[go: up one dir, main page]

JPS62165356A - Complementary insulated gate field effect transistor and manufacturing method thereof - Google Patents

Complementary insulated gate field effect transistor and manufacturing method thereof

Info

Publication number
JPS62165356A
JPS62165356A JP61006848A JP684886A JPS62165356A JP S62165356 A JPS62165356 A JP S62165356A JP 61006848 A JP61006848 A JP 61006848A JP 684886 A JP684886 A JP 684886A JP S62165356 A JPS62165356 A JP S62165356A
Authority
JP
Japan
Prior art keywords
conductivity type
insulating film
groove
impurity layer
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61006848A
Other languages
Japanese (ja)
Other versions
JPH0626245B2 (en
Inventor
Toshiyuki Ishijima
石嶋 俊之
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP61006848A priority Critical patent/JPH0626245B2/en
Publication of JPS62165356A publication Critical patent/JPS62165356A/en
Publication of JPH0626245B2 publication Critical patent/JPH0626245B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/0165Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs the components including complementary IGFETs, e.g. CMOS devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/02Manufacture or treatment characterised by using material-based technologies
    • H10D84/03Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
    • H10D84/038Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To readily obtain a fine CMOS adapted for a high integration by forming both N-channel and P-channel gate electrodes in one groove. CONSTITUTION:A silicon dioxide film 26 and a silicon substrate 21 epitaxial layer 25 are etched to form grooves A31, B32, N-type impurity ions are implanted by an ion implanting method on the surface of the substrate 21 and the bottom of the groove A31 to form N<+> type diffused layers 35, 36. P-type impurity ions are implanted to the surface of the layer 25 and the bottom of the groove B32 to form P<+> type diffused layers 38, 39. A silicon dioxide film 24' is etched by an RIE technique to the bottoms of the grooves A31, B32. A polycrystalline silicon is etched to allow the polycrystalline silicon to remain only on the side walls of the grooves A31, B32 as gate electrodes 44, and the electrodes 44 are thereafter oxidized by a thermally oxidizing method. After the silicon dioxide films of the bottoms of the grooves A31, B32 are removed by etching, a conductive substance 46 is deposited to bury the grooves A31, B32.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、溝を用いて形成する相補型絶縁ゲート電界効
果トランジスタおよびその製造方法に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a complementary insulated gate field effect transistor formed using a trench and a method for manufacturing the same.

〔従来の技術〕[Conventional technology]

相補型絶縁ゲート電界効果トランジスタ(以下CMO8
と略す)は、低消費電力、雑音余裕度が大きいという長
所を有するため現在その使用分野が急速に広がっている
。しかしながらCMOSは第3図に示すように深いウェ
ル領域52を有するため広い分離領域53が必要であり
これがCMOSの微細化を難しくし、高集積化する際の
大きな問題点となっている。
Complementary insulated gate field effect transistor (CMO8)
) has the advantages of low power consumption and high noise margin, and its field of use is currently rapidly expanding. However, since the CMOS has a deep well region 52 as shown in FIG. 3, a wide isolation region 53 is required, which makes it difficult to miniaturize the CMOS and becomes a major problem when achieving high integration.

従来、CMOSの高集積化を達成するために様々な方法
が試みられている。たとえば、国際固体素子会議(In
ternational Electron 1lev
ices Meeting) 1982年、237〜2
40ページにディー1・トレンチ・アイソレーテッド・
シーモス・デバイセス(DI!HP TRENCII 
l5OLATli:It CMOS DEVICES)
と題して発表された論文においては、第4図に示した如
く深いウェル領域を分離するために溝を設けこの溝を二
酸化ケイ素膜63.65および多結晶シリコン64で埋
めて分離領域を形成し、分離領域幅の微細化をはかった
ものが示されている。
Conventionally, various methods have been attempted to achieve high integration of CMOS. For example, the International Solid State Devices Conference (In
international Electron 1lev
ices Meeting) 1982, 237-2
Dee 1 Trench Isolated on page 40
Seamos Devices (DI!HP TRENCII
l5OLATli:It CMOS DEVICES)
In a paper published under the title, a trench was formed to isolate the deep well region as shown in FIG. 4, and the trench was filled with a silicon dioxide film 63, 65 and polycrystalline silicon 64 to form an isolation region. , one in which the separation region width is miniaturized is shown.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、このように溝を設けて微細化を行なった
CMOSをさらに微細にするには、シリコン基板上に形
成されたゲート電極の微細化をしなくてはならない。し
かしゲート電極を微細化していった場合には、チャンネ
ル長が短くなりショートチャンネル効果が顕著に現われ
るという問題点がある。
However, in order to further miniaturize a CMOS which has been miniaturized by providing grooves in this manner, the gate electrode formed on the silicon substrate must be miniaturized. However, when the gate electrode is made finer, the channel length becomes shorter and the short channel effect becomes more pronounced.

