[go: up one dir, main page]

JPS62165392A - Manufacture of diffraction grating - Google Patents

Manufacture of diffraction grating

Info

Publication number
JPS62165392A
JPS62165392A JP61007293A JP729386A JPS62165392A JP S62165392 A JPS62165392 A JP S62165392A JP 61007293 A JP61007293 A JP 61007293A JP 729386 A JP729386 A JP 729386A JP S62165392 A JPS62165392 A JP S62165392A
Authority
JP
Japan
Prior art keywords
photoresist
film
region
diffraction grating
mask
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61007293A
Other languages
Japanese (ja)
Inventor
Masayuki Yamaguchi
山口 昌幸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61007293A priority Critical patent/JPS62165392A/en
Publication of JPS62165392A publication Critical patent/JPS62165392A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Semiconductor Lasers (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To easily manufacture a lambda/4 shift type diffraction grating whose transition region is very short by utilizing the reversibility of an etching method and a lift-off method. CONSTITUTION:A patterning layer 2 composed of an SiO2 film and novorak system positive type photoresist 3 are formed o an N-type InP semiconductor substrate 1. The photoresist 3 is exposed to form a periodical pattern and the SiO2 film 2 is etched by buffered fluoric acid with the patterned photoresist 3 as a mask to form a periodical pattern and then the photoresist 3 is removed. After the region II is covered with photoresist 4, the n-type InP semiconductor substrate 1 is etched in the region I by HBr+H2O2+H2O with the SiO2 film 2 as a mask to form a diffraction grating 5. After the photoresist 4 is removed, an Al film 6 is formed. If the periodical SiO2 film 2 remaining in the region II is etched and the Al film 6 on the SiO2 film 2 is removed by lift-off, the Al film 6 in the region II is periodically patterned. The InP substrate 1 is etched by HBr+H2O2+H2O2 with the Al film 6 as a mask to form a diffraction grating 5' in the region II.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、回折格子の製造方法に関するものである。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a diffraction grating.

[従来の技術〕 分布帰還型半導体レーザ(以下DFBレーザと称する)
は素子内に回折格子を有し、この回折格子の周期によっ
て定まるブラッグ波長付近で単一の波長で発振するため
長距離大容量光ファイバ通信用の光源として期待されて
いる。DFBレーザの研究開発はここ数年間で飛躍的に
進み、素子の基本特性の面では従来のファブリペロ−型
の半導体レーザと同等になった。
[Prior art] Distributed feedback semiconductor laser (hereinafter referred to as DFB laser)
has a diffraction grating within the element and oscillates at a single wavelength near the Bragg wavelength determined by the period of this diffraction grating, so it is expected to be used as a light source for long-distance, high-capacity optical fiber communications. Research and development of DFB lasers has progressed dramatically over the past few years, and the basic characteristics of the device have become equivalent to conventional Fabry-Perot semiconductor lasers.

しかしながら、DFBレーザの中には2本以上の軸モー
ドで発振する素子が数多く見られ、単一波長で発振する
素子の歩留りは必ずしも十分とは言えない。この問題を
解決するために提案されたのがλ/4シフI・型DFB
レーザである。λ/4シフト型DFBレーザは、素子内
の中央付近で左右の回折格子の周期性が反転した点が特
徴である。
However, there are many elements in DFB lasers that oscillate in two or more axial modes, and the yield of elements that oscillate in a single wavelength is not necessarily sufficient. The λ/4 Schiff I type DFB was proposed to solve this problem.
It's a laser. A λ/4 shift type DFB laser is characterized in that the periodicity of the left and right diffraction gratings is reversed near the center of the device.

この構造によれば主モードの波長はブラッグ波長に一致
し、その両側の副モードとの発振閾値利得差が大きくな
るため、主モードによる安定な単一波長発振が得られる
According to this structure, the wavelength of the main mode coincides with the Bragg wavelength, and the oscillation threshold gain difference between the main mode and the sub-modes on both sides becomes large, so that stable single-wavelength oscillation by the main mode can be obtained.

