[go: up one dir, main page]

JPS62117535A - Ultrasonic doppler apparatus - Google Patents

Ultrasonic doppler apparatus

Info

Publication number
JPS62117535A
JPS62117535A JP25670085A JP25670085A JPS62117535A JP S62117535 A JPS62117535 A JP S62117535A JP 25670085 A JP25670085 A JP 25670085A JP 25670085 A JP25670085 A JP 25670085A JP S62117535 A JPS62117535 A JP S62117535A
Authority
JP
Japan
Prior art keywords
doppler
code
wave
waves
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP25670085A
Other languages
Japanese (ja)
Other versions
JPH0226971B2 (en
Inventor
剛 望月
正徳 国田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Aloka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aloka Co Ltd filed Critical Aloka Co Ltd
Priority to JP25670085A priority Critical patent/JPS62117535A/en
Publication of JPS62117535A publication Critical patent/JPS62117535A/en
Publication of JPH0226971B2 publication Critical patent/JPH0226971B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Ultra Sonic Daignosis Equipment (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は超音波ドプラ装置、特に形(ぶ的な断層画像だ
けでなく、生体内運動部の速度を正確に画像表示するこ
とのできる超音波ドプラ装置に関づる。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to an ultrasonic Doppler device, particularly an ultrasonic Doppler device that can accurately display not only shape (shaped) tomographic images but also the velocity of moving parts within a living body. Related to sonic Doppler equipment.

[従来の技術] 生体内の種々の情報を得るために、診断部位の断層像を
Bモード表示(イメージング)するだけでなく、移動物
体、例えば心臓内あるいは血管内の血流速度、その速度
状況などをドプラ効果を受けたドプラ受信信号を解析し
て画像表示することが行われている。
[Prior Art] In order to obtain various information inside a living body, it is necessary not only to display (imaging) a tomographic image of a diagnostic region in B mode, but also to display the velocity of blood flow in a moving object such as the heart or blood vessels, and its velocity status. The Doppler received signal subjected to the Doppler effect is analyzed and displayed as an image.

従来において、この種のドプラ装置に用いられる超音波
には、一定の繰返し周波数で放射されるパルス波(PW
波)又は連続的に放射される連続波(CW波)が用いら
れ、受信キt・リアの周波数偏移から移動物体の速度を
検出している。
Conventionally, the ultrasound waves used in this type of Doppler device include pulsed waves (PW) that are emitted at a constant repetition frequency.
Waves) or continuously emitted continuous waves (CW waves) are used, and the speed of a moving object is detected from the frequency shift of the received signal.

しかしながら、前記パルス波では移i@J物体の位置判
定を覆ることは可能であるが、検出速度に限界があると
いう問題がある。すなわち、検出速度はパルス繰返し周
波数に依存しており、繰返し周波数が低いほど検出速度
が小さくなり、断層像をB′Uニード表示するために使
用される一定繰返し周波数では、心臓内における血液の
ジェット流のような高速流の測定は困難であった。
However, although it is possible to override the position determination of the moving i@J object using the pulse wave, there is a problem in that there is a limit to the detection speed. In other words, the detection speed depends on the pulse repetition frequency, and the lower the repetition frequency, the lower the detection speed.At a constant repetition frequency used to display the tomographic image as a B'U needle, the blood jet in the heart It has been difficult to measure high-velocity flows such as currents.

従来では、このような速度の限界をなくすために連続波
による測定が行われており、これによれば検出速度の限
界をなくして正確な移動物体の速度を知ることができる
が、連続波の場合には移動物体の位置の判定が不可能で
あり、測定する移動物体以外からの反射エコーを同時に
取り込むなどの欠点がある。また、常に送受信を行うこ
とからトランスデユーサが2個必要であるなどの多くの
問題を残してJ3す、連続波を用いた装置の実現が困難
である。
Conventionally, measurement using continuous waves has been carried out to eliminate such speed limitations.This method eliminates the detection speed limitations and allows accurate determination of the speed of a moving object. In some cases, it is impossible to determine the position of a moving object, and there are drawbacks such as echoes reflected from objects other than the moving object being measured are captured at the same time. In addition, many problems remain, such as the need for two transducers because transmission and reception are always performed, and it is difficult to realize a device using continuous waves.