本発明の目的は、このような従来の問題点を除去せしめ
て高集積化に適した微細なCMOSおよびその製造方法
を提供することにある。
An object of the present invention is to eliminate such conventional problems and provide a fine CMOS suitable for high integration and a manufacturing method thereof.

r問題点を解決するための手段、]  5一 本発明の第1の発明の相補型絶縁ゲーl〜電界効果トラ
ンジスタは、第一導電型半導体基板に設けた第1溝の溝
底ほぼ中央部に設けた第2の溝に埋め込まれた絶縁膜に
より形成された分離領域と、前記第1.第2#4により
分離された前記第一導電型半導体基板の一方に該第一導
電型半導体基板との接合の深さが該第2溝の深さよりも
浅くなるように形成された第1の第二導電型不純物層と
、前記第1溝内の第一導電型半導体基板側壁およびその
対向した側壁に形成されたゲート絶縁膜と、前記第一導
電型半導体基板および前記第1の第二導電型不純物層と
は該ゲート絶縁膜を介して接するように前記第1溝側壁
に沿って形成されたゲート電極と、前記第2溝によって
分離された前記第1溝底部の前記第一導電型半導体基板
側に形成された第2の第二導電型不純物層およびもう一
方の第1の第二導電型不純物層側に形成された第1の第
一導電型不純物層と、前記第1.第2溝によって分離さ
れた第一導電型半導体基板表面に前記ゲート絶縁膜に端
部が接するように形成された第3の第二導電型不純物層
と、第1.第2講によって分離された前記第1の第一導
電型不純物J−の表面に前記ケーl〜絶縁膜に端部が接
するように形成された第2の第一導電型不純物層と、前
記ゲート電極表面を被うように形成された絶縁膜と、該
絶縁膜を介して前記ケーI−電極と接しか−)前記第1
溝底部に形成された第2の第二導電型不純物層および第
1の第一導電型不純物層とは前記第1溝底部において接
触しさらに前記第1湯を埋めるように形成された電極と
を齢んで構成される。
Means for Solving Problems] 5. The complementary insulating gate field effect transistor of the first aspect of the present invention has a first conductivity type semiconductor substrate formed in a first conductive type semiconductor substrate. an isolation region formed by an insulating film embedded in a second trench provided in the first trench; A first groove is formed on one of the first conductivity type semiconductor substrates separated by the second #4 so that the depth of the junction with the first conductivity type semiconductor substrate is shallower than the depth of the second groove. a second conductivity type impurity layer, a gate insulating film formed on a side wall of the first conductivity type semiconductor substrate in the first groove and the opposite side wall thereof, a second conductivity type of the first conductivity type semiconductor substrate and the first second conductivity type semiconductor substrate; The type impurity layer refers to the gate electrode formed along the first trench sidewall so as to be in contact with each other through the gate insulating film, and the first conductivity type semiconductor at the bottom of the first trench separated by the second trench. a second second conductivity type impurity layer formed on the substrate side and a first first conductivity type impurity layer formed on the other first second conductivity type impurity layer side; a third second conductivity type impurity layer formed on the surface of the first conductivity type semiconductor substrate separated by the second groove so that an end thereof is in contact with the gate insulating film; A second first conductivity type impurity layer formed on the surface of the first first conductivity type impurity J- separated in the second step so that an end thereof is in contact with the insulation film; an insulating film formed to cover the electrode surface;
The second second conductivity type impurity layer and the first first conductivity type impurity layer formed at the bottom of the groove are in contact with each other at the bottom of the first groove, and an electrode is formed to fill the first hot water. Consists of ages.

