[go: up one dir, main page]

JPS62192040A - Optical information recording medium - Google Patents

Optical information recording medium

Info

Publication number
JPS62192040A
JPS62192040A JP61032785A JP3278586A JPS62192040A JP S62192040 A JPS62192040 A JP S62192040A JP 61032785 A JP61032785 A JP 61032785A JP 3278586 A JP3278586 A JP 3278586A JP S62192040 A JPS62192040 A JP S62192040A
Authority
JP
Japan
Prior art keywords
protective layer
optical recording
substrate
layer
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61032785A
Other languages
Japanese (ja)
Inventor
Hidekazu Fujii
英一 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP61032785A priority Critical patent/JPS62192040A/en
Publication of JPS62192040A publication Critical patent/JPS62192040A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To improve recording and erasing sensitivity without deteriorating in corrosion resistance of a recording medium by forming a protective layer to be provided between a substrate and optical recording layer into a continuous film having specific thickness. CONSTITUTION:The protective layer 3 consisting of a ZnS film or the like, the optical recording layer 4 consisting of a GdTbFe film or the like and if necessary, an auxiliary protective layer 5 are laminated by a method such as vapor deposition or sputtering on the light transmittable substrate 1 consisting of a plastic or coated with the plastic. The protective layer 3 is formed to the continuous layer having <=1,000Angstrom thickness. The recording and erasing sensitivity is improved by reducing the film thickness of the protective layer 3 in the above-mentioned manner; in addition, the satisfactory corrosion resistance is provided to the medium by forming the protective layer into the continuous film having no pinholes.

Description

【発明の詳細な説明】 (産業上の利用分野〕 本発明は、レーザー光などの、各種エネルギー線の照射
によるR温によって記録・消去を行なう光学的記録媒体
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an optical recording medium in which recording and erasing are performed by R temperature generated by irradiation with various energy rays such as laser light.

(発明が解決しようとする問題点〕 [従来の技術] 近年、高密度・大容量のメモリとしてレーザー光を用い
た光メモリ素子の研究および開発が急ピッチで行なわれ
ている。中でも、光磁気記録は古き換えが可能な記録方
法として注目をあびており、該記録に用いられる光学的
磁気記録媒体は書き換えが可能な光メモリ素子として大
いに期待されている。
(Problems to be Solved by the Invention) [Prior Art] In recent years, research and development of optical memory devices using laser light as high-density, large-capacity memories has been carried out at a rapid pace.In particular, magneto-optical recording has attracted attention as an old rewritable recording method, and the optical magnetic recording medium used for this recording is highly anticipated as a rewritable optical memory element.

従来、このような光磁気記録に用いられる光学的磁気記
録媒体の光磁気記録層を構成する材料としては、1nB
i、f−、ガーネット系、希土類−遷移金属アモルファ
ス系などが代表的なものとして知られている。Mn1l
i系は、キューリ一温度が高いため、記録の際にパワー
の大きなレーザーを必要とし、また粒界ノイズが多いた
め、 S/N比の高い再生が実施できないという欠点が
あり、ガーネット系では光の透過率が大きいため、記録
の際にパワーの大きなレーザーが必要となる欠点があっ
た。その中で、希土類−遷移金属アモルファス系はキュ
ーリ一温度が低く、また光の透過率も比較的小さいため
、両者の欠点を補うものとして期待されている。
Conventionally, the material constituting the magneto-optical recording layer of an optical-magnetic recording medium used for such magneto-optical recording is 1 nB.
Typical examples include i, f-, garnet type, and rare earth-transition metal amorphous type. Mn1l
The i-type has a high Curie temperature, so it requires a high-power laser for recording, and it has a lot of grain boundary noise, which makes it impossible to reproduce with a high S/N ratio. Because of its high transmittance, it had the disadvantage of requiring a high-power laser for recording. Among these, the rare earth-transition metal amorphous system has a low Curie temperature and relatively low light transmittance, and is therefore expected to compensate for the drawbacks of both.