そこで、高速流の測定を可能とするため、繰返し周波数
の高いパルス(tligh Pu1se Repeti
on[requency )波を用いることが提案され
r i3す、このHP RF波によれば2F)W波に比
べ′C高くした繰返し周波数分だG−ノ速度の限界が広
がり、高速度の移動物体を良好に画像表示JることがC
,!る。
Therefore, in order to make it possible to measure high-speed flows, pulses with a high repetition frequency (tight pulse repetition frequency) are used.
It has been proposed to use on[requency) waves, but according to this HP RF wave, the limit of G-speed is expanded by the repetition frequency which is higher than 2F)W waves, and high-velocity moving objects can be The image can be displayed well
,! Ru.

[発明が解決しようとづる問題点1 しかしながら、上記FIPRF波ではパルス波を送信す
る繰返し周波数を高くづるために、1回目に送信したパ
ルス波が戻ってくる前ニ二次のパルス波を送信しており
、このようにすると、複数個のパルス波の反射丁]−が
混在した状態で受信され、所定位置、つまり所定深さ距
離からの反φ1丁D −であるか否かの判定が困難どな
る。
[Problem to be solved by the invention 1 However, in the above-mentioned FIPRF wave, in order to increase the repetition frequency for transmitting pulse waves, a second pulse wave is transmitted before the first pulse wave is returned. If this is done, multiple pulse wave reflections will be received in a mixed state, making it difficult to determine whether or not it is an anti-φ1 D- from a predetermined position, that is, from a predetermined depth distance. bawl.

これは、一般にアンビギ7.イティといわれ、所定深さ
距離からの反射エコーを特定できず、1f!1合波送受
波距離が遠くなればなるほどアンじギュイテイが大きい
という問題があった。
This is generally referred to as Ambigi 7. It is said that the reflected echo from a certain depth distance cannot be identified, and 1f! There was a problem in that the longer the transmission/reception distance of a single multiplexed wave, the greater the angularity.

発明の目的 本発明は前記問題点に鑑みなされたものであり、その目
的は、アンビギュイディを除去してl(P RF波によ
り移動物体の速度を正確に検出し、高速度の移動物体を
画像表示することのできる超音波ドプラ装置を提供する
ことにある。
Purpose of the Invention The present invention has been made in view of the above-mentioned problems, and its purpose is to eliminate ambiguity, accurately detect the speed of a moving object using PRF waves, and detect high-velocity moving objects. An object of the present invention is to provide an ultrasonic Doppler device that can display images.

[問題点を解決するだめの手段] 前記目的を達成するために、本発明は、パルス超音波を
送受信しドプラ効果を受けた反射エコー信号の周波数偏
移から移動物体の速度を検出する超音波ドプラ装置にお
いて、繰返し周波数の高いパルス波を発生させる高繰返
しパルス波発生器と、パルス波を送信順に識別しかつ相
互に関係の低い複数のコード波を発生させるコード波発
生器と、パルス波を識別するため前記パルス波にコード
波をのせる(iff相変調器と、識別コード化された超
音波を生体内に放射して得られたドプラ受信信号を送信
時に用いたコード波で復調する復調器と、を婦えたこと
を特徴とする。
[Means for Solving the Problems] In order to achieve the above object, the present invention provides an ultrasonic system that transmits and receives pulsed ultrasonic waves and detects the speed of a moving object from the frequency shift of a reflected echo signal subjected to the Doppler effect. In a Doppler device, a high repetition pulse wave generator that generates a pulse wave with a high repetition frequency, a code wave generator that identifies pulse waves in the order of transmission and generates multiple code waves with low correlation to each other, and a pulse wave generator that generates a pulse wave with a high repetition frequency. A code wave is placed on the pulse wave for identification (if phase modulator and demodulation that demodulates the Doppler reception signal obtained by emitting identification coded ultrasound into the living body with the code wave used at the time of transmission) It is characterized by having a vessel and a .

