JPS62226449A - Optical magnetic recording medium - Google Patents
Optical magnetic recording mediumInfo
- Publication number
- JPS62226449A JPS62226449A JP6723986A JP6723986A JPS62226449A JP S62226449 A JPS62226449 A JP S62226449A JP 6723986 A JP6723986 A JP 6723986A JP 6723986 A JP6723986 A JP 6723986A JP S62226449 A JPS62226449 A JP S62226449A
- Authority
- JP
- Japan
- Prior art keywords
- intermediate layer
- layer
- recording medium
- optical
- magnetic recording
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Abstract
Description
【発明の詳細な説明】 [産業上の利用分野] 本発明は、レーザー光などの光(ここで言う光。[Detailed description of the invention] [Industrial application field] The present invention is directed to light such as laser light (herein referred to as light).
ギー線のことである)によって情報の記録・再生・消去
などを行なう光学的磁気記録媒体の製造方法に関する。This invention relates to a method of manufacturing an optical magnetic recording medium in which information is recorded, reproduced, and erased using energy rays.
[従来の技術]
近年、高密度・大容量のメモリとしてレーザー光を用い
た光メモリ素子の研究および開発が急ピッチで行なわれ
ている。中でも、光磁気記録は書き換えが可能な記録方
法として注目をあびており、該記録に用いらねる光学的
磁気記録媒体は書き換えが可能な光メモリ素子として大
いに期待されている。[Prior Art] In recent years, research and development of optical memory elements using laser light as high-density, large-capacity memories have been carried out at a rapid pace. Among these, magneto-optical recording has attracted attention as a rewritable recording method, and the optical magnetic recording medium used for this recording is highly anticipated as a rewritable optical memory element.
従来、このような光磁気記録に用いられる光学的磁気記
録媒体の光磁気記録層を構成する°材料としては、Mn
1l i系、ガーネット系、希土類−遷移全屈アモルフ
ァス系などが代表的なものとして知られている。IAn
Biiは、キューリ一温度が高いため、記録の際にパワ
ーの大きなレニザーを必要とし、また粒界ノイズが多い
ため、 S/N比の高い再生が実施できないという欠点
があり、ガーネット系では光の透過率が大きいため、記
録の際にバワーの大きなレーザーか必要となる欠点があ
った。その中で、希土類−遷移金属アモルファス系はキ
ューリ一温度が低く、また光の透過率も比較的小さいた
め、両者の欠点を補うものとして期待されている。Conventionally, the material constituting the magneto-optical recording layer of an optical-magnetic recording medium used for such magneto-optical recording has been Mn.
Representative examples include the 1l i series, the garnet series, and the rare earth-transition total bending amorphous series. IAn
Bii has the disadvantage that it requires a high power lenser for recording due to its high Curie temperature, and it is unable to reproduce with a high S/N ratio due to the large amount of grain boundary noise. Because of its high transmittance, it had the disadvantage of requiring a high-power laser for recording. Among these, the rare earth-transition metal amorphous system has a low Curie temperature and relatively low light transmittance, and is therefore expected to compensate for the drawbacks of both.
以下、図面を参照しつつ、この種の技術について更に詳
しく説明する。This type of technology will be described in more detail below with reference to the drawings.
第3図は、従来用いられている代表的な光学的磁気記録
媒体の模式的断面図である。FIG. 3 is a schematic cross-sectional view of a typical conventionally used optical magnetic recording medium.
第3図において、11はポリメチルメタクリレート(P
MMA)、ポリカーボネート(pc)等のプラスチック
、あるいはガラス等からなる透光性基材であり、一般に
はドーナツ状など各種形状の板状基板が用いられる。1
2光磁気記録層であり、上記のような理由によって、現
在は例えばTbFe、 GdTbFe、TbFeCo等
の希土類−遷移金属アモルファス系が汎用されている。In Figure 3, 11 is polymethyl methacrylate (P
It is a light-transmitting substrate made of plastic such as MMA), polycarbonate (PC), or glass, and plate-shaped substrates of various shapes such as donut shapes are generally used. 1
For the reasons mentioned above, rare earth-transition metal amorphous systems such as TbFe, GdTbFe, and TbFeCo are currently widely used.
このような光学的磁気記録媒体における記録・再生・消
去は、一般には以下のように行なわれる。Recording, reproducing, and erasing on such an optical magnetic recording medium is generally performed as follows.