また、本発明の第2の発明の相補型絶縁ゲート電界効i
41−ラ〉′シスタの製造方法は、第一導電型半導体基
板上に第1の溝を設け、該第1の溝の側壁を絶縁膜で被
う工程と、該溝を第一導電型半導体で埋める工程と5該
第一導電型半導体中に前記絶縁膜まりも浅くなるように
第二導電型イく純物層を形成する工程と、nif記絶縁
膜をはさんでいる前記第一導電型半導体基板およびMj
f記第一導電型半導体上に前記絶縁膜お、Lび0if記
第ニ一導電型不純物層よりも浅い第2.第3の溝を各々
形成する工程と、前記第一導電型半導体基板の表面およ
び前記第2の溝底部に各々第二導電型不純物層を形成ず
ろ工程と、前記第一導電型半導体の表面および前記第3
の溝底部に各々第一導電型不純物層を形成するL程と、
前記絶縁膜を前記第2.第3グ)溝の深さまでエツチン
グし第2.第3の溝を含んだ第4の溝を形成する工程と
、該第4の溝側壁にゲート絶縁膜およびゲート電極を形
成する工程と、該ゲート電極表面を絶縁膜物質で被う工
程と、前記第2.第3の溝底部を通して該溝底部に形成
された前記第一、第2導電型不純物層と接続しかつ前記
第71の溝を埋めるように導電性物質を形成する工程と
を含んで構成される。
Further, the complementary insulated gate field effect i of the second invention of the present invention
41-L>' Sister manufacturing method includes the steps of providing a first groove on a first conductivity type semiconductor substrate, covering the sidewalls of the first groove with an insulating film, and covering the groove with a first conductivity type semiconductor substrate. (5) forming a second conductive type pure layer in the first conductive type semiconductor so that the insulating film is shallow; Semiconductor substrate and Mj
The insulating film is formed on the semiconductor of the first conductivity type, and the second impurity layer is shallower than the second impurity layer of the first conductivity type. a step of forming a third groove, a step of forming a second conductivity type impurity layer on the surface of the first conductivity type semiconductor substrate and a bottom of the second groove; Said third
forming a first conductivity type impurity layer at the bottom of each groove;
The insulating film is removed from the second insulating film. 3rd) Etch to the depth of the groove and 2nd. forming a fourth groove including a third groove; forming a gate insulating film and a gate electrode on the sidewalls of the fourth groove; and covering the surface of the gate electrode with an insulating film material; Said 2nd. forming a conductive material so as to connect to the first and second conductivity type impurity layers formed at the bottom of the third trench through the bottom of the third trench, and to fill the 71st trench. .

[実施例〕 以ト、本発明の実施例について図面を用いて説明する。[Example〕 Hereinafter, embodiments of the present invention will be described using the drawings.

第1図は本発明の一実施例の模式的断面図を示したもの
であり、第2図(a)〜(1()は本発明の一実施例の
製造方法を説明するなめに工程順に示した模式的断面図
である。
FIG. 1 shows a schematic cross-sectional view of one embodiment of the present invention, and FIGS. 2(a) to (1) show the steps in the order of steps for explaining the manufacturing method of one embodiment of the present invention. FIG.