[作用] 以上の構成によれば、Bモード画像用の断層像を得るた
めに用いられるPW波よりも高い繰返し周波数のI−I
 P RF波の超音波が発生し、このHPRl:波は、
例Aば同一方向に送信される超音波の送信順にコード波
で・位相変調されるので、!!返し周期ごとに識別符号
が付された超音波が発と1.することになる。そして、
識別コード化された超音波の反射工]−信号に対して送
信時に用いたのと同じコード波で復調することにより、
所定深さ距離のドプラ受信信号のみが取り出される。
[Operation] According to the above configuration, the I-I wave having a higher repetition frequency than the PW wave used to obtain a tomographic image for a B-mode image
P RF wave ultrasound is generated, and this HPRl: wave is
For example, ultrasonic waves transmitted in the same direction are phase-modulated by code waves in the transmission order, so! ! 1. An ultrasonic wave with an identification code attached to each return cycle is emitted. I will do it. and,
Identification-coded ultrasonic reflector] - By demodulating the signal with the same code wave used during transmission,
Only Doppler received signals at a predetermined depth distance are extracted.

すなわら、ドプラ受信信号に複数個の信号が混在してい
ない場合には、周波数偏移を受け1.−所定深さ距離か
らの信号のみが容易に11すられる。一方、ドプラ受信
信号に異なる深さ距離からの信号が混在している場合に
は、コード波には相nに関係の低いもの、例えば振幅の
正負が異なるような波形を用いているので、所定深さか
らの必要<f信号のみが復調され、他の信号は復調する
ときのコード波によって振幅の弱い信号に変換されるこ
とになる。
In other words, if a plurality of signals are not mixed in the Doppler received signal, the signal will be affected by frequency shift. - Only signals from a given depth distance are easily filtered. On the other hand, when the Doppler received signal contains signals from different depths, the code wave uses a waveform that has little relation to phase n, for example, a waveform with different positive and negative amplitudes. Only the necessary<f signal from the depth is demodulated, and other signals are converted into signals with weak amplitude by the code wave when demodulating.

[実施例1 以下、図面に基づいて本発明の好適な実施例を説明する
[Embodiment 1] Hereinafter, a preferred embodiment of the present invention will be described based on the drawings.

第1図には、本発明に係る超音波ドプラ装置の回路構成
が示されており、発振器10から出力された発振信号(
よl−I P R1発生器12に供給され、この1−1
t”RF光生器12にて繰返し周波数の高い+1P R
F波を発生させる。このHPRF波は、超音波プローブ
から送信された超音波が反射して返ってくる時間よりも
早い時間サイクルにて繰返し送信されるパルス波であり
、かつBモード画像表示において断層像を形成するパル
ス波よりも高い繰返し周波数のパルス波である。
FIG. 1 shows the circuit configuration of the ultrasonic Doppler apparatus according to the present invention, in which the oscillation signal (
1-1 is supplied to the 1-I P R1 generator 12
+1P R with high repetition frequency in t”RF light generator 12
Generates F waves. This HPRF wave is a pulse wave that is repeatedly transmitted at a time cycle faster than the time at which the ultrasound waves transmitted from the ultrasound probe are reflected and returned, and is a pulse wave that forms a tomographic image in B-mode image display. It is a pulse wave with a higher repetition frequency than the wave.

本発明において特徴的なことは、このHPRF波を相互
関係の低い]−F波により識別コード化したことであり
、識別のためコード波を発生させるコード波発生器14
が設けられ、HPRF発生器12の出力を受けてコード
波が設定される。
The characteristic feature of the present invention is that this HPRF wave is converted into an identification code using the -F wave, which has a low correlation, and the code wave generator 14 generates the code wave for identification.
is provided, and a code wave is set in response to the output of the HPRF generator 12.

