明の請求範囲を限定
するものではない。Note that any modification may be made without departing from the purpose; for example, as shown in the perspective view of FIG. 6, the shape of the recess viewed from the top surface of the stator may be a part of an ellipse; The above examples do not limit the scope of the invention.
(発明の効果)
円環状共振子の内縁の開き角に対して外縁の開き角が同
じかまたは小さい凹部を複数個設けたステータに、ステ
ータの軸方向に振幅を有する屈曲進行波を励振して得ら
れるステータ径方向の振動振幅と、前記ステータにステ
ータの軸方向に振幅を有する屈曲屈曲進行波を励振して
得られる周方向の振動振幅との2つの振幅を組み合わせ
ることによりステータ側面と中立との交線を除くステー
タ側面に楕円振動を励振し、ステータ中立面とステータ
側面との交線より前記凹部開放端がある側のステータ側
面にロータを加圧接触することにより回転トルクを発生
させる振動波モータによれば、ロータの加圧接触する位
置を変化させることによりトルクを優先にあるいは回転
数を優先した特性を有する振動波モータを同一のステー
タで実現できるという効果が有り、ステータ凹部の内縁
の開き角と外縁の開き角の差が振動波モータの回転数と
トルクの特性を決定する形状寸法パラメータの一つとな
るという効果がある。(Effect of the invention) A bending traveling wave having an amplitude in the axial direction of the stator is excited in a stator provided with a plurality of recesses in which the opening angle of the outer edge is the same or smaller than the opening angle of the inner edge of the annular resonator. By combining two amplitudes: the obtained vibration amplitude in the stator radial direction and the circumferential vibration amplitude obtained by exciting the stator with a bending traveling wave having an amplitude in the axial direction of the stator, the stator side surface and the neutral Elliptical vibration is excited on the stator side surface excluding the intersection line of the stator, and rotational torque is generated by pressurizing the rotor into contact with the stator side surface on the side where the open end of the recess is located from the intersection line of the stator neutral surface and the stator side surface. According to the vibration wave motor, by changing the pressure contact position of the rotor, it is possible to realize a vibration wave motor with characteristics that give priority to torque or rotation speed with the same stator. This has the effect that the difference between the opening angle of the inner edge and the opening angle of the outer edge becomes one of the geometrical and dimensional parameters that determine the rotation speed and torque characteristics of the vibration wave motor.
以上説明した構成を採れば同一のステータでトルクと回
転数の特性を任意に選択でき、かつステータの外形が限
定された場合においても駆動周波数が超音波領域から逸
脱することな〈従来より広範なトルクと回転数を設定で
きる振動波モータを実現できる。By adopting the configuration described above, it is possible to arbitrarily select the characteristics of torque and rotation speed with the same stator, and even if the external shape of the stator is limited, the driving frequency will not deviate from the ultrasonic range. It is possible to create a vibration wave motor whose torque and rotation speed can be set.
第1図(a)は本発明の基本構成を示す断面図、第1図
(b)は本発明の特徴を示す斜視図、第2図(a)〜(
d)は本発明による振動の様子を示した説明図、第3図
は本発明による振動波モータのうちステータの側面の内
側にロータを加圧接触した一実施例を示す断面図、第4
図は本発明による凹部の一実施例を示すステータ上面の
斜視図、第5図は凹部先端外縁部における径方向の振幅
を示す説明図、第6図は本発明による凹部の別の実施例
を示すステータ上面の斜視図、第7図は従来の円環型モ
ータの断面図、第8図はステータに接着する圧電素子の
分極を示す説明図、第9図は進行波による振動のようす
を示した説明図、第10図はモータの垂下特性を示した
説明図である。
1・・・ステータ、2・・・凹部内縁での開き角、3・
・・凹部外縁での開き角、4・・・凹部、5・・・圧電
素子、6・・・周方向振幅、7・・・径方向振幅、8・
・・楕円軌道を描く振動、9・・・ロータ、10・・・
、11・・・クツション、12・・・ステータ基板、1
3・・・凹部先端外縁部の径方向の振幅1.14・・・
ライニング、A、B・・・電極群、C,D・・・ステー
タ表面上の一点。FIG. 1(a) is a sectional view showing the basic configuration of the present invention, FIG. 1(b) is a perspective view showing the features of the present invention, and FIGS. 2(a) to (
d) is an explanatory diagram showing the state of vibration according to the present invention; FIG. 3 is a sectional view showing an embodiment of the vibration wave motor according to the present invention in which a rotor is brought into pressure contact with the inside of the side surface of a stator;
The figure is a perspective view of the top surface of the stator showing one embodiment of the recess according to the present invention, FIG. 5 is an explanatory diagram showing the amplitude in the radial direction at the outer edge of the tip of the recess, and FIG. 7 is a cross-sectional view of a conventional annular motor, FIG. 8 is an explanatory diagram showing the polarization of a piezoelectric element bonded to the stator, and FIG. 9 is a diagram showing vibrations caused by traveling waves. FIG. 10 is an explanatory diagram showing the drooping characteristics of the motor. 1... Stator, 2... Opening angle at the inner edge of the recess, 3...
... Opening angle at the outer edge of the recess, 4... Recess, 5... Piezoelectric element, 6... Circumferential amplitude, 7... Radial amplitude, 8...
...Vibration that describes an elliptical orbit, 9...Rotor, 10...
, 11... Cushion, 12... Stator board, 1
3... Radial amplitude of the outer edge of the tip of the recess 1.14...
Lining, A, B... electrode group, C, D... one point on the stator surface.