λ、/4シフ1〜型DFBレーザを製作するためには、
周期性の反転した回折格子を同一基板上に形成する必要
がある(以下このような回折格子をλ/4シフト型回折
格子と呼ぶ)。λ/4シフト型回折格子の製造方法とし
ては、 ■半導体基板上にポジ型及びネガ型のフ才I・レジスト
を隣接して形成し、干渉露光法により両レジストを同時
露光することによって、ポジ及びネガ型フォ1−レジス
I・の逆感光性を利用して製作する方法(1984年1
1月22日発行のエレクトロニクス・レターズ誌(El
ectronics Letters)第20巻、4号
1008〜1010頁)と、■半導体基板上にポジ型フ
ォトレジストを形成し、干渉露光を行う際に、表面が凹
凸形状の石英板からなる位相シフ、ト板を半導体基板に
密着させ露光する方法(電子通信学会技術研究報告QQ
E85−60番、1985年7月)などがある。
To manufacture a λ, /4 shift 1-type DFB laser,
It is necessary to form a diffraction grating with inverted periodicity on the same substrate (hereinafter such a diffraction grating will be referred to as a λ/4 shift type diffraction grating). The method for manufacturing a λ/4-shift diffraction grating is as follows: 1) Form positive and negative type resists adjacent to each other on a semiconductor substrate, and simultaneously expose both resists using interference exposure method. and a manufacturing method using the reverse photosensitivity of negative photoresist I (1984, January 1984).
Electronics Letters magazine (El
electronics Letters) Vol. 20, No. 4, pp. 1008-1010) and ■When forming a positive photoresist on a semiconductor substrate and performing interference exposure, a phase shift plate made of a quartz plate with an uneven surface is used. A method of exposing the semiconductor substrate to light by bringing it into close contact with the semiconductor substrate (Technical Research Report QQ, Institute of Electronics and Communication Engineers)
E85-60, July 1985).

〔発明が解決しようとする問題点〕 しかし、前者のλ/4シフト型回折格子の製造方法では
、ネガ及びポジ型のフォトレジストの感光度が異なる場
合、当然両者の最適露光時間も異なるため、両しジスI
〜共に最適露光を行うことが難しい。従って、露光時間
の制御が非常に困難で、再現性にも乏しい。
[Problems to be Solved by the Invention] However, in the former method of manufacturing a λ/4 shift type diffraction grating, when the negative and positive photoresists have different sensitivities, the optimum exposure time for both is naturally different. Both sides I
- It is difficult to perform optimal exposure in both cases. Therefore, it is very difficult to control the exposure time and the reproducibility is poor.

また、後者のλ/4シフト型回折格子の製造方法ては、
位相シフト板の段差部で生ずるフレネル回折によって、
回折格子の周期性が反転する部分において、長さ10μ
m程度の回折格子の形成されない遷移領域ができてしま
う。λ/4シフト型DFBレーザでは、回折格子の周期
性が反転する位相シフト領域において、光学的位相をπ
/2ずらずことによってブラ・ソゲ波長での安定な単一
波長発振を得るのであるが、上記の様な長い遷移領域が
あったのでは、この光学的位相ズレ量がπ/2かられず
かにずれてしまい、安定な単一波長発振を得にくくなっ
てしまう。
Furthermore, the method for manufacturing the latter λ/4 shift type diffraction grating is as follows:
Due to Fresnel diffraction that occurs at the step part of the phase shift plate,
In the part where the periodicity of the diffraction grating is reversed, the length is 10μ.
This results in a transition region of approximately m in size where no diffraction grating is formed. In the λ/4 shift type DFB laser, the optical phase is changed to π in the phase shift region where the periodicity of the diffraction grating is reversed.
By shifting /2, stable single wavelength oscillation at the Bra-Soge wavelength is obtained, but if there was a long transition region as described above, the amount of optical phase shift would not exceed π/2. This makes it difficult to obtain stable single wavelength oscillation.