また、HP RF波にコー・F波をのせる位相変調器1
6が設けられており、高繰返し周波数にて発生する)−
+ P RF波をその発生順に識別するため、異なるコ
ード波で位相変調している。従って、ドライバ18を介
してプローブ20に供給されるHF’−) RF波【よ
二]−ド波がのVられ識別〕−ド化さ1tたものであり
、この位相変調されtc 11P RF波の超音波が生
体内に放射されることになる。
In addition, a phase modulator 1 that adds a Co-F wave to the HP RF wave
6 is provided and occurs at high repetition frequency)-
+ P In order to identify RF waves in the order in which they occur, phase modulation is performed using different code waves. Therefore, the HF'-) RF wave supplied to the probe 20 via the driver 18 is converted into a 1t, and this phase-modulated tc11P RF wave Ultrasonic waves will be emitted into the living body.

この=1−F波は、実施例どして、]−ドA < 1−
=11 l−1−1−1)及びコードB(−1−11〜
111−1>の識別コードを持つものが用いられており
、それぞれの」−F波が〃いにできるだけ相関性の弱い
波形にて構成Aる。こうづ−れば、他コ・−ドを持つ信
号は完全には復調されず、検出しようする識別二]−ド
を持つ信号のみが完全に復調され、取り出される。
This = 1-F wave is expressed as ]-do A < 1-
=11 l-1-1-1) and code B (-1-11~
111-1> is used, and each "-F wave is made up of waveforms with as weak a correlation as possible. In this way, signals having other codes are not completely demodulated, and only the signal having the identification code to be detected is completely demodulated and extracted.

従って、本発明装置には変調した送信波を復調するため
の復調器24が設けられおり、生体内から反射されブr
コープ20にて受13されたドプラ受信信号は、プリア
ンプ22を介して復調器24に供給され、このドプラ受
(3信号は送信時に用いられたコード波で復調される。
Therefore, the device of the present invention is provided with a demodulator 24 for demodulating the modulated transmission waves, and the beams reflected from within the living body are
The Doppler reception signal received by the coper 20 is supplied to the demodulator 24 via the preamplifier 22, and the Doppler reception signal (3 signals) is demodulated with the code wave used at the time of transmission.

、なJ′−)、復調に用いられるコード波はディレー器
26にてコード波発生器14の出力を所定時間涯延させ
ることにより得られる。
, J'-), the code wave used for demodulation is obtained by delaying the output of the code wave generator 14 for a predetermined time using a delay device 26.

本発明は基本的には以上のような構成からなるが、必要
とするドプラ信号のみを取り出して周波数解析するため
にドプラ受信信号を直交検波した後に積分し、積分後の
信号をサンプルホールドしている。このために、実施例
では、直交検波のための乗算器28.30及びπ/4移
相器32と、ローパスフィルタ(LPF)34,36、
積分器38.40、サンプルホールド器42,44、そ
して更には、バイパスフィルタ(HPF)46゜48、
ローパスフィルタ(LPF)50.52が設けられ、L
PF50.52の出力はスペクトルアナライザ54に供
給される。
The present invention basically has the above configuration, but in order to extract only the necessary Doppler signals and perform frequency analysis, the Doppler received signal is quadrature detected and then integrated, and the integrated signal is sampled and held. There is. For this purpose, in the embodiment, a multiplier 28, 30 and a π/4 phase shifter 32 for orthogonal detection, low-pass filters (LPF) 34, 36,
Integrators 38, 40, sample and hold devices 42, 44, and further bypass filters (HPF) 46, 48,
A low pass filter (LPF) 50.52 is provided, L
The output of PF50.52 is supplied to spectrum analyzer 54.

本発明は以上のような構成からなり、第2図から第5図
に基づいてその作用を説明する。
The present invention has the above structure, and its operation will be explained based on FIGS. 2 to 5.

第2図には、位相変調する場合の信号処理が示されてお
り、(a)はHPRF波であり、(b)は2周のコード
波、すなわちコード△及びコードBのコード波である。
FIG. 2 shows signal processing in the case of phase modulation, in which (a) is an HPRF wave, and (b) is a two-cycle code wave, that is, code Δ and code B code waves.