第1図において、CM OSのnチャンネル+ Pチャ
〉・ネルのゲート絶縁膜2,3およびチー1〜電極4,
5は各々溝側壁に沿って形成され、ウェル領域10は講
中に埋め込まれた絶縁膜11によって分離されている。
In FIG. 1, gate insulating films 2 and 3 of CMOS n-channel + p-channel and electrodes 4,
5 are formed along the side walls of the trenches, and the well regions 10 are separated by an insulating film 11 buried in the trenches.

nチャンネル、nチャンネルのドレイン、ソースは各々
p型シリコン隻板1表面J3よび鍋底のn1拡散層6,
8.p+拡散層7゜9により形成されている。CM O
Sの出力電極は講底でn1拡散層6およびp+拡散層9
に接続しかつ溝を埋めるように形成された導電性物質に
より形成されている。
The drain and source of the n-channel and n-channel are respectively the p-type silicon plate 1 surface J3 and the n1 diffusion layer 6 at the bottom of the pot.
8. It is formed by a p+ diffusion layer 7°9. C.M.O.
The output electrode of S is the bottom of the n1 diffusion layer 6 and the p+ diffusion layer 9.
The conductive material is connected to the groove and filled in the groove.

次に、第2図(a)〜(1()により−実施例の製造力
法を説明する。
Next, the manufacturing force method of the embodiment will be explained with reference to FIGS. 2(a) to 2(1).

まず、第2図(a)に示すように、p型シリコン単結晶
基板21.−、I=に熱酸化法により二酸化ケイ素膜2
2を形成し、次に渦形成領域以外をレジスト23で被覆
する。
First, as shown in FIG. 2(a), a p-type silicon single crystal substrate 21. -, I= silicon dioxide film 2 by thermal oxidation method
2 is formed, and then the area other than the vortex forming area is covered with a resist 23.

次に、第2図(b)に示すように、前記レジスト23を
マスクとして反応性イオンエツチング(RI IE’、
 )技術を用いて二酸化ケイ素膜22およびシリ−1ン
基板21をエツチング除去して溝を形成−9= し、次にCVD法により厚い二酸化ケイ素膜24を全面
に堆積する。
Next, as shown in FIG. 2(b), reactive ion etching (RIIE',
) technique to remove the silicon dioxide film 22 and the silicon substrate 21 to form grooves, and then a thick silicon dioxide film 24 is deposited over the entire surface by the CVD method.

次に、第2図(c)に示すように、R,I F、技術を
用いて二酸化ケイ素膜24をエツチングして溝側壁にの
み二酸化ケイ素膜24′を残した後、選択エピタキシャ
ル成長技術によりシリコン基板表面にのみシリコン基板
21と同一導電型め囃結晶シリコン層(エピタキシA・
ル層)25を成長させて溝を埋め、さらに熱酸化法によ
りエピタキシャル層25表面を二酸化ケイ素膜26で被
覆する。
Next, as shown in FIG. 2(c), the silicon dioxide film 24 is etched using the R, IF, technique to leave the silicon dioxide film 24' only on the side walls of the trench, and then the silicon dioxide film 24' is etched using the selective epitaxial growth technique. Only on the surface of the substrate is a layer of crystalline silicon of the same conductivity type as the silicon substrate 21 (epitaxial A/
A silicon dioxide film 26 is grown to fill the trench, and the surface of the epitaxial layer 25 is coated with a silicon dioxide film 26 by thermal oxidation.

次に、第2図(d)に示すように、エピタキシャル層2
5以外の領域をレジスト27で被い、次にイオン注入法
によりn型不純物をレジスト27をマスクにしてエピタ
キシャル層25表面に打ち込みn型不純物層28を形成
する。
Next, as shown in FIG. 2(d), an epitaxial layer 2 is formed.
The regions other than 5 are covered with a resist 27, and then an n-type impurity is implanted into the surface of the epitaxial layer 25 using the resist 27 as a mask by ion implantation to form an n-type impurity layer 28.