まず、記録媒体を基板11に対して垂直な一定方向に磁
化した後、基板11側からレーザー光をスポット照射す
る。磁化方向は、一定であれば所望の方向でよい。基板
II上に照射されたレーザー光は、基板11を透過して
光磁気記録層12に到達する。その結果、光磁気記録層
12のレーザー光照射部分において、光の吸収が起こり
該部分は、局所的な温度−上昇により、層構成材料のキ
ューリ一点以上に達し、磁化が消失する。この時、磁化
が消失した部分に前記磁化方向とは逆方向に磁場を印加
すると、該部分では、磁化が反転し、レーザー光非照射
部分と磁化方向を異にする反転磁区が形成されて情報の
記録が成される。記録の消去は、光磁気記録層12の記
録部分を、レーザー光の再照射によりキューリ一点以上
に上昇させ、該部分へ記録時とは反対方向の磁化を印加
することによってその磁化方向を記録開始前の状態に戻
すことにより行なう。First, the recording medium is magnetized in a certain direction perpendicular to the substrate 11, and then a laser beam is spot-irradiated from the substrate 11 side. The magnetization direction may be any desired direction as long as it is constant. The laser beam irradiated onto the substrate II passes through the substrate 11 and reaches the magneto-optical recording layer 12 . As a result, light is absorbed in the laser beam irradiated portion of the magneto-optical recording layer 12, and due to a local temperature rise, this portion reaches the Curie point or more of the layer-constituting material, and the magnetization disappears. At this time, when a magnetic field is applied in the opposite direction to the magnetization direction to the part where the magnetization has disappeared, the magnetization in that part is reversed, and an inverted magnetic domain is formed whose magnetization direction is different from the part not irradiated with the laser beam, and information is transmitted. Records will be made. To erase a record, the recorded portion of the magneto-optical recording layer 12 is raised above one Curie point by re-irradiation with laser light, and by applying magnetization in the opposite direction to that during recording to the portion, recording of the magnetization direction is started. This is done by returning to the previous state.
また、記録の再生は、光磁気記録層12がキューリ一点
以上に温度上昇しない程度にパワーを下げたレーザー光
を基材11側から照射し、磁気カー効果を利用して記録
部分の磁化方向を読み出すことにより行う。In addition, for reproduction of recording, a laser beam whose power is lowered to such an extent that the temperature of the magneto-optical recording layer 12 does not rise above one Curie point is irradiated from the base material 11 side, and the magnetization direction of the recorded portion is changed using the magnetic Kerr effect. This is done by reading.
しかし、このような光学的磁気記録にあって、光磁気記
録層12は、その酸化や腐食等に関して基材の影響を受
は易く、特に基板として有機樹脂を用いた場合には、光
磁気記録層12の形成時に、基板+1に吸着されている
酸素や水分などが光磁気記録層12に取込まれて、磁気
特性に劣化を生じることがあった。また、形成された光
学的磁気記録媒体を高温、高湿の雰囲気に長く保存した
場合には、基板11を透過して光磁気記録層12に侵入
する酸素や水分により磁気特性が劣化し、結果として記
録、再生時のエラーの増加や信号品質の劣化を招くとい
った問題があった。However, in such optical magnetic recording, the magneto-optical recording layer 12 is easily affected by the base material in terms of oxidation, corrosion, etc. Especially when an organic resin is used as the substrate, the magneto-optical recording layer 12 During the formation of the layer 12, oxygen, moisture, etc. adsorbed on the substrate +1 may be taken into the magneto-optical recording layer 12, causing deterioration of the magnetic properties. Furthermore, if the formed optical magnetic recording medium is stored in a high temperature and high humidity atmosphere for a long time, the magnetic properties will deteriorate due to oxygen and moisture penetrating the substrate 11 and entering the magneto-optical recording layer 12. However, there were problems such as an increase in errors during recording and playback and a deterioration in signal quality.
従って、このような問題を解消し、記録感度や保存環境
特性等に優れた光学的磁気記録媒体を得るためには、基
板11の光磁気記録層12に対する影響を減じるため、
光磁気記録層12と基板11との間に中間層を!皆ける
のh<−4)む的ンf’rってぃス−〔発明が解決しよ
うとする問題点〕
しかしながら、腐食防止作用の優れた中間層を設けると
それらは一般的に熱伝導率が比較的高い場合が多く、レ
ーザー光の照射によって光磁気記録層I2に吸収された
熱エネルギーが中間層に放出されて光磁気記録層12の
温度低下が生じ、結果として記録感度の低下をきたすと
言う欠点があった。記録感度を向上させようとすれば、
よりパワーの大きなレーザー光を必要とするが、経済的
にも、また記録媒体の耐久性からもパワーにはおのずと
限界がある。Therefore, in order to solve such problems and obtain an optical magnetic recording medium with excellent recording sensitivity, storage environment characteristics, etc., in order to reduce the influence of the substrate 11 on the magneto-optical recording layer 12,
An intermediate layer between the magneto-optical recording layer 12 and the substrate 11! (Problem to be solved by the invention) However, when an intermediate layer with excellent corrosion prevention effect is provided, the thermal conductivity of is often relatively high, and the thermal energy absorbed by the magneto-optical recording layer I2 by laser beam irradiation is released to the intermediate layer, causing a temperature drop in the magneto-optical recording layer 12, resulting in a decrease in recording sensitivity. There was a drawback. If you want to improve recording sensitivity,
This requires a laser beam with higher power, but there is a limit to its power both economically and due to the durability of the recording medium.