このl(P RF波と]−ドA及びBのコード波(ま位
相変調器16にて位相変調され、(C)に示されるよう
に、+1の場合はそのままのパルス波となり、−1の場
合は反転したパルス波となって出力される。実施例で(
,1,2種類のコードに変調された超音波にて送受信が
行われており、(d)に示されるにうに、位■1変調淵
16からは変調波が△、B、Aの順に出力される。
This l(P RF wave and the code waves of -dos A and B) are phase modulated by the phase modulator 16, and as shown in (C), in the case of +1, it becomes a pulse wave as it is, and in the case of -1 In this case, it is output as an inverted pulse wave.In the example (
, 1, and 2 types of codes are used for transmission and reception, and as shown in (d), modulated waves are output from the 1st modulation depth 16 in the order of △, B, and A. be done.

第3図には、生体内から17られたドプラ受信信号を復
調する場合の信号処理が示されており、(a)に示され
るようにコードA及びBにて識別コード化された超音波
の反射工〕−が交互に受信されると、周波数偏移を受け
たドプラ受信信号は(b)に示されるような信号となる
。そして、]−ドAのコード波にて変調した超音波のド
プラ受信信号に対しては、(C)に示されるように、送
信時と同じコードAのコード波を復調器24にて更に掛
は合わせ、コードBにて変調された超音波のドプラ受信
信号に対してはコードBのコード波を掛は合わせている
FIG. 3 shows the signal processing when demodulating Doppler received signals from inside the living body. When the reflectors] - are received alternately, the frequency-shifted Doppler received signal becomes a signal as shown in (b). Then, as shown in (C), the ultrasonic Doppler received signal modulated with the code wave of code A is further multiplied by the demodulator 24 with the same code wave of code A that was used during transmission. In addition, the code wave of code B is applied to the ultrasonic Doppler reception signal modulated by code B.

この結果、復調器24の出力は、(d)に示されるよう
に、コード波が除去された信号どなり、送信時に」−1
のコード波が計けらだ場合には更に+1のコード波が1
1)け合わされ、一方、−1のコード波が掛Gノられた
場合には更に−1のコード波が1赴は合わされ、変調が
解除された状態に戻ることとなる。
As a result, the output of the demodulator 24 is a signal from which the code wave has been removed, as shown in (d), and when it is transmitted, it is "-1".
If the code wave of +1 is measured, the code wave of +1 is 1
1) If a code wave of -1 is multiplied by G, then another code wave of -1 is added and the modulation returns to a state where the modulation is canceled.

このように、コード波によって位相変調された送信超音
波は超音波受信信号に更に同一のコード波を掛【プ合わ
せることにより復調させることができる。この場合、変
調前のHPRF波とドプラ効果を受けた受信波との間で
復調の際に多少の位相ずれが生じるが、超音波周波数f
。は2MH2〜10MHz程度であり、検出しようとす
るドプラ周波数は1kHz〜20k)−1zであるため
、この位相ずれはドプラ周波数偏移の100分の1程度
であり、問題になることはない。
In this way, the transmitted ultrasonic wave phase-modulated by the code wave can be demodulated by further multiplying the received ultrasonic signal by the same code wave. In this case, a slight phase shift occurs during demodulation between the HPRF wave before modulation and the received wave subjected to the Doppler effect, but the ultrasonic frequency f
. is approximately 2 MHz to 10 MHz, and the Doppler frequency to be detected is 1 kHz to 20 kHz)-1 z, so this phase shift is approximately 1/100 of the Doppler frequency deviation and does not pose a problem.

次に、第4図には、2個の反射エコーが重なった場合の
処理が示されており、例えば深い距離にある移動物体を
検出する場合に浅い距離からの反射エコーが混入プるこ
とがある。
Next, Fig. 4 shows the processing when two reflected echoes overlap. For example, when detecting a moving object at a deep distance, reflected echoes from a shallow distance may be mixed in. be.