以下、図面を参照しつつ、この種の技術について更に詳
しく説明する。
This type of technology will be described in more detail below with reference to the drawings.

第4図は、従来用いられている代表的な光学的磁気記録
媒体の模式的断面図である。
FIG. 4 is a schematic cross-sectional view of a typical conventionally used optical magnetic recording medium.

第4図において、1はポリメチルメタクリレ−1= (
PMMA)、ポリカーボネート等のプラスチック、ある
いはガラス等からなる透光性基板であり、一般にはドー
ナツ状など各種形状の板状基板が用いられる62は光磁
気記録層であり、上記のような理由によって、現在は例
えばTbFe、 GdTbFe、 TbFeGo等の希
土類−遷移金属アモルファス系が汎用されている。
In FIG. 4, 1 is polymethylmethacrylate-1=(
62 is a light-transmitting substrate made of plastic such as PMMA), polycarbonate, or glass, and is generally a plate-shaped substrate of various shapes such as a donut shape. Currently, rare earth-transition metal amorphous systems such as TbFe, GdTbFe, and TbFeGo are widely used.

このような光学的磁気記録媒体における記録・11を生
・消去は、一般には以下のように行なわれる。
Recording/writing/erasing information on such an optical magnetic recording medium is generally performed as follows.

まず、記録媒体を基板1に対して垂直な一定方向に磁化
した後、基板1側からレーザー光をスポット照射する。
First, the recording medium is magnetized in a certain direction perpendicular to the substrate 1, and then a spot of laser light is irradiated from the substrate 1 side.

磁化方向は、一定であれば所望の方向でよい。基板1上
に照射されたレーザー光は、基板1を透過して光磁気記
録層2に到達する。その結果、光磁気記録層2のレーザ
ー光1(q射部分において、光の吸収か起こり、1該部
分は局所的な湿度上昇により層構成材料のキューリ一点
以上に達し、磁化か消失する。この時、磁化が消失した
部分に11「記磁化方向とは逆方向に磁場を印加すると
、藷部分では、磁化が反転し、レーザー光非照射部分と
磁化方向を異にする反転磁区が形成されて情報の記録が
為される。記録の消去は、光磁気記録層2の記録部分を
、レーザー光の再照射によりキューリ一点以トに」1昇
させ、該部分に記録時とは反対方向の磁化を印加するこ
とによってその磁化方向を記録開始萌の状態に戻すこと
により行なう。
The magnetization direction may be any desired direction as long as it is constant. The laser beam irradiated onto the substrate 1 passes through the substrate 1 and reaches the magneto-optical recording layer 2 . As a result, absorption of light occurs in the part of the magneto-optical recording layer 2 where the laser beam 1 (q) is irradiated, and this part reaches the Curie point or more of the layer constituting material due to a local increase in humidity, and the magnetization disappears. When a magnetic field is applied in the opposite direction to the recorded magnetization direction to the part where the magnetization has disappeared, the magnetization is reversed in the part, and a reversed magnetic domain is formed whose magnetization direction is different from that of the part not irradiated with the laser beam. Information is recorded. To erase the record, the recorded portion of the magneto-optical recording layer 2 is re-irradiated with laser light to increase the temperature by 1" above the Curie point, and magnetize the recorded portion in the opposite direction to that at the time of recording. This is done by returning the magnetization direction to the recording start state by applying .

記録の再生は、光磁気記録層2がキューリ一点以上に温
度上昇しない程度にパワーを下げたレーザー光を基板1
側から照射し、磁気カー効果等を利用して記録部分の磁
化方向を読み出すことにより行う。
To reproduce recording, a laser beam whose power is lowered to such an extent that the temperature of the magneto-optical recording layer 2 does not rise above one Curie point is applied to the substrate 1.
This is done by irradiating from the side and reading the magnetization direction of the recorded portion using the magnetic Kerr effect or the like.