次に、第2図(e)に示すように、レシスl〜27を除
去し、次に高温熱処理を行なって不純物層28のn型不
純物をエピタキシャル層25内に押し込んでnウェル領
域29を形成した後、二酸化ケイ素膜24′形成領域お
よびその周辺領域以外=10− をレジスト30で被い、しかる後11 T E技術を用
いて二酸化ケイ素膜26およびシリコン基板21エピタ
キシヤル層25をエツチングして講A31゜B32を形
成する。なお、講A31.B32はnウェル領域29よ
りも浅く形成する。
Next, as shown in FIG. 2(e), the resists 1 to 27 are removed, and then high-temperature heat treatment is performed to push the n-type impurity of the impurity layer 28 into the epitaxial layer 25 to form an n-well region 29. After that, the area other than the area where the silicon dioxide film 24' is formed and its surrounding area = 10- is covered with a resist 30, and then the silicon dioxide film 26 and the silicon substrate 21 epitaxial layer 25 are etched using the TE technique. Form A31°B32. In addition, Lecture A31. B32 is formed shallower than the n-well region 29.

次に、第2図(f)に示ずように、レジスト30を除去
した後熱酸化法により渦A31..B32内の内壁に薄
い二酸化ケイ素膜33を形成し、さらにエピタキシャル
層25および講832表面をレジスI・34で被い、次
にイオン注入法によりシリコン基板21表面および講A
31底部に各々n型不純物を打ち込み、n+拡散層35
.36を形成する。
Next, as shown in FIG. 2(f), after removing the resist 30, the vortex A31. .. A thin silicon dioxide film 33 is formed on the inner wall of B32, and the epitaxial layer 25 and the surface of layer 832 are covered with resist I.34, and then the surface of silicon substrate 21 and layer A are coated by ion implantation.
N-type impurities are implanted into the bottom of each layer 31 to form an n+ diffusion layer 35.
.. form 36.

次に、第2図(g>に示すように、レジス1〜34を除
去した後、シリコン基板表面21および渦A31表面を
レジス)へ37で被い、次にイオン注入法によりエピタ
キシャル層25表面および講B32底部に各々n型不純
物を打ち込み、p +拡散層38.39を形成する。
Next, as shown in FIG. 2 (g), after removing the resists 1 to 34, the silicon substrate surface 21 and the surface of the vortex A 31 are covered with a resist 37, and then the surface of the epitaxial layer 25 is formed by ion implantation. Then, n-type impurities are implanted into the bottom of layer B32 to form p+ diffusion layers 38 and 39.

次に、第2図(h)に示すように、レジスト40を全面
に塗布した後、絶縁性塗布物41を全面に塗布し、次に
二酸化ケイ素膜24′領域およびその周辺領域を除いて
レジスト42を塗布する。
Next, as shown in FIG. 2(h), after a resist 40 is applied to the entire surface, an insulating coating material 41 is applied to the entire surface, and then the resist is applied except for the silicon dioxide film 24' area and its surrounding area. Apply 42.

次に、第2図(i>に示すように、レジスl−42をマ
スクにR,I E技術を用いて絶縁性塗布物41をエツ
チングし、次に、絶縁性塗布物41をマスクにRIE技
術を用いてレジスト40を二酸化ケイ素膜24′の表面
までエツチングし、しかる後二酸化ケイ素膜24′をR
,I E技術を用いて溝A31.B32の底部までエツ
チングする。
Next, as shown in FIG. 2 (i>), the insulating coating material 41 is etched using the R, IE technique using the resist l-42 as a mask, and then RIE is performed using the insulating coating material 41 as a mask. The resist 40 is etched to the surface of the silicon dioxide film 24' using a technique, and then the silicon dioxide film 24' is etched by R.
, groove A31. using IE technique. Etch to the bottom of B32.

次に、第2図(、j)に示すように、レジスl−40お
よび二酸化ケイ素膜33を各々除去し、次に、熱酸化法
により溝A31.B32の内壁にゲート酸化膜43を形
成した後、CVD法により低抵抗多結晶シリコンを全面
に堆積し、その後RTE技術を用いて多結晶シリコンを
エツチングして前記溝A31.B32の側壁にのみ該多
結晶シリコンを残してゲート電極44とし、しかる後熱
酸化法により該ゲート電極44を酸化しその表面に二酸
化ケイ素膜45を形成する。
Next, as shown in FIG. 2(, j), the resist l-40 and the silicon dioxide film 33 are each removed, and then the trenches A31. After forming a gate oxide film 43 on the inner wall of B32, low-resistance polycrystalline silicon is deposited on the entire surface using the CVD method, and then the polycrystalline silicon is etched using RTE technology to form the trench A31. The polycrystalline silicon is left only on the side walls of B32 to form a gate electrode 44, and then the gate electrode 44 is oxidized by a thermal oxidation method to form a silicon dioxide film 45 on its surface.