この場合には、コードAのコード波にて復調すると、コ
ードAにて識別されているドプラ受信信号は綺麗な形で
復調され、コードBにて識別されているドプラ受信信号
は」−ドBのコード波により変調した信号に更にコード
Aのコード波を掛は合わせることになり、コードAと8
との両者のコード波の相関性が弱いので、乗算器出力は
正確な復調波とならず、後段のLPF及び積分回路て゛
減衰してしまう。
In this case, when demodulating with the code wave of code A, the Doppler received signal identified by code A will be demodulated in a clean form, and the Doppler received signal identified by code B will be demodulated in a clean form. The signal modulated by the code wave of code A is further multiplied by the code wave of code A, and the code wave of code A and 8 are combined.
Since the correlation between the two code waves is weak, the multiplier output does not become an accurate demodulated wave, and is attenuated by the LPF and integration circuit at the subsequent stage.

このようにして、他の移動物体から得られた反射エコー
信号を小さくして、識別コードにて選択されたドプラ受
信信号のみ取り出されることとなり、パルス波を送信順
に識別しかつ互いに相互関係の小さいコード波を用いる
ことによって、混在したドプラ受信信号から所定深さ距
離のドプラ受信信号のみを有効に取り出すことができる
In this way, the reflected echo signals obtained from other moving objects are reduced, and only the Doppler received signals selected by the identification code are extracted, and the pulse waves are identified in the order of transmission and have a small correlation with each other. By using code waves, only Doppler received signals at a predetermined depth and distance can be effectively extracted from mixed Doppler received signals.

また、実施例では、他の移動物体からのドプラ受信信号
を更に効率良く除去づるため、復調器24から得られた
ドプラ受信信号を直交検波して積分している。寸なわら
、目標とする移動物体からのドプラ受信信号のみを取り
出すには、所定帯域のフィルタにこのドプラ受信信号を
通すことによっても行うことができるが、実施例では、
参照波によりドプラ受信信号を直交検波して積分し、更
にサンプルホールドすることにより周波数偏移に応じた
ドプラ信号を得るようにしている。
Furthermore, in the embodiment, in order to more efficiently remove Doppler received signals from other moving objects, the Doppler received signals obtained from the demodulator 24 are orthogonally detected and integrated. However, in order to extract only the Doppler received signal from the target moving object, it is also possible to pass this Doppler received signal through a filter of a predetermined band.
The Doppler received signal is orthogonally detected and integrated using a reference wave, and further sampled and held to obtain a Doppler signal corresponding to the frequency shift.

第5図には、コードAのコード波によって復調された信
号が(a)に示されており、コードAのドプラ受信信号
A1とコードBのドプラ受信信号B1は直交検波され、
(b)に示されるような検波信号A、B2どなる。そし
て、この直交検波信号A  、B  を積分各38.4
0にて積分すると、(C)に示されるように、コードへ
のドプラ受信信号は殉めて大きなパルス出力A3となり
、コードBのドプラ受信信号は無視できるほどの極めで
小さなパルス出力B3となる。
In FIG. 5, the signal demodulated by the code wave of code A is shown in (a), and the Doppler received signal A1 of code A and the Doppler received signal B1 of code B are orthogonally detected,
The detected signals A and B2 as shown in (b) are loud. Then, the orthogonal detection signals A and B are integrated by 38.4
When integrated at 0, as shown in (C), the Doppler received signal for the code becomes a dead and large pulse output A3, and the Doppler received signal for the code B becomes an extremely small pulse output B3 that can be ignored. .

第6図には、このような直交検波からドプラ周波数の偏
移信号を得るまでの処理波形が示されており、乗算器2
8.30では、ドプラ受信信号100、参照波信号10
1が乗算されLPF34゜36を通過すると、検波出力
信号102が畳られ、この信号102はドプラ効果であ
る周波数偏移に応じた出力信号となる。
FIG. 6 shows the processed waveform from such orthogonal detection to obtaining a Doppler frequency shift signal, and the multiplier 2
8.30, Doppler received signal 100, reference wave signal 10
When it is multiplied by 1 and passes through the LPF 34° 36, the detected output signal 102 is folded, and this signal 102 becomes an output signal corresponding to the frequency shift which is the Doppler effect.