本発明の目的は、上述の問題点を解決すべく、遷移領域
が極めて短いλ/4シフ1〜型回折格子を容易に製造で
きる回折格子の製造方法を提供することにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a method for manufacturing a diffraction grating that can easily manufacture a λ/4 shift 1-type diffraction grating having an extremely short transition region, in order to solve the above-mentioned problems.

〔問題点を解決するための手段〕[Means for solving problems]

本発明による回折格子の製造方法は、基板の表面にパタ
ーニング層を周期状に形成する工程と、前記基板の表面
の第1の領域において前記パターニング層をマスクとし
て前記基板をエツチングする工程と、この工程後前記基
板の表面の前記第1の領域に隣接する第2の領域におい
て薄膜層を形成した後リフト・オフ法により前記パター
ニング層と、このパターニング層の上の前記薄膜層を除
去する工程と、この工程後前記第2の領域において周期
状に残された前記薄膜層をマスクとして前記基板をエツ
チングする工程とを含んで構成される。
The method for manufacturing a diffraction grating according to the present invention includes a step of periodically forming a patterning layer on the surface of a substrate, a step of etching the substrate using the patterning layer as a mask in a first region of the surface of the substrate, and a step of etching the substrate using the patterning layer as a mask. After forming a thin film layer in a second region adjacent to the first region on the surface of the substrate, removing the patterning layer and the thin film layer on the patterning layer by a lift-off method. and a step of etching the substrate using the thin film layer left periodically in the second region as a mask after this step.

〔作用〕[Effect]

半導体電子デバイスの電極パターニングに用いるフォト
リソグラフィ技術の中には、フォトレジストをマスクと
して電極をエツチングしパターン化する謂るエツチング
法と、あらかじめ半導体表面にフォトレジストをパター
ニングしておき、その上に電極金属を形成した後、リフ
ト・オフによりフォトレジスト上の電極金属を取り除く
謂るリフト・オフ法とがある。このエツチング法とリフ
ト・オフ法とでは最終的に形成される電極パターンが反
転する。
Photolithography techniques used for patterning electrodes in semiconductor electronic devices include the so-called etching method, in which the electrodes are etched and patterned using a photoresist as a mask, and the photoresist is patterned on the semiconductor surface in advance, and the electrodes are then patterned on top of the photoresist. There is a so-called lift-off method in which the electrode metal on the photoresist is removed by lift-off after forming the metal. The etching method and the lift-off method reverse the electrode pattern that is finally formed.

本発明では、これらエツチング法及びリフト・オフ法の
反転性を利用してλ/4シフト型回折格子を形成するも
のである。例えば、半導体基板上に塗布したフォトレジ
ストを従来の三光束干渉露光法を用いて周期状に形成し
た後、半導体基板上の領域■においてこのフォトレジス
I・をマスクとしてエツチング法により回折格子を形成
する。半導体基板上の領域■においては、周期状に形成
されたフォトレジストの上に金属等の薄膜を形成し、こ
の薄膜をリフト・オフ法を用いて周期状にパターン化す
れば、前記フォトレジストとパターン化された薄膜との
周期性は反転する。従って、領域Hにおいてこの周期状
に形成された薄膜をマスクとして半導体基板をエツチン
グして形成される回折格子と、領域Iに形成された回折
格子とでは周期性が反転したものとなる。
In the present invention, a λ/4 shift type diffraction grating is formed by utilizing the reversibility of these etching methods and lift-off methods. For example, after forming a photoresist coated on a semiconductor substrate in a periodic manner using the conventional three-beam interference exposure method, a diffraction grating is formed in region (3) on the semiconductor substrate by etching using the photoresist I as a mask. do. In region (3) on the semiconductor substrate, a thin film of metal or the like is formed on a periodically formed photoresist, and if this thin film is patterned in a periodic manner using a lift-off method, the photoresist is The periodicity with the patterned thin film is reversed. Therefore, the periodicity of the diffraction grating formed in region H by etching the semiconductor substrate using the periodic thin film as a mask and the diffraction grating formed in region I are reversed.