次に、第21’4 (k >に示すように、Rf E技
術を用いて講A 3 ] 、 B32の底部の二酸化ケ
イ素膜をエツチング除去した後、導電性物質46を堆積
して講A3]、B32を埋める。導電性物質46として
は、タングステン、モリブデン、チタン等があり、また
その堆積方法としてはCV D 、スパッタ蒸着および
バイアススパッタ法かある。
Next, as shown in section 21'4 (k >, the silicon dioxide film at the bottom of B32 is etched away using the RfE technique, and then a conductive material 46 is deposited to form the layer A3). , B32. Examples of the conductive material 46 include tungsten, molybdenum, titanium, etc., and methods for depositing it include CV D, sputter deposition, and bias sputtering.

r発明の効果〕 本発明によれば、nチャンネル、pチャンネルの両ゲー
ト電極を一つの講中に形成しているため、ゲート電極を
シリコン基板表面に形成していた従来のCM OS構造
に比べ表面積を著しく小さくすることが可能となる。さ
らにnチャンネル、pチャンネルの両チャンネル長は満
A、Bの深さにより決まる。このため微細(ごMOSに
おいても十分な溝の深さを確保することにより、ショー
トチャンネル効果の心配がないという利点がある。
rEffects of the Invention] According to the present invention, both the n-channel and p-channel gate electrodes are formed in one circuit, so compared to the conventional CMOS structure in which the gate electrode is formed on the surface of the silicon substrate. It becomes possible to significantly reduce the surface area. Furthermore, the lengths of both the n-channel and p-channel are determined by the depths of A and B. Therefore, there is an advantage that there is no need to worry about the short channel effect by ensuring a sufficient depth of the groove even in a fine MOS.

以上述べたように本発明によれば、高集積化に適した微
細なCMO8およびその製造方法を容易に得ることがで
きる。
As described above, according to the present invention, a fine CMO8 suitable for high integration and a method for manufacturing the same can be easily obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の模式的断面図、第2図(a
)〜(1()は本発明の一実施例の製造方法を説明する
ために工程順に示した模式的断面図、第3図は従来のC
MO8の一例の模式的断面図、第4図は従来のCMO8
における溝型分離構造の模式的断面図である。
FIG. 1 is a schematic sectional view of one embodiment of the present invention, and FIG.
) to (1() are schematic sectional views shown in order of steps to explain the manufacturing method of one embodiment of the present invention, and FIG. 3 is a conventional C
A schematic cross-sectional view of an example of MO8, Figure 4 is a conventional CMO8
FIG. 2 is a schematic cross-sectional view of a groove type separation structure in FIG.

Claims (2)