上記のような光磁気記録媒体、特に光磁気記録層に希土
類−遷移金属アモルファス糸合金を用い、且つ基板にプ
ラスチックを用いたものは、基板を通過して侵入してく
る酸素、水分等により腐食されやすいので、これを防止
し耐食性を向上する為に、基板と記録層との間に540
 、5i02、屓N 、ZnS等から成る無機材料の保
護層を設けるのが一般的であった。この場合に、十分な
耐食性を得るために保護層の厚さは数千人程度であった
Magneto-optical recording media such as those mentioned above, especially those that use a rare earth-transition metal amorphous thread alloy for the magneto-optical recording layer and plastic for the substrate, are susceptible to corrosion due to oxygen, moisture, etc. that enter through the substrate. In order to prevent this and improve corrosion resistance, there is a layer of 540 mm between the substrate and the recording layer.
It has been common practice to provide a protective layer of an inorganic material such as , 5i02, N2, ZnS, or the like. In this case, the thickness of the protective layer was on the order of several thousand to obtain sufficient corrosion resistance.

しかしながら、無機材料はプラスチックより熱伝導率が
高い九、レーザー光の照射によって光磁気記録層に吸収
された熱エネルギーが主として保護層へ放出されて光磁
気記録層の温度低下が生じ、結果として記録感度の低下
をきたすと言う欠点があった。記録感度を向上させよう
とすれば、よりパワーの大きなレーザー光を必要とする
が、軒済的にも、また記録媒体の耐久性からもパワーに
はおのずと限界かある。
However, inorganic materials have higher thermal conductivity than plastics9, and the thermal energy absorbed by the magneto-optical recording layer due to laser beam irradiation is mainly released to the protective layer, causing a decrease in the temperature of the magneto-optical recording layer, resulting in recording. The drawback was that it caused a decrease in sensitivity. In order to improve the recording sensitivity, a laser beam with higher power is required, but there is a limit to the power due to economic considerations and the durability of the recording medium.

本発明は、F記問題点に鑑み為されたものであり、その
目的は、十分な耐食性を維持した上で、記録感度を向1
−させ得る光学的記録媒体を提供することにある。
The present invention was made in view of the problem described in F, and its purpose is to improve recording sensitivity while maintaining sufficient corrosion resistance.
- An object of the present invention is to provide an optical recording medium that can perform

〔問題点を解決するための手段〕[Means for solving problems]

本発明者は、上記目的を達成すべく、様々な材質の保護
層・記録層を有する光学的記録媒体の耐食性について研
究を重ねた結果、保護層の厚さを1000Å以下に設定
することが、記録・消去感度を向上させるために極めて
有効であることを見出した。また保護層が島状である非
連続膜ではなく、連続膜になっていれば、保護層の厚さ
の違いによっては耐食性に1TQ差は現われないことも
見出し、本発明を完成するに至フた。
In order to achieve the above object, the present inventor has repeatedly researched the corrosion resistance of optical recording media having protective layers and recording layers made of various materials, and found that setting the thickness of the protective layer to 1000 Å or less is possible. It has been found that this method is extremely effective for improving recording/erasing sensitivity. We also discovered that if the protective layer is a continuous film rather than a discontinuous film in the form of islands, there will be no 1TQ difference in corrosion resistance depending on the difference in the thickness of the protective layer, which led us to complete the present invention. Ta.

すなわち、本発明は、プラスチック基板、又は、プラス
チックにより被覆された基板と、前記基板上に形成され
、光エネルギーの吸収による昇温を利用し記録が為され
る光学的記録層と、11「記J、(板と光学的記録層と
の間に設けられたjHH%機材料の保護層とを有して成
る光学的記録媒体において、前記保護層が厚さ1000
Å以下の連続膜から成ることを特徴とする光学的記録媒
体である。
That is, the present invention provides a plastic substrate or a substrate covered with plastic, an optical recording layer formed on the substrate and in which recording is performed using temperature increase due to absorption of optical energy, and 11 "recording". J, an optical recording medium comprising a protective layer of jHH% mechanical material provided between the plate and the optical recording layer, wherein the protective layer has a thickness of 1000 mm.
This is an optical recording medium characterized by being made of a continuous film with a thickness of Å or less.