〔実施例〕〔Example〕

次に、本発明の実施例を図面を用いて詳細に説明する。 Next, embodiments of the present invention will be described in detail using the drawings.

第1図(a)〜(g>は本発明の一実施例である回折格
子の製造方法を工程順に説明する図である。第1図(a
)に示す工程では、n−1nP半導体基板1の上に厚さ
500人のS i02膜からなるパターニング層2、厚
さ450人のノボラ・・Iり系ポジ型フォ1〜レジスト
3を形成する。第1図(b)に示す工程では、従来の干
渉露光法によりフォトレジスト3を露光し、周期240
0人の周期状パターンに形成する。第1図(c)ではフ
ォトレジスト3をマスクとしてSiO□膜2をバツファ
ードフ・ン酸を用いてエツチングし、周期状に形成した
後フォトレジス)へ3を除去する。第1図(d)では、
半導体基板1の表面の一部(領域■)をフォトレジスト
4で覆い、他の部分(領域■)においてSiO□膜2を
マスクとしてn−1nP半導体基板1をHBr+■20
□+H20(10:0.1:100)を用いてエツチン
グし回折格子5を形成する。
FIGS. 1(a) to (g) are diagrams illustrating a method for manufacturing a diffraction grating according to an embodiment of the present invention in order of steps.
), on the n-1nP semiconductor substrate 1, a patterning layer 2 consisting of a 500-thick Si02 film and a 450-thick novola-type positive-type photoresist 1 to 3 are formed. . In the step shown in FIG. 1(b), the photoresist 3 is exposed using the conventional interference exposure method, and the period is 240.
Form into a periodic pattern of 0 people. In FIG. 1(c), using the photoresist 3 as a mask, the SiO□ film 2 is etched using buffered phosphoric acid to form a periodic pattern, and then the photoresist 3 is removed. In Figure 1(d),
A part of the surface of the semiconductor substrate 1 (region ■) is covered with a photoresist 4, and the other part (region ■) is coated with HBr+■20 using the SiO□ film 2 as a mask.
The diffraction grating 5 is formed by etching using □+H20 (10:0.1:100).

第1図(e)では、フォトレジスト4を除去した後に半
導体基板4の全表面に厚さ50人のへ!膜6を蒸着法等
により形成する。第1図(f)では、領域■に残った周
期状5i02膜2を超音波をかけながらバッフアートフ
ッ酸でエツチングし、同時にSiO□膜2の上のkl膜
6をリフI・・オフ法により除去する。これにより、領
域■のへl膜6は周期状になる。第1図(g>では、A
!膜6をマスクとしてInP基板1をHBr+■202
+hO(10:0.1:1.00)を用いてエツチング
することによって、領域■に回折格子5′を形成する。
In FIG. 1(e), after removing the photoresist 4, the entire surface of the semiconductor substrate 4 has a thickness of 50 mm. The film 6 is formed by a vapor deposition method or the like. In FIG. 1(f), the periodic 5i02 film 2 remaining in the region ■ is etched with buffered hydrofluoric acid while applying ultrasonic waves, and at the same time the Kl film 6 on the SiO□ film 2 is etched using the ref I...off method. Remove by. As a result, the hel film 6 in region (2) becomes periodic. Figure 1 (g>, A
! Using the film 6 as a mask, move the InP substrate 1 to HBr+■202
By etching using +hO (10:0.1:1.00), a diffraction grating 5' is formed in region (2).