【特許請求の範囲】[Claims] (1)第一導電型半導体基板に設けた第1溝の溝底ほぼ
中央部に設けた第2の溝に埋め込まれた絶縁膜により形
成された分離領域と、前記第1、第2溝により分離され
た前記第一導電型半導体基板の一方に該第一導電型半導
体基板との接合の深さが前記第2溝の深さよりも浅くな
るように形成された第1の第二導電型不純物層と、前記
第1溝内の第一導電型半導体基板側壁およびその対向し
た側壁に形成されたゲート絶縁膜と、前記第一導電型半
導体基板および前記第1の第二導電型不純物層とは前記
第1溝側壁において前記ゲート絶縁膜を介して接しかつ
前記第1溝底部において絶縁膜を介して接するように前
記第1溝側壁に沿つて形成されたゲート電極と、前記第
2溝によつて分離された前記第1溝底部の前記第一導電
型半導体基板側に形成された第2の第二導電型不純物層
およびもう一方の第1の第二導電型不純物層側に形成さ
れた第1の第一導電型不純物層と、前記第1、第2溝に
よって分離された第一導電型半導体基板表面に前記ゲー
ト絶縁膜に端部が接するように形成された第3の第二導
電型不純物層と、第1、第2溝によって分離された前記
第1の第二導電型不純物層の表面に前記ゲート絶縁膜に
端部が接するように形成された第2の第一導電型不純物
層と、前記ゲート電極表面を被うように形成された絶縁
膜と、該絶縁膜を介して前記ゲート電極と接しかつ前記
第1溝底部に形成された第2の第二導電型不純物層およ
び第1の第一導電型不純物層とは前記第1溝底部の一部
において接触しさらに前記第1溝を埋めるように形成さ
れた電極とを含むことを特徴とする相補型絶縁ゲート電
界効果トランジスタ。
(1) An isolation region formed by an insulating film embedded in a second trench provided in the bottom center of the first trench provided in the first conductivity type semiconductor substrate, and the first and second trenches. a first second conductivity type impurity formed on one of the separated first conductivity type semiconductor substrates so that the depth of the junction with the first conductivity type semiconductor substrate is shallower than the depth of the second groove; layer, a gate insulating film formed on a side wall of a first conductive type semiconductor substrate in the first groove and its opposing side wall, and the first conductive type semiconductor substrate and the first second conductive type impurity layer. A gate electrode formed along the first trench sidewall so as to be in contact with the first trench sidewall through the gate insulating film and at the first trench bottom with an insulating film in between; A second second conductivity type impurity layer formed on the first conductivity type semiconductor substrate side of the first groove bottom separated by a third second conductivity type impurity layer formed on the surface of the first conductivity type semiconductor substrate separated by the first and second grooves so that an end thereof is in contact with the gate insulating film; a second first conductivity type impurity layer formed on the surface of the first second conductivity type impurity layer separated by the impurity layer and the first and second grooves so that an end thereof is in contact with the gate insulating film; an insulating film formed to cover the surface of the gate electrode; a second impurity layer of a second conductivity type formed at the bottom of the first groove and in contact with the gate electrode through the insulating film; A complementary insulated gate field effect transistor characterized in that the first conductivity type impurity layer of No. 1 includes an electrode formed in contact with a part of the bottom of the first trench and further filling the first trench.
(2)第一導電型半導体基板上に第1の溝を設け、該第
1の溝の側壁を絶縁膜で被う工程と、該溝を第一導電型
半導体で埋める工程と、該第一導電型半導体中に前記絶
縁膜よりも浅くなるように第二導電型不純物層を形成す
る工程と、前記絶縁膜をはさんでいる前記第一導電型半
導体基板および前記第一導電型半導体上に前記絶縁膜お
よび前記第二導電型不純物層よりも浅い第2、第3の溝
を各々形成する工程と、前記第一導電型半導体基板の表
面および前記第2の溝底部に各々第二導電型不純物層を
形成する工程と、前記第一導電型半導体の表面および前
記第3の溝底部に各々第一導電型不純物層を形成する工
程と、前記絶縁膜を前記第2、第3の溝の深さまでエッ
チングし第2、第3の溝を含んだ第4の溝を形成する工
程と、該第4の溝側壁にゲート絶縁膜およびゲート電極
を形成する工程と、該ゲート電極表面を絶縁膜物質で被
う工程と、前記第2、第3の溝底部を通して該溝底部に
形成された前記第一、第2導電型不純物層と接続しかつ
前記第4の溝を埋めるように導電性物質を形成する工程
とを含むことを特徴とする相補型絶縁ゲート電界効果ト
ランジスタの製造方法。
(2) a step of providing a first groove on a first conductivity type semiconductor substrate and covering the sidewall of the first groove with an insulating film; a step of filling the groove with a first conductivity type semiconductor; forming a second conductivity type impurity layer in the conductivity type semiconductor so as to be shallower than the insulating film; and forming a second conductivity type impurity layer on the first conductivity type semiconductor substrate and the first conductivity type semiconductor sandwiching the insulating film. forming second and third trenches shallower than the insulating film and the second conductivity type impurity layer; a step of forming an impurity layer, a step of forming a first conductivity type impurity layer on the surface of the first conductivity type semiconductor and a bottom of the third groove; A step of etching to a depth to form a fourth trench including the second and third trenches, a step of forming a gate insulating film and a gate electrode on the side walls of the fourth trench, and a step of etching the surface of the gate electrode with an insulating film. a conductive material so as to connect to the first and second conductivity type impurity layers formed at the bottoms of the grooves through the bottoms of the second and third grooves and to fill the fourth groove; 1. A method of manufacturing a complementary insulated gate field effect transistor, the method comprising: forming a complementary insulated gate field effect transistor.
JP61006848A 1986-01-14 1986-01-14 Complementary insulated gate field effect transistor and manufacturing method thereof Expired - Lifetime JPH0626245B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61006848A JPH0626245B2 (en) 1986-01-14 1986-01-14 Complementary insulated gate field effect transistor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61006848A JPH0626245B2 (en) 1986-01-14 1986-01-14 Complementary insulated gate field effect transistor and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS62165356A true JPS62165356A (en) 1987-07-21
JPH0626245B2 JPH0626245B2 (en) 1994-04-06