従って、この検波出力信号102を積分すると、積分出
力信号103が得られ、更にこれをサンプルホールドす
ることによりS/]」出力信号104を得ることができ
る。このS/(」出力は図示されるように凹凸のある信
号となるため、周波数解析を容易とするため、)(PF
46,48及びl−P F2O,52を通過さけてなだ
らかなフィルタ出力信号105に変換する。
Therefore, by integrating this detection output signal 102, an integrated output signal 103 is obtained, and by further sampling and holding this, an S/]'' output signal 104 can be obtained. This S/('' output becomes a signal with unevenness as shown in the figure, so in order to facilitate frequency analysis, )(PF
46, 48 and l-P F2O, 52, and is converted into a smooth filter output signal 105.

このフィルタ出力信号105はドプラ周波数偏移の変化
を示すものであり、これによって移動物体の速度の変化
を検出することができる。
This filter output signal 105 is indicative of changes in Doppler frequency deviation, which makes it possible to detect changes in the velocity of a moving object.

[発明の効果] 以上説明したように、本発明は相互関係の小さい複数の
コード波によりパルス超音波を識別コード化したので、
所定深さ距離からのドプラ受信信号のみを正確に特定す
ることができ、HP RF波による送受信によって生じ
るアンビギュイティを軽減することが可能となる。
[Effects of the Invention] As explained above, the present invention converts pulsed ultrasound into an identification code using a plurality of code waves having a small mutual relationship.
It is possible to accurately identify only Doppler received signals from a predetermined depth distance, and it is possible to reduce ambiguity caused by transmission and reception of HP RF waves.

この結果、移動物体の速度検出の限界をなくして高速波
、例えば心臓自流におけるジェット流などを正確に検出
して画像表示することができ、画像診断に極めて有益な
情報を提供することかできる。
As a result, it is possible to eliminate the limitations of speed detection of a moving object and accurately detect and display images of high-speed waves, such as jet streams in the cardiac flow, thereby providing extremely useful information for image diagnosis.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係る超音波ドプラ装置の好適な実施例
を示す回路ブロック図、 第2図はHPRF波の位相変調を説明する波形図、 第3図は生体内から得られたドプラ受信信号の復調を説
明する波形図、 第4図は2種類のドプラ受信信号が混在する場合の処理
状態を示す説明図、 第5図は直交検波して積分するまでの信号処理を示す波
形図、 第6図は復調したドプラ受信信号から周波数偏移を得る
までの動作を説明する波形図である。 10 ・・・ 発振器 12 ・・・ HP RF波発生器 14 ・・・ コード波発生湿 16 ・・・ 位相変調器 20 ・・・ プローブ 24 ・・・ 復調器 28.30  ・・・ 乗淳器 32 ・・・ π/4移相器 38.40  ・・・ 積分器。
Fig. 1 is a circuit block diagram showing a preferred embodiment of the ultrasonic Doppler device according to the present invention, Fig. 2 is a waveform diagram illustrating phase modulation of HPRF waves, and Fig. 3 is Doppler reception obtained from within a living body. A waveform diagram explaining signal demodulation, Figure 4 is an explanatory diagram showing the processing state when two types of Doppler received signals coexist, and Figure 5 is a waveform diagram showing signal processing from quadrature detection to integration. FIG. 6 is a waveform diagram illustrating the operation from obtaining the frequency shift from the demodulated Doppler received signal. 10 ... Oscillator 12 ... HP RF wave generator 14 ... Code wave generation humidifier 16 ... Phase modulator 20 ... Probe 24 ... Demodulator 28.30 ... Multiplier 32 ... π/4 phase shifter 38.40 ... Integrator.

Claims (2)