最後に、基板表面に残った^!膜6をKOH溶液等を用
いて除去する。こうして得られた領域I及び■の回折格
子5及び5′は凹凸の周期性が反転したλ/4シフ1〜
型のものとなる。また、回折格子5と5′の間の遷移領
域はltzm以下と非常に短いものである。
Finally, it remained on the surface of the board ^! The film 6 is removed using a KOH solution or the like. The thus obtained diffraction gratings 5 and 5' in regions I and (2) have a λ/4 shift of 1 to 1 with inverted periodicity.
It becomes a type. Further, the transition region between the diffraction gratings 5 and 5' is very short, less than ltzm.

尚、本実施例では、薄膜層としてAIz膜6を用いたが
、薄膜層は他の金属又はホトレジスト等の有機膜からな
ってもよい。本実施例では、パターニング層として5i
02膜2を用いたが、パターニング層はSiN膜等の窒
化膜であってもよい。
In this embodiment, the AIz film 6 is used as the thin film layer, but the thin film layer may be made of another metal or an organic film such as photoresist. In this example, 5i is used as the patterning layer.
Although the 02 film 2 is used, the patterning layer may be a nitride film such as a SiN film.

更には、パターニング層はフォトレジストでもよく、こ
の場合には、パターニング層としてのフォトレジストを
直接干渉露光し周期状に形成してよい。ただしこの場合
は次のような困難さを伴う。
Furthermore, the patterning layer may be a photoresist, and in this case, the photoresist serving as the patterning layer may be formed in a periodic manner by direct interference exposure. However, this case involves the following difficulties.

すなわち、リフト・オフに用いるフォトレジストの膜厚
は、リフト・オフする膜の材質、膜厚にもよるが、一般
に500Å以上必要とされる。しかしながら、回折格子
製作用に用いられるフォトレジストの膜厚は、露光・現
像後において100人程庇上薄く、このリフト・オフ法
の適用が困難な場合がある。この点に関し、第1図(a
)〜(g)に示す実施例ではフオI・レジストの代わり
に、あらかじめフォトレジス1〜のパターンを転写した
厚さ500人程鹿の酸化又は窒化膜を用いて回折格子の
製造を容易にしている。
That is, the thickness of the photoresist used for lift-off is generally required to be 500 Å or more, although it depends on the material and thickness of the film to be lifted-off. However, the film thickness of the photoresist used for producing the diffraction grating is approximately 100 times thinner after exposure and development, and it may be difficult to apply this lift-off method. In this regard, Figure 1 (a
In the examples shown in ) to (g), instead of the photoresist, an oxide or nitride film with a thickness of about 500 mm, onto which the pattern of photoresist 1 to has been transferred in advance, is used to facilitate the manufacture of the diffraction grating. There is.

〔発明の効果〕〔Effect of the invention〕

9一 本発明による回折格子の製造方法によれば、一種類のフ
ォトレジストを干渉露光する従来の露光方法を適用でき
るため、λ/4シフト型回折格子を容易に、しかも再現
よく製作できる利点がある。
91 According to the method for manufacturing a diffraction grating according to the present invention, since the conventional exposure method of interference exposure of one type of photoresist can be applied, there is an advantage that a λ/4 shift type diffraction grating can be manufactured easily and with good reproducibility. be.

本発明により得られるλ/4シフト型回折格子は、周期
性が互いに反転した回折格子間の遷移領域長が1μm以
下と非常に短くなるため、この回折格子を用いて製作し
たλ/4シフト型D’りBレーザは、90%以上の確率
でブラッグ波長での安定な単一波長発振を示した。
The λ/4 shift type diffraction grating obtained by the present invention has a very short transition region length of 1 μm or less between the diffraction gratings whose periodicities are reversed. The D'riB laser showed stable single wavelength oscillation at the Bragg wavelength with a probability of over 90%.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例である回折格子の製造方法を
工程順に示す工程図である。 1・・・InP基板、2・・・5i02膜、3,4・・
・フォトレジスト、5,5′・・・回折格子、6・・・
At’膜−10=
FIG. 1 is a process diagram showing a method for manufacturing a diffraction grating according to an embodiment of the present invention in order of steps. 1...InP substrate, 2...5i02 film, 3,4...
・Photoresist, 5,5'... Diffraction grating, 6...
At' film-10=