Family

ID=11649656

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61006848A Expired - Lifetime JPH0626245B2 (en) 1986-01-14 1986-01-14 Complementary insulated gate field effect transistor and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JPH0626245B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4967257A (en) * 1988-01-29 1990-10-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having field effect transistors
US5021359A (en) * 1988-06-21 1991-06-04 Harris Corporation Radiation hardened complementary transistor integrated circuits
US6753573B2 (en) 2002-11-06 2004-06-22 Renesas Technology Corp. Semiconductor device having complementary MOS transistor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4967257A (en) * 1988-01-29 1990-10-30 Mitsubishi Denki Kabushiki Kaisha Semiconductor device having field effect transistors
US5021359A (en) * 1988-06-21 1991-06-04 Harris Corporation Radiation hardened complementary transistor integrated circuits
US6753573B2 (en) 2002-11-06 2004-06-22 Renesas Technology Corp. Semiconductor device having complementary MOS transistor

Also Published As

Publication number Publication date
JPH0626245B2 (en) 1994-04-06

Similar Documents

Publication Publication Date Title
US6855969B2 (en) Semiconductor device having a plurality of gate electrodes and manufacturing method thereof
KR100227766B1 (en) Semiconductor device and the manufacturing method thereof
US5920108A (en) Late process method and apparatus for trench isolation
JPH0821613B2 (en) Method for manufacturing isolation structure of MOS device
JPH0687500B2 (en) Semiconductor memory device and manufacturing method thereof
US5872044A (en) Late process method for trench isolation
KR100415975B1 (en) Field effect-controlled transistor and method for producing the same
JPH0348656B2 (en)
JPH0621210A (en) Manufacture of semiconductor device
JPS62165356A (en) Complementary insulated gate field effect transistor and manufacturing method thereof
KR100319615B1 (en) Isolation method in seconductor device
JPH01130542A (en) Semiconductor device having interelement isolation region and manufacture thereof
JPH0974189A (en) Manufacture of semiconductor device
JPH06334146A (en) Semiconductor device
JPH01112746A (en) Semiconductor device
KR940011096B1 (en) Device Separation Method of Semiconductor Device
US5913135A (en) Method for forming planar field effect transistors with source and drain on oxide and device constructed therefrom
JPH01214064A (en) Insulated gate field effect transistor and its manufacture
JPH067596B2 (en) Method for manufacturing semiconductor device
JPS60105247A (en) Manufacture of semiconductor device
KR100355607B1 (en) Method for fabricating a semiconductor memory device having an inverse &#34;T&#34;type capacitor
JPS62213258A (en) Manufacture of semiconductor device
KR950011641B1 (en) Semiconductor device manufacturing method and device
JPH0870038A (en) Manufacture of semiconductor device
JPH0666431B2 (en) CMOS type field effect transistor and manufacturing method thereof