中間層の材質として、熱伝導率の小さいものを使用する
と、その腐食防止作用が十分でなく、記録媒体の耐食性
が期待するほど向上しないことが少なくなかった。When a material with low thermal conductivity is used as the material for the intermediate layer, its corrosion prevention effect is insufficient, and the corrosion resistance of the recording medium is often not improved as much as expected.
本発明は以上の問題点に鑑み為されたものであり、その
目的は、高い耐食性を示す公知の光学的記録媒体と同水
準あるいはそれ以上の耐食性を示し、しかも記録感度の
向上した光学的磁気記録媒体を提供することにある。The present invention has been made in view of the above problems, and its purpose is to provide an optical magnetic recording medium that exhibits corrosion resistance equivalent to or higher than that of known optical recording media that exhibit high corrosion resistance, and that also has improved recording sensitivity. The goal is to provide recording media.
[問題点を解決するための手段コ
上記目的を達成する本発明の光学的磁気記録媒は、透光
性の基板上に、膜面に垂直な方向に磁化容易軸を有する
光磁気記録層を有して成る光学的磁気記録媒体に於て、
該光磁気記録層の表面上に窒化物、硫化物、炭化物及び
酸化物のうちの少なくとも一種以上の化合物からなる第
1中間層が積層され、さらに該第1中間層の表面上に該
第1中間層より熱伝導率の小さい化合物からなる第2中
間層が積層されてなることを特徴とする。[Means for Solving the Problems] The optical magnetic recording medium of the present invention which achieves the above object comprises a magneto-optical recording layer having an axis of easy magnetization in a direction perpendicular to the film surface on a transparent substrate. In an optical magnetic recording medium comprising:
A first intermediate layer made of a compound of at least one of nitride, sulfide, carbide, and oxide is laminated on the surface of the magneto-optical recording layer, and the first intermediate layer is further laminated on the surface of the first intermediate layer. It is characterized in that a second intermediate layer made of a compound having a lower thermal conductivity than the intermediate layer is laminated.
[発明の実施態様]
以下、本発明の詳細な説明する。第1図は本発明の光学
的磁気記録媒体の一態様の模式断面図である。[Embodiments of the Invention] The present invention will be described in detail below. FIG. 1 is a schematic cross-sectional view of one embodiment of the optical magnetic recording medium of the present invention.
第1図の光学的磁気記録媒体に於いて、 11はガラス
、PMMA、ポリカーボネート等の各種材料からなる透
光性基材であり、その形状は特に限定されるものではな
い。In the optical magnetic recording medium shown in FIG. 1, numeral 11 is a transparent base material made of various materials such as glass, PMMA, polycarbonate, etc., and its shape is not particularly limited.
12は膜面に垂直な方向に磁化容易軸を有する光磁気記
録層であり、その材質としてはTbFe、Gd’「bF
e、TbFcCo、GdTbFe1;o等の希土類−遷
移金属アモルファス系が好適に用いられる。勿論、面述
のMnB i糸、ガーネット系などとすることも可能で
ある。12 is a magneto-optical recording layer having an axis of easy magnetization in the direction perpendicular to the film surface, and its material is TbFe, Gd'"bF
Rare earth-transition metal amorphous systems such as e, TbFcCo, and GdTbFe1;o are preferably used. Of course, it is also possible to use the MnBi yarn mentioned above, garnet type, etc.
光磁気記録層12の両表面に積層された+3a、13b
の膜が第1中間層であり、光磁気記録層12への外部か
らの酸化、腐食等に対して充分な保護作用を果たす膜品
質の優れた材料からなる。第1中間一層13a 、 1
3bは各々独立にAIN 、 Si3 N 4、ZrN
%GrN 、 TiNなどの窒化物、ZnS、口i2
S 3などの硫化物、SiG 、 Tie 、 Zn
Cなどの炭化物、MgO、Ti02 、 ZrO2、S
iO、Si02などの酸化物の少なくとも一種以上の化
合物からなる。+3a and 13b laminated on both surfaces of the magneto-optical recording layer 12
The film is the first intermediate layer, and is made of a material with excellent film quality that sufficiently protects the magneto-optical recording layer 12 from external oxidation, corrosion, etc. First intermediate layer 13a, 1
3b are each independently AIN, Si3N4, ZrN
%GrN, nitrides such as TiN, ZnS, i2
Sulfides such as S3, SiG, Tie, Zn
Carbides such as C, MgO, Ti02, ZrO2, S
It consists of at least one compound of oxides such as iO and Si02.