Claims (1)
円環状共振子の一端面に振動波形を有する入力電気信号
を機械振動に変換する振動子を接着した構造の円環状ス
テータと、円環状ロータとを加圧接触する構成をもつ振
動波モータにおいて、前記円環状共振子の他端面に凹部
を複数個設け、前記凹部は円環状共振子の内縁の開き角
に対して外縁の開き角が同じかあるいは小さいことを特
徴とし、前記凹部の開口部を有する片端面とステータ側
面との交線より前記ステータ中立面とステータ側面との
交線に至る範囲をステータ側面に、円環の内側または外
側側面を摺動面にもつ前記円環状ロータの摺動面が加圧
接触する構成を特徴とする振動波モータ。an annular stator having a structure in which a vibrator for converting an input electric signal having a vibration waveform into mechanical vibration is bonded to one end surface of an annular resonator made of an elastic body having both end surfaces perpendicular to the axial direction; In a vibration wave motor configured to make pressurized contact with the annular rotor, a plurality of recesses are provided on the other end surface of the annular resonator, and the recesses have an opening angle of the outer edge with respect to an opening angle of the inner edge of the annular resonator. The angles are the same or smaller, and a circular ring is formed on the stator side surface from the intersection line between the one end surface having the opening of the recess and the stator side surface to the intersection line between the stator neutral plane and the stator side surface. A vibration wave motor characterized in that a sliding surface of the annular rotor, which has an inner or outer side surface as a sliding surface, is brought into pressure contact with the sliding surface of the annular rotor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63001889A JPH01177877A (en) | 1988-01-08 | 1988-01-08 | Oscillatory wave motor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP63001889A JPH01177877A (en) | 1988-01-08 | 1988-01-08 | Oscillatory wave motor |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01177877A true JPH01177877A (en) | 1989-07-14 |
Family
ID=11514144
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP63001889A Pending JPH01177877A (en) | 1988-01-08 | 1988-01-08 | Oscillatory wave motor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01177877A (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6547594B2 (en) | 2001-03-02 | 2003-04-15 | Sumitomo Wiring Systems, Ltd. | Connector |
US6568948B2 (en) | 2001-03-02 | 2003-05-27 | Sumitomo Wiring Systems, Ltd. | Connector |
US6616481B2 (en) | 2001-03-02 | 2003-09-09 | Sumitomo Wiring Systems, Ltd. | Connector |
US6638109B2 (en) | 2001-06-06 | 2003-10-28 | Sumitomo Wiring Systems, Ltd. | Connector with a side retainer |
US6659797B2 (en) | 2001-03-02 | 2003-12-09 | Sumitomo Wiring Systems, Ltd. | Connector with resiliently deflectable lock arm |
CN102005966A (en) * | 2010-12-07 | 2011-04-06 | 中国科学院宁波材料技术与工程研究所 | Boundary condition-based single-drive two-way piezoelectric motor |
JP2015023732A (en) * | 2013-07-22 | 2015-02-02 | 株式会社リコー | Vibration device, moving target body feeding device, paper feeding device, and image forming apparatus including the paper feeding device |
-
1988
- 1988-01-08 JP JP63001889A patent/JPH01177877A/en active Pending
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6547594B2 (en) | 2001-03-02 | 2003-04-15 | Sumitomo Wiring Systems, Ltd. | Connector |
US6568948B2 (en) | 2001-03-02 | 2003-05-27 | Sumitomo Wiring Systems, Ltd. | Connector |
US6616481B2 (en) | 2001-03-02 | 2003-09-09 | Sumitomo Wiring Systems, Ltd. | Connector |
US6659797B2 (en) | 2001-03-02 | 2003-12-09 | Sumitomo Wiring Systems, Ltd. | Connector with resiliently deflectable lock arm |
US6638109B2 (en) | 2001-06-06 | 2003-10-28 | Sumitomo Wiring Systems, Ltd. | Connector with a side retainer |
CN102005966A (en) * | 2010-12-07 | 2011-04-06 | 中国科学院宁波材料技术与工程研究所 | Boundary condition-based single-drive two-way piezoelectric motor |
JP2015023732A (en) * | 2013-07-22 | 2015-02-02 | 株式会社リコー | Vibration device, moving target body feeding device, paper feeding device, and image forming apparatus including the paper feeding device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4705980A (en) | Drive control method of ultrasonic vibrator | |
JP4435695B2 (en) | Piezoelectric motor operation method and piezoelectric motor in the form of a hollow cylindrical oscillator having a stator | |
JPH01177877A (en) | Oscillatory wave motor | |
JPH01177878A (en) | Oscillatory wave motor | |
JP2532425B2 (en) | Ultrasonic motor | |
JP2574284B2 (en) | Ultrasonic motor | |
JP2507083B2 (en) | Ultrasonic motor | |
JP2769151B2 (en) | Ultrasonic motor | |
JPH01177876A (en) | Oscillatory wave motor | |
JPH0479238B2 (en) | ||
JPH0681523B2 (en) | Vibration wave motor | |
JP2506859B2 (en) | Ultrasonic motor | |
JP2537848B2 (en) | Ultrasonic motor | |
JP2864479B2 (en) | Annular ultrasonic motor | |
JPS63283475A (en) | Ultrasonic motor | |
JP2543144B2 (en) | Ultrasonic motor | |
JPH01177879A (en) | Oscillatory wave linear motor | |
JP3089750B2 (en) | Ultrasonic motor | |
JPS62196080A (en) | Ultrasonic motor | |
JPH04133676A (en) | Driving method for actuator and ultrasonic actuator realizing this driving method | |
JP2543160B2 (en) | Toroidal ultrasonic motor | |
JPH07178370A (en) | Vibrator and vibrating actuator | |
JPH0636674B2 (en) | Ultrasonic motor | |
JPH0251379A (en) | Ultrasonic motor | |
JP2000245175A (en) | Vibration actuator |