以下、図面を参照しつつ、本発明の詳細な説明する。Hereinafter, the present invention will be described in detail with reference to the drawings.

第1図は、本発明の光学的記録媒体の基本的態様を示す
模式的断面図である。
FIG. 1 is a schematic cross-sectional view showing a basic aspect of the optical recording medium of the present invention.

第1図に於いて、lはPMMA、ポリカーボネート等の
各種プラスチック材料からなる透光性の基板あるいはガ
ラス石英等の無機材料にプラスチック材料が被覆されて
形成された透光性の基板である。通常、基板1の形状は
、ディスク状であるが、特に限定されるものではなく、
所望のものとし得る。3は前記要件を満たす保護層であ
る。保護層3の構成材料としては、SiO,5i02.
 ON、SiN。
In FIG. 1, 1 is a transparent substrate made of various plastic materials such as PMMA and polycarbonate, or a transparent substrate formed by coating an inorganic material such as glass quartz with a plastic material. Usually, the shape of the substrate 1 is disk-shaped, but it is not particularly limited.
It can be whatever you want. 3 is a protective layer that satisfies the above requirements. The constituent material of the protective layer 3 is SiO, 5i02.
ON, SiN.

Si(:、ZnS、UN、 SrF2. CeF2.Z
n5e、GeSe等の無機材料の1種、あるいはこれら
の2種類以、トの混合物を用いることができる。保護層
3は2層以上の多層膜で構成されていてもよい。
Si(:, ZnS, UN, SrF2.CeF2.Z
One type of inorganic material such as n5e, GeSe, etc., or a mixture of two or more of these can be used. The protective layer 3 may be composed of a multilayer film of two or more layers.

なお、保護層3が連続1摸であるということをより詳し
く言うならば基板のゴミやキズ、あるいは成膜中に付着
するゴミ等に起因する局所的なピンホールを除いては、
ピンホールが存在しない膜であることを言う。
In more detail, the protective layer 3 is a continuous pattern, except for local pinholes caused by dust or scratches on the substrate, or dust adhering during film formation.
This refers to a film that does not have pinholes.

4は光学的記録層であり、その材質としてはTbFc 
、 GdTbFc 、TbFc(:a 、 GdTbF
eCo等の希」−類一遷移金属アモルファス系か好適に
用いられる。時運のMnB11、ガーネット系などとす
ることも可能であり、光エネルギーの吸収による+A−
mを利用することによって記録が為されるものであるな
らばよい。5は、基板1の逆方向から侵入してくる酸素
、水分等から光学的記録層4を保護するための補助保護
層である。補助保護層5も保護層3と同様な要件を満た
すことが望ましいが、本発明においては、特に基板1と
光学的記録層4との間に無機系の保護層3を設けた場合
に生ずる欠点の克服に着目しているので、補助保護層5
の設置の有無、材質については特に−1限はない。
4 is an optical recording layer, the material of which is TbFc.
, GdTbFc, TbFc(:a, GdTbF
Rare-class I transition metal amorphous systems such as eCo are preferably used. It is also possible to use MnB11 of time luck, garnet type, etc., and +A- due to absorption of light energy.
It is sufficient if recording can be done by using m. Reference numeral 5 denotes an auxiliary protective layer for protecting the optical recording layer 4 from oxygen, moisture, etc. entering from the opposite direction of the substrate 1. It is desirable that the auxiliary protective layer 5 also satisfy the same requirements as the protective layer 3, but in the present invention, it is particularly important to avoid the disadvantages that occur when the inorganic protective layer 3 is provided between the substrate 1 and the optical recording layer 4. Since we are focusing on overcoming the
There is no particular limit as to whether or not the installation is done and the material.