光磁気記録層12から見て第1中間層13a 、 +3
bの各外側表面に積層された14a 、 14bの膜が
第2中間層であり、光磁気記録層12からの熱の逃げを
少なくするため、各々は接した第1中間層の熱伝導より
も小さい熱伝導を有する材料からなる。例えば、MgF
2 、 BiF 3などのフッ化物、Zn5e、Ge
Sc、 Ca5a%GaSe%InSe3などのセレン
化物、テフロン、PTFE(ポリテトラフルオロエチレ
ン)、TM01(テトラメトキシシラン)、トリクロロ
エチレンなどの有機材料あるいは上記第1中間層で用い
るZnS 、 SiO、SiO2、Zr02などの熱伝
導率の小さい材料の内から、一種あるいは二種以上の化
合物が第1中間層材質に応じて適宜選定される。The first intermediate layer 13a +3 when viewed from the magneto-optical recording layer 12
The films 14a and 14b laminated on the outer surface of each layer b are the second intermediate layer, and in order to reduce the escape of heat from the magneto-optical recording layer 12, each film has a thermal conductivity higher than that of the adjacent first intermediate layer. Made of material with low thermal conductivity. For example, MgF
2, fluorides such as BiF3, Zn5e, Ge
Sc, selenide such as Ca5a%GaSe%InSe3, organic material such as Teflon, PTFE (polytetrafluoroethylene), TM01 (tetramethoxysilane), trichloroethylene, or ZnS, SiO, SiO2, Zr02, etc. used in the first intermediate layer. One or more compounds are appropriately selected from materials having low thermal conductivity depending on the material of the first intermediate layer.
第1中間層および第2中間層の膜厚は、保護機能、膜品
質、熱伝導率等を考慮して設定される。The film thicknesses of the first intermediate layer and the second intermediate layer are set in consideration of protective function, film quality, thermal conductivity, and the like.
一般に、第1中間層の膜厚は100人〜1000人程度
が好ましく、第2中間層の膜厚iooλ〜3000人程
度が好ましい。なお、第1中間層の保護機能が充分であ
れば、記録感度の点で第1中間層より第2中間層の膜厚
は厚い方が好ましい。Generally, the thickness of the first intermediate layer is preferably about 100 to 1000 layers, and the thickness of the second intermediate layer is preferably about iooλ to 3000 layers. Note that, if the protective function of the first intermediate layer is sufficient, it is preferable that the thickness of the second intermediate layer is thicker than that of the first intermediate layer in terms of recording sensitivity.
本発明の光学的磁気記録媒体において、第1中間層は主
として光磁気記録層の酸化、腐食に対する保護機能を有
し、第2中間層は主として、記録の際に光磁気記録層か
らの熱の拡散を防止する機能を有する。従って、本発明
の光学的磁気記録媒体は、その第1中間層により、従来
の記鰺励住と同水準の耐食性が維持され、場合によって
は、第1中間層と第2中間層の相乗作用により、該水準
以上の耐食性を示すことがある。更に、第2中間層によ
り、熱エネルギーが有効に利用され記録感度が向上する
。In the optical magnetic recording medium of the present invention, the first intermediate layer mainly has a function of protecting the magneto-optical recording layer from oxidation and corrosion, and the second intermediate layer mainly has a function of protecting the magneto-optical recording layer from heat during recording. It has the function of preventing diffusion. Therefore, the optical magnetic recording medium of the present invention maintains the same level of corrosion resistance as the conventional recording medium due to the first intermediate layer, and in some cases, the synergistic effect of the first intermediate layer and the second intermediate layer Therefore, corrosion resistance exceeding this level may be exhibited. Furthermore, the second intermediate layer allows thermal energy to be used effectively and improves recording sensitivity.
第2図は本発明の他の態様を示す模式断面図である。1
1.12.13a 、 13b 、 14a 、 14
bは各々上記と同様な層である。ただし、本態様の光学
的磁気記録媒体は、再生にカー効果とファラデー効果と
を利用する方式の媒体なので、光磁気記録層12の膜厚
は、余り厚くしない方がよく、100人〜300人程度
が好ましい。15は八u、 Ag、 Cu、 AI等の
光反射能力の高い物質から成る反射層であり、その膜厚
は400〜1000人程度が好ましい。FIG. 2 is a schematic sectional view showing another embodiment of the present invention. 1
1.12.13a, 13b, 14a, 14
b are the same layers as above. However, since the optical magnetic recording medium of this embodiment uses the Kerr effect and the Faraday effect for reproduction, it is better not to make the film thickness of the magneto-optical recording layer 12 too thick. degree is preferred. Reference numeral 15 denotes a reflective layer made of a material with high light reflection ability such as silver, Ag, Cu, or AI, and its thickness is preferably about 400 to 1,000 layers.