Claims (1)

【特許請求の範囲】[Claims] 基板の表面にパターニング層を周期状に形成する工程と
、前記基板の表面の第1の領域において前記パターニン
グ層をマスクとして前記基板をエッチングする工程と、
この工程後前記基板の表面の前記第1の領域に隣接する
第2の領域において薄膜層を形成した後リフト・オフ法
により前記パターニング層と、このパターニング層の上
の前記薄膜層を除去する工程と、この工程後前記第2の
領域において周期状に残された前記薄膜層をマスクとし
て前記基板をエッチングする工程とを含むことを特徴と
する回折格子の製造方法。
a step of periodically forming a patterning layer on the surface of the substrate; a step of etching the substrate in a first region of the surface of the substrate using the patterning layer as a mask;
After this step, a thin film layer is formed in a second region adjacent to the first region on the surface of the substrate, and then the patterning layer and the thin film layer on the patterning layer are removed by a lift-off method. and etching the substrate using the thin film layer left periodically in the second region as a mask after this step.
JP61007293A 1986-01-16 1986-01-16 Manufacture of diffraction grating Pending JPS62165392A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61007293A JPS62165392A (en) 1986-01-16 1986-01-16 Manufacture of diffraction grating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61007293A JPS62165392A (en) 1986-01-16 1986-01-16 Manufacture of diffraction grating

Publications (1)

Publication Number Publication Date
JPS62165392A true JPS62165392A (en) 1987-07-21

Family

ID=11661984

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61007293A Pending JPS62165392A (en) 1986-01-16 1986-01-16 Manufacture of diffraction grating

Country Status (1)

Country Link
JP (1) JPS62165392A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642008A (en) * 1987-06-24 1989-01-06 Mitsubishi Electric Corp Formation of diffraction grating
JPH01231391A (en) * 1988-03-11 1989-09-14 Nec Corp Manufacture of semiconductor element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS642008A (en) * 1987-06-24 1989-01-06 Mitsubishi Electric Corp Formation of diffraction grating
JPH01231391A (en) * 1988-03-11 1989-09-14 Nec Corp Manufacture of semiconductor element

Similar Documents

Publication Publication Date Title
US5024726A (en) Method for producing a λ/4 shift type diffraction grating
JPH06201909A (en) Production of diffraction grating
US4826291A (en) Method for manufacturing diffraction grating
JP2738623B2 (en) Method of forming diffraction grating
JPS62165392A (en) Manufacture of diffraction grating
US5221429A (en) Method of manufacturing phase-shifted diffraction grating
JPS60127776A (en) semiconductor light emitting device
US5300190A (en) Process of producing diffraction grating
JP2730893B2 (en) Diffraction grating manufacturing method
JPS627001A (en) Production of diffraction grating
JPS6381885A (en) Manufacture of phase shift type deflection lattice
JPH0323884B2 (en)
JPS6370477A (en) Manufacture of phase shift type diffraction grating
JPS6370475A (en) Manufacture of phase shift type diffraction grating
GB2234364A (en) Method of producing lambda /4-shifted diffraction grating
JP2965023B2 (en) Multi-wavelength distributed feedback semiconductor laser array and method of manufacturing the same
JPH0461331B2 (en)
JPS61292923A (en) Formation of phase inversion type pattern
JP3030897B2 (en) Method for manufacturing ridge-type optical waveguide
JPS62109389A (en) Manufacture of diffraction grating
JPS60191209A (en) Production for diffraction grating
JPH0374805B2 (en)
JPH02213182A (en) Manufacture of diffraction grating
JPH01225189A (en) Manufacture of diffraction grating
JPH012008A (en) Diffraction grating manufacturing method