上記保護層3、光学的記録層4および補助保護層5を基
板1上に積層する方法としては、特に限定されるもので
はないが、具体的には例えば蒸着法、CVD法、スパッ
タリング法、イオンブレーティング法などの膜形成方法
等が代表的なものとして挙げられる。
The method for laminating the protective layer 3, optical recording layer 4, and auxiliary protective layer 5 on the substrate 1 is not particularly limited, but specific examples include vapor deposition, CVD, sputtering, ion Typical examples include film forming methods such as the brating method.

保護層3を連続膜となるように形成するには、成膜法や
その成膜条件の1または2以上を適切に選定することに
より実施できるが、保護層3の膜厚を500Å以上とす
れば上記の方法で通常連続膜が成膜できる。
The protective layer 3 can be formed as a continuous film by appropriately selecting one or more of the film forming method and its film forming conditions, but the film thickness of the protective layer 3 should be 500 Å or more. Generally, a continuous film can be formed using the above method.

(実施例) 以下、実施例に基いて本発明を更に詳細に説明する。(Example) Hereinafter, the present invention will be explained in more detail based on Examples.

実施例1 第1図に例示したと同様な光学的記録媒体を作成した。Example 1 An optical recording medium similar to that illustrated in FIG. 1 was prepared.

ポリカーボネート製の基板1上に保護層3として膜厚5
00人のZnS薄膜を真空蒸着法により形成した。その
後、その上にII!2厚1000人のGdTbFe薄膜
からなる光学的記録層4をスパッタリング法により形成
し、更にその上に膜J%3000人のSiO薄膜からな
る補助保護層5を真空蒸着法により形成して本例の光学
的記録媒体を得た。以りの方法を繰り返し、同様な光学
的記録媒体を複数前た。
A protective layer 3 with a thickness of 5 is formed on a polycarbonate substrate 1.
A ZnS thin film of 0.00 was formed by vacuum evaporation. Then on top of that II! An optical recording layer 4 made of a GdTbFe thin film with a thickness of 2% and 1000% was formed by a sputtering method, and an auxiliary protective layer 5 made of a thin SiO film with a thickness of 3000% was further formed on it by a vacuum evaporation method. An optical recording medium was obtained. The above method was repeated to prepare a plurality of similar optical recording media.

これらの記録媒体に様々な出力を存するビーム直径1.
5μに集光した反導体レーザー光をlo(l ns (
ナノ秒)間照射し、照射部分を偏光顕微鏡で観察するこ
とによって記録が行なわれたかどうかを調べた。この結
果、記録を行なうために必要な最低レーザー出力は3.
5mWでありだ。
These recording media have different output beam diameters: 1.
The anticonductor laser beam focused on 5 μ is lo(l ns (
The irradiated area was irradiated for a nanosecond) and the irradiated area was observed under a polarizing microscope to determine whether recording had taken place. As a result, the minimum laser power required for recording is 3.
It's 5mW.

次に、保護層3のA艇尾を、それぞれ50人、100人
200 人、300人、400人、600人、800人
、  1000人、  1200人、 1500人とし
他は上記方法と同様にして10種類の光学的記録媒体を
作製し、記録に必要な最低レーザー出力を調べた。この
結果をまとめて第2図に白ドツト(0)で示す。またこ
れらの光学的記録媒体を、60℃、湿度90%の雰囲気
に1000時間放置し保磁力の低下割合を調べた。この
結果をまとめて第3図に白ドツト(0)で示す。
Next, the A stern of protective layer 3 was made with 50 people, 100 people, 200 people, 300 people, 400 people, 600 people, 800 people, 1000 people, 1200 people, and 1500 people, respectively, and the rest was the same as the above method. Ten types of optical recording media were produced and the minimum laser output necessary for recording was investigated. The results are summarized in FIG. 2 as white dots (0). Furthermore, these optical recording media were left in an atmosphere of 60° C. and 90% humidity for 1000 hours, and the rate of decrease in coercive force was examined. The results are collectively shown in FIG. 3 as white dots (0).