■6は、光磁気記録層12の耐酸化性等をよりいっそう
向上するための保護層であり、有機高分子膜あるいは酸
化物、硫化物、窒化物、炭化物などの無機材料や金属材
料で構成される。本発明では、保護層16を設けること
は必ずしも必要ではないが、これを設けることにより光
磁気記録層12の酸化や腐食をより有効に防止すること
ができる。■6 is a protective layer for further improving the oxidation resistance of the magneto-optical recording layer 12, and is made of an organic polymer film or an inorganic or metal material such as oxide, sulfide, nitride, or carbide. be done. In the present invention, although it is not necessarily necessary to provide the protective layer 16, oxidation and corrosion of the magneto-optical recording layer 12 can be more effectively prevented by providing it.
第1図、第2図に示したように、第1及び第2中間層は
光磁気記録層の両側に設けられると、該記録層の両側か
ら侵入してくる酸素、水分等を十分に防止でき、好まし
いが、耐食性の要求程度等に応じて片側にのみ第1、第
2中間層が設けられてもよい。As shown in Figures 1 and 2, when the first and second intermediate layers are provided on both sides of the magneto-optical recording layer, they can sufficiently prevent oxygen, moisture, etc. from entering from both sides of the recording layer. However, depending on the degree of corrosion resistance required, the first and second intermediate layers may be provided only on one side.
なお、本発明の光学的磁気記録媒体において、トラッキ
ング用のグループ(案内溝)の形成されている基板11
を用いる場合は基板側11にある第2中間層14aの膜
厚はグループの深さより厚くすることが好ましい。これ
によって基板11が第2中間層14aによって完全に被
覆され、酸素、水分が基板11から光磁気記録層12に
侵入しにくくなり保存性がより一層向上する。Note that in the optical magnetic recording medium of the present invention, the substrate 11 on which tracking groups (guide grooves) are formed
When using the second intermediate layer 14a on the substrate side 11, it is preferable to make the film thickness of the second intermediate layer 14a thicker than the depth of the group. As a result, the substrate 11 is completely covered with the second intermediate layer 14a, making it difficult for oxygen and moisture to enter the magneto-optical recording layer 12 from the substrate 11, further improving storage stability.
本発明の光学的磁気記録媒体における各層は、抵抗加熱
蒸着法、電子ビーム蒸着法、スパッタリング法、CVD
法、イオンブレーティング法などを用いて形成すること
ができる。Each layer in the optical magnetic recording medium of the present invention can be formed by resistance heating evaporation, electron beam evaporation, sputtering, CVD.
It can be formed using a method such as a method, an ion blating method, or the like.
[実施例]
以下、実施例にJ、(いて本発明を更に詳細に説明する
。[Examples] The present invention will be described in more detail below with reference to Examples.
実施例1
第1図に例示したと同様の光学的磁気記録媒体を作成し
た。ディスク状をしたポリカーボネート製の基板Ill
に、第2中間層14aとして膜厚800人のSiO薄膜
を電子ビーム蒸着法により形成した。その上に、第1中
間層13aとして膜厚300人の7.n S薄膜をスパ
ッタリング法により形成した。Example 1 An optical magnetic recording medium similar to that illustrated in FIG. 1 was prepared. Disk-shaped polycarbonate substrate Ill
Then, as the second intermediate layer 14a, a SiO thin film having a thickness of 800 nm was formed by electron beam evaporation. 7. On top of that, the first intermediate layer 13a has a film thickness of 300. An nS thin film was formed by sputtering.
その上に光磁気記録層12として膜厚1000人のTb
FeCo薄膜をスパッタリング法により形成した。更に
そのトに第1中間層13b 、第2中間層14bとして
それぞれ膜厚500人のZnS薄膜、膜厚3000人の
SiO薄膜を上記と同様な方法により形成し、本例の光
学的磁気記録媒体を得た。On top of that, as a magneto-optical recording layer 12, a film thickness of 1000 Tb is formed.
A FeCo thin film was formed by sputtering. Furthermore, a ZnS thin film with a thickness of 500 and an SiO thin film with a thickness of 3000 were formed as the first intermediate layer 13b and the second intermediate layer 14b by the same method as described above, thereby producing the optical magnetic recording medium of this example. I got it.
比較例1
第2中間層14aを設けず、第1中間層13aを膜厚8
00人のZnS薄膜に代えたことおよび第2中間層+4
bを設けず、第1中間層13bを膜厚3000人のZn
s薄膜に代えたこと以外は実施例1と同様の方法で従来
例の光学的磁気記録媒体を作成した。Comparative Example 1 The second intermediate layer 14a was not provided, and the first intermediate layer 13a had a thickness of 8
00 ZnS thin film and second intermediate layer +4
b is not provided, and the first intermediate layer 13b is made of Zn with a film thickness of 3000.
A conventional optical magnetic recording medium was prepared in the same manner as in Example 1 except that the thin film was replaced with a thin film.
実施例1と比較例1の記録媒体を1800rpmで回転
させ、半導体レーザー(波長830 ram)を周波数
2MHzでパルス全県させて、duty比50%で記録
を行なった。この時の記録パワーは7.5 mWである
。これらを再生パワー2mW、バンド巾30にIlzで
再生したところ、 C/N値51dB(実施例1 )
、 50dB(比較例1)が得られた。The recording media of Example 1 and Comparative Example 1 were rotated at 1800 rpm, a semiconductor laser (wavelength: 830 RAM) was pulsed at a frequency of 2 MHz, and recording was performed at a duty ratio of 50%. The recording power at this time was 7.5 mW. When these were reproduced with Ilz at a reproduction power of 2 mW and a bandwidth of 30, the C/N value was 51 dB (Example 1)
, 50 dB (Comparative Example 1).
次に、上記画記録媒体を温度45℃、相対湿度95%旧
1の雰囲気に放置し、保存テストを行なった。Next, the image recording medium was left in an atmosphere with a temperature of 45° C. and a relative humidity of 95%, and a storage test was conducted.
放置前の保磁力t(coと、500時間放置後の保磁力
Ilcを測定し、放置前に対する放置後の保磁力の比!
Ic/1lcoを求め保存性を評価した(該比の大きい
ものほど保存性に優れていることを示す)。The coercive force t(co) before being left unused and the coercive force Ilc after being left unused for 500 hours are measured, and the ratio of the coercive force after being left to that before being left unused!
The storage stability was evaluated by calculating Ic/1lco (the larger the ratio, the better the storage stability).
第1表に示されるようにtic/1lco−0,95(
実施例1)、0.85(比較例1)であった。尚、50
0時間放置後も実施例1の記録媒体にはクラック等の外
観−トの変化は認めらガなかったが、比較例1のものは
クランクの発生が観察された。As shown in Table 1, tic/1lco-0,95(
Example 1) and 0.85 (Comparative Example 1). In addition, 50
Even after standing for 0 hours, no changes in appearance such as cracks were observed in the recording medium of Example 1, but the occurrence of cranks was observed in the recording medium of Comparative Example 1.
また、記録のレーザーパワーに対するC/N値の関係か
らC/N値が飽和する時の記録レーザーパワー(Pw)
を感度として近似すると実施例ではPw=7mW、比較
例ではPw=7.5mWであった。(記録レーザーパワ
ーが小さいほど感度がよい。)
実施例2
第2図に例示したと同様の光学的磁気記録媒体を作成し
た。ディスク状をしたポリカーボネート製のJ、(板1
1上に、第2中間層+4aとして膜厚900人のSiO
薄膜を電子ビーム蒸着法により、第1中間層13aとし
て膜厚300人のZnS薄膜をスパッタリング法により
形成した。更に、第1中間層13bとして膜厚300人
の7.nS薄膜を、第2中間層14bとして膜厚110
0人のSiO薄膜を上記と同様な方法で形成した後、反
射層15として1膜厚800人のへ!薄膜を電子ビーム
蒸着法により形成した。最後に、保護層16として膜厚
3000人のSiO薄11!2を電子ビーム蒸着法によ
り形成し、本例の光学的磁気記比較例2
第2中間層14aを設けず、第1中間層13aを膜厚l
000人のZnS薄膜に代えたこと、および第2中間層
+4bを設けず、第1中間層+3bを膜厚1300人の
ZnS薄膜とする以外は実施例2と同様の方法で従来例
の光学的磁気記録媒体を作成した。Also, from the relationship between the C/N value and the recording laser power, the recording laser power (Pw) when the C/N value is saturated
When approximated as sensitivity, Pw = 7 mW in the example and Pw = 7.5 mW in the comparative example. (The smaller the recording laser power, the better the sensitivity.) Example 2 An optical magnetic recording medium similar to that illustrated in FIG. 2 was prepared. Disk-shaped polycarbonate J, (plate 1
1, SiO with a film thickness of 900 as the second intermediate layer +4a
A thin film was formed by electron beam evaporation, and a ZnS thin film having a thickness of 300 nm was formed by sputtering as the first intermediate layer 13a. Furthermore, the first intermediate layer 13b has a film thickness of 300. The nS thin film is used as the second intermediate layer 14b with a thickness of 110
After forming a SiO thin film with a thickness of 800 mm as the reflective layer 15, a SiO thin film of 0.0 mm is formed using the same method as described above. A thin film was formed by electron beam evaporation. Finally, a SiO thin layer 11!2 having a thickness of 3000 is formed as the protective layer 16 by electron beam evaporation, and the second intermediate layer 14a is not provided, and the first intermediate layer 13a is The film thickness l
The same method as in Example 2 was used except that the second intermediate layer +4b was not provided and the first intermediate layer +3b was a ZnS thin film with a thickness of 1300 mm. A magnetic recording medium was created.