実施例2 保護層3としてSiNをスパッタリングによって形成し
た他は実施例1と同様にして11種類の光学的記録媒体
を作製し、記録に必要な最低レーザー出力を調べた。こ
の結果を第2図に黒ドツト(・)で示す。またこれらの
光学的記録媒体を60℃、湿度90%の雰囲気に100
0時間放置し保踏力の低下割合を調べた。この結果を第
3図に黒ドツト(・)で示す。
Example 2 Eleven types of optical recording media were produced in the same manner as in Example 1, except that SiN was formed by sputtering as the protective layer 3, and the minimum laser output necessary for recording was investigated. The results are shown in FIG. 2 as black dots (.). Furthermore, these optical recording media were placed in an atmosphere of 60°C and 90% humidity for 100°C.
After leaving it for 0 hours, the rate of decrease in pedal holding force was examined. The results are shown in FIG. 3 as black dots (.).

第2図より保護層3を1000Å以下とすると材質に係
わらず記録感度が良いことがわかる(紋型L)。第3図
より保護層3がZnSの場合は400Å以下で保磁力の
低下が著しくなり、又保護層3がSiNの場合は300
Å以下で保磁力の低下が著しくなっている(猫果ユ)。
From FIG. 2, it can be seen that when the protective layer 3 has a thickness of 1000 Å or less, the recording sensitivity is good regardless of the material (pattern L). From FIG. 3, when the protective layer 3 is made of ZnS, the coercive force decreases significantly at a thickness of 400 Å or less, and when the protective layer 3 is made of SiN, the coercive force decreases significantly at a thickness of 300 Å or less.
Below Å, the coercive force decreases significantly (Nekoguyu).

〔参考例) 実施例1で使用したのと同じ基板上に、実施例1と同様
の法によりZnS膜(実施例1の保護層と同じ材質)の
みを300人、400人、500人の厚さに成膜した3
種の試料を作製した。同様にして、基板−FにSiN 
IIQ (実施例2の保護層と同じ材質)を有する3種
の試料を作製した。各試料を電子顕微鏡で観察したとこ
ろ、ZnS膜は400Å以下で、又SiN膜は300Å
以下で不連続膜となっていた。
[Reference Example] On the same substrate as used in Example 1, only a ZnS film (same material as the protective layer in Example 1) was deposited with a thickness of 300, 400, or 500 layers using the same method as in Example 1. 3.
Seed samples were prepared. Similarly, SiN is applied to the substrate -F.
Three types of samples having IIQ (same material as the protective layer of Example 2) were prepared. When each sample was observed with an electron microscope, the thickness of the ZnS film was 400 Å or less, and the thickness of the SiN film was 300 Å.
It became a discontinuous film below.

参考例の結果と、実施例で得られた前記の紋型スとから
保護層3が連続膜になっていれば光学的記録層媒体の耐
食性が良いと言える。
From the results of the reference examples and the pattern patterns obtained in the examples, it can be said that the corrosion resistance of the optical recording layer medium is good if the protective layer 3 is a continuous film.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によれば保存安定性に優れ
、しかも記録感度の向上した光学的磁気記録媒体を提供
することが可能となった。
As explained above, according to the present invention, it has become possible to provide an optical magnetic recording medium with excellent storage stability and improved recording sensitivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の光学的記録媒体の基本的態様を示す模
式的断面図、第2図は本発明に係る実施例の光学的記録
媒体と、比較例における従来型の光学的記録媒体との記
録感度を示す図、第3図は上記両光学的記録媒体の保磁
力変化を示す図、第4図は従来例の光学的磁気記録媒体
の模式的断面図である。 l・・・・・・基板、     2・・・・・・光磁気
記録層、3・・・・・・保護層、   4・・・・・・
光学的記録層、5・・・・・・補助保護層。
FIG. 1 is a schematic cross-sectional view showing the basic aspect of the optical recording medium of the present invention, and FIG. 2 is a schematic cross-sectional view showing the optical recording medium of the embodiment according to the present invention and the conventional optical recording medium of the comparative example. FIG. 3 is a diagram showing the change in coercive force of both of the optical recording media, and FIG. 4 is a schematic cross-sectional view of a conventional optical magnetic recording medium. l...Substrate, 2...Magneto-optical recording layer, 3...Protective layer, 4...
Optical recording layer, 5...auxiliary protective layer.

Claims (1)

【特許請求の範囲】[Claims] 1)プラスチック基板又はプラスチックにより被覆され
た基板と、前記基板上に形成され、光エネルギーの吸収
による昇温を利用して記録が為される光学的記録層と、
前記基板と光学的記録層との間に設けられた無機材料の
保護層とを有して成る光学的記録媒体において、前記保
護層が厚さ1000Å以下の連続膜から成ることを特徴
とする光学的記録媒体。
1) a plastic substrate or a substrate covered with plastic; an optical recording layer formed on the substrate and recording using temperature increase due to absorption of optical energy;
An optical recording medium comprising a protective layer of an inorganic material provided between the substrate and an optical recording layer, wherein the protective layer is a continuous film having a thickness of 1000 Å or less. recording medium.
JP61032785A 1986-02-19 1986-02-19 Optical information recording medium Pending JPS62192040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61032785A JPS62192040A (en) 1986-02-19 1986-02-19 Optical information recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61032785A JPS62192040A (en) 1986-02-19 1986-02-19 Optical information recording medium

Publications (1)

Publication Number Publication Date
JPS62192040A true JPS62192040A (en) 1987-08-22

Family

ID=12368503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61032785A Pending JPS62192040A (en) 1986-02-19 1986-02-19 Optical information recording medium

Country Status (1)

Country Link
JP (1) JPS62192040A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089168A2 (en) 2010-01-21 2011-07-28 INSERM (Institut National de la Santé et de la Recherche Médicale) Special composition for the use thereof as a drug

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011089168A2 (en) 2010-01-21 2011-07-28 INSERM (Institut National de la Santé et de la Recherche Médicale) Special composition for the use thereof as a drug

Similar Documents

Publication Publication Date Title
US6697323B1 (en) Optical recording medium and method of manufacturing including smoothing treatment
US6667088B2 (en) Optical recording medium
JPS6148148A (en) Thermooptical magnetic recording medium
JP2547768B2 (en) Optical magnetic recording medium
EP0233062A2 (en) Magneto-optic memory medium
JPS62192040A (en) Optical information recording medium
JPH0550400B2 (en)
JPS60197964A (en) Optical recording medium
JPH0350344B2 (en)
JPH0350343B2 (en)
JP2604475B2 (en) Magneto-optical recording medium
JPS62226449A (en) Optical magnetic recording medium
JPS62192048A (en) Photomagnetic recording medium
JPH0328739B2 (en)
JPS62114134A (en) Optical information recording medium
JPS62121944A (en) Optical recording medium
JPH0463451B2 (en)
JPS61202352A (en) Photomagnetic recording medium
JPS6314346A (en) Magneto-optical recording medium
JPS62109247A (en) Optical magnetic recording medium
JPS63273235A (en) Magneto-optical recording medium
JPS60231936A (en) Photomagnetic recording medium
JPS62246160A (en) Medium for photomagnetic recording
JPH03260939A (en) Magneto-optical recording method and magneto-optical recording medium
JPS59171057A (en) Magneto-optical recording medium