実施例2と比較例2の記録媒体を実施例1と同様の方法
で記録、再生およびIlc/Hcoを測定した結果、(
:/N−55dB、Hc/Hco−0,94(実施例2
) 、 (:/N−54dB、llc/Hco・O,
aO(比較例2)が得られた。The recording media of Example 2 and Comparative Example 2 were recorded and reproduced in the same manner as in Example 1, and Ilc/Hco was measured. As a result, (
:/N-55dB, Hc/Hco-0,94 (Example 2
), (:/N-54dB, llc/Hco・O,
aO (Comparative Example 2) was obtained.
C/N値の飽和に必要な記録レーザーパワーPwは、実
施例2ではPw=6mW、比較例2ではPw=6.8m
Wであった。The recording laser power Pw required for saturation of the C/N value is Pw = 6 mW in Example 2, and Pw = 6.8 mW in Comparative Example 2.
It was W.
実施例3〜6
第1中間層と第2中間層を、第1表の実施例3〜6に示
すようにした以外は実施例1と同様の方法で、4種の光
学的磁気記録媒体を作成した。Examples 3 to 6 Four types of optical magnetic recording media were prepared in the same manner as in Example 1 except that the first intermediate layer and the second intermediate layer were changed as shown in Examples 3 to 6 in Table 1. Created.
実施例7〜IO
第1中間層と第2中間層を、第1表の実施例7〜10に
示すようにした以外は実施例1と同様の方法で、4種の
光学的磁気記録媒体を作成した。Examples 7 to IO Four types of optical magnetic recording media were prepared in the same manner as in Example 1 except that the first intermediate layer and the second intermediate layer were changed as shown in Examples 7 to 10 in Table 1. Created.
実施例3〜10の記録媒体を実施例と同様な方法で記録
・再生し、 C/N値および保磁力の比11c/1lc
oを求め保存性を評価した。結果を第1表に示す。すべ
ての記録媒体において再生時のエラーは増加しなかった
。The recording media of Examples 3 to 10 were recorded and reproduced in the same manner as in Examples, and the C/N value and coercive force ratio were 11c/1lc.
The storage stability was evaluated by determining o. The results are shown in Table 1. Errors during playback did not increase for all recording media.
また、第1表のようにC/N値の飽和に必要な記録レー
ザーパワーPwは、比較例に比べて小さい値となってお
り、記録感度に優れていることがわかる。Further, as shown in Table 1, the recording laser power Pw required for saturation of the C/N value is smaller than that of the comparative example, which indicates that the recording sensitivity is excellent.
以上詳細に説明したように、本発明によれば優れた耐食
性を示す公知の記録媒体と同水準あるいはそれ以上の耐
食性を有し、磁気特性やエラーレートの低下か少なく、
しかも記録感度の向上した光学的磁気記録媒体を提供す
ることができるようになった。As explained in detail above, the present invention has corrosion resistance equal to or higher than that of known recording media that exhibit excellent corrosion resistance, and has minimal deterioration in magnetic properties and error rate.
Furthermore, it has become possible to provide an optical magnetic recording medium with improved recording sensitivity.
第1図および第2図は各々本発明の光学的磁気記録媒体
の一実施例態様を示す模式断面図、第3図は従来例の光
学的磁気記録媒体の模式断面図である。
11・・・・・・基板、 12・・・・・・光磁
気記録層、13a、+3b −−−・−第1中間層、1
4a、14b −−−−−−第2中間層、15・・・・
・・反射層、 16・・・・・・保護層。1 and 2 are schematic cross-sectional views showing one embodiment of the optical magnetic recording medium of the present invention, and FIG. 3 is a schematic cross-sectional view of a conventional optical magnetic recording medium. DESCRIPTION OF SYMBOLS 11... Substrate, 12... Magneto-optical recording layer, 13a, +3b --- First intermediate layer, 1
4a, 14b---Second intermediate layer, 15...
...Reflection layer, 16...Protective layer.
Claims (2)
軸を有する光磁気記録層を有して成る光学的磁気記録媒
体に於て、該光磁気記録層の表面上に窒化物、硫化物、
炭化物及び酸化物のうちの少なくとも一種以上の化合物
からなる第1中間層が積層され、さらに該第1中間層の
表面上に該第1中間層より熱伝導率の小さい化合物から
なる第2中間層が積層されてなることを特徴とする光学
的磁気記録媒体。(1) In an optical magnetic recording medium comprising a magneto-optical recording layer having an axis of easy magnetization perpendicular to the film surface on a transparent substrate, nitrides, sulfides,
A first intermediate layer made of a compound of at least one of carbides and oxides is laminated, and a second intermediate layer made of a compound having a thermal conductivity lower than that of the first intermediate layer is further disposed on the surface of the first intermediate layer. An optical magnetic recording medium comprising a stack of layers.
気記録層の両側に積層されて成る特許請求の範囲第1項
記載の光学的磁気記録媒体。(2) The optical magnetic recording medium according to claim 1, wherein the first intermediate layer and the second intermediate layer are laminated on both sides of the magneto-optical recording layer.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6723986A JPS62226449A (en) | 1986-03-27 | 1986-03-27 | Optical magnetic recording medium |
EP87302588A EP0239390A3 (en) | 1986-03-27 | 1987-03-25 | Optomagnetic recording medium |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP6723986A JPS62226449A (en) | 1986-03-27 | 1986-03-27 | Optical magnetic recording medium |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS62226449A true JPS62226449A (en) | 1987-10-05 |
Family
ID=13339164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP6723986A Pending JPS62226449A (en) | 1986-03-27 | 1986-03-27 | Optical magnetic recording medium |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS62226449A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62285252A (en) * | 1986-06-02 | 1987-12-11 | Nec Corp | Photomagnetic recording medium |
US5560998A (en) * | 1990-03-27 | 1996-10-01 | Teijin Limited | Magneto-optical recording medium |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59146461A (en) * | 1983-02-09 | 1984-08-22 | Canon Inc | Optical recording medium |
JPS61227243A (en) * | 1985-03-30 | 1986-10-09 | Olympus Optical Co Ltd | Photomagnetic recording medium |
JPS62202346A (en) * | 1986-02-28 | 1987-09-07 | Canon Inc | Optical recording medium |
JPS62222453A (en) * | 1986-03-24 | 1987-09-30 | Seiko Epson Corp | optical recording medium |
-
1986
- 1986-03-27 JP JP6723986A patent/JPS62226449A/en active Pending
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59146461A (en) * | 1983-02-09 | 1984-08-22 | Canon Inc | Optical recording medium |
JPS61227243A (en) * | 1985-03-30 | 1986-10-09 | Olympus Optical Co Ltd | Photomagnetic recording medium |
JPS62202346A (en) * | 1986-02-28 | 1987-09-07 | Canon Inc | Optical recording medium |
JPS62222453A (en) * | 1986-03-24 | 1987-09-30 | Seiko Epson Corp | optical recording medium |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62285252A (en) * | 1986-06-02 | 1987-12-11 | Nec Corp | Photomagnetic recording medium |
US5560998A (en) * | 1990-03-27 | 1996-10-01 | Teijin Limited | Magneto-optical recording medium |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0782135B1 (en) | Magneto-optical recording medium and method for reproducing therefrom | |
EP0239390A2 (en) | Optomagnetic recording medium | |
JP2547768B2 (en) | Optical magnetic recording medium | |
US4777082A (en) | Optical magnetic recording medium | |
JPS62226449A (en) | Optical magnetic recording medium | |
JPS6314342A (en) | Magneto-optical recording medium | |
JPH06251443A (en) | Magneto-optical recording medium | |
JPH076420A (en) | Magneto-optical recording medium | |
JPS62121944A (en) | Optical recording medium | |
JPS62114134A (en) | Optical information recording medium | |
JP3570922B2 (en) | Magneto-optical recording medium | |
JPS61202352A (en) | Photomagnetic recording medium | |
JPS6316439A (en) | Production of magneto-optical recording medium | |
JPH06349137A (en) | Amorphous or quasi-amorphous film structure for optical or magneto-optical data storage medium, optical data storage device and its manufacture | |
JP3570921B2 (en) | Information recording method using magneto-optical recording medium | |
JPS63273235A (en) | Magneto-optical recording medium | |
KR100209584B1 (en) | Magneto-optical disk | |
JPH0386951A (en) | Magneto-optical recording medium | |
JPH07161082A (en) | Magneto-optical recording medium and magneto-optical recording method | |
JP2678222B2 (en) | Magneto-optical recording medium | |
JPS62121943A (en) | Optical recording medium | |
JPS60254433A (en) | Magnetooptic recording medium | |
JPS61202351A (en) | Photomagnetic recording medium | |
JP2899898B2 (en) | Magneto-optical recording method | |
JPS62192040A (en) | Optical information recording medium |