【特許請求の範囲】[Claims] (1)パルス超音波を送受信しドプラ効果を受けた反射
エコー信号の周波数偏移から移動物体の速度を検出する
超音波ドプラ装置において、繰返し周波数の高いパルス
波を発生させる高繰返しパルス波発生器と、パルス波を
送信順に識別しかつ相互に関係の低い複数のコード波を
発生させるコード波発生器と、パルス波を識別するため
前記パルス波にコード波をのせる位相変調器と、識別コ
ード化された超音波を生体内に放射して得られたドプラ
受信信号を送信時に用いたコード波で復調する復調器と
、を備えたことを特徴とする超音波ドプラ装置。
(1) A high-repetition pulse wave generator that generates pulse waves with a high repetition frequency in an ultrasonic Doppler device that transmits and receives pulsed ultrasound and detects the speed of a moving object from the frequency shift of a reflected echo signal subjected to the Doppler effect. a code wave generator that identifies the pulse waves in the order of transmission and generates a plurality of code waves with low correlation to each other; a phase modulator that places a code wave on the pulse wave to identify the pulse waves; and an identification code. 1. An ultrasound Doppler device comprising: a demodulator that demodulates a Doppler reception signal obtained by emitting converted ultrasound waves into a living body using a code wave used during transmission.
(2)特許請求の範囲(1)記載の装置において、前記
復調器から出力されたドプラ受信信号を直交検波する直
交検波器と、直交検波器出力を積分する積分器と、を備
え、復調器の出力信号において任意の識別コードを持つ
ドプラ受信信号を他の識別コードを持つドプラ受信信号
と分離して取り出すことを特徴とする超音波ドプラ装置
(2) The apparatus according to claim (1), comprising: a quadrature detector that performs orthogonal detection of the Doppler received signal output from the demodulator; and an integrator that integrates the output of the quadrature detector; An ultrasonic Doppler apparatus characterized in that a Doppler received signal having an arbitrary identification code is separated from a Doppler received signal having other identification codes and extracted from the output signal thereof.
JP25670085A 1985-11-18 1985-11-18 Ultrasonic doppler apparatus Granted JPS62117535A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25670085A JPS62117535A (en) 1985-11-18 1985-11-18 Ultrasonic doppler apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25670085A JPS62117535A (en) 1985-11-18 1985-11-18 Ultrasonic doppler apparatus

Publications (2)

Publication Number Publication Date
JPS62117535A true JPS62117535A (en) 1987-05-29
JPH0226971B2 JPH0226971B2 (en) 1990-06-13

Family

ID=17296260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25670085A Granted JPS62117535A (en) 1985-11-18 1985-11-18 Ultrasonic doppler apparatus

Country Status (1)

Country Link
JP (1) JPS62117535A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11309146A (en) * 1998-03-26 1999-11-09 General Electric Co <Ge> System and method for imaging flow of ultrasonic scatterer
JP2000333957A (en) * 1999-04-23 2000-12-05 General Electric Co <Ge> Imaging system and its operating method
JP2002034985A (en) * 2000-07-27 2002-02-05 Aloka Co Ltd Ultrasonograph
JP2005249770A (en) * 2003-12-17 2005-09-15 Denso Corp Distance detecting apparatus and body detecting apparatus
JP2007240516A (en) * 2006-03-07 2007-09-20 Leica Geosystems Ag Increased measurement speed in propagation time measurement equipment
JP2008253663A (en) * 2007-04-09 2008-10-23 Toshiba Corp Ultrasonic diagnostic device and its control processing program
JP2018011997A (en) * 2011-10-28 2018-01-25 ディスィジョン サイエンシズ インターナショナル コーポレーション Spread spectrum coded waveforms in ultrasound imaging
US10321889B2 (en) 2013-09-13 2019-06-18 Decision Sciences International Corporation Coherent spread-spectrum coded waveforms in synthetic aperture image formation
US10743838B2 (en) 2015-02-25 2020-08-18 Decision Sciences Medical Company, LLC Acoustic signal transmission couplants and coupling mediums
WO2021019769A1 (en) * 2019-08-01 2021-02-04 三菱電機株式会社 Lateral obstacle detection device
US11154274B2 (en) 2019-04-23 2021-10-26 Decision Sciences Medical Company, LLC Semi-rigid acoustic coupling articles for ultrasound diagnostic and treatment applications
US11520043B2 (en) 2020-11-13 2022-12-06 Decision Sciences Medical Company, LLC Systems and methods for synthetic aperture ultrasound imaging of an object
US11737726B2 (en) 2015-10-08 2023-08-29 Decision Sciences Medical Company, LLC Acoustic orthopedic tracking system and methods
US12017389B2 (en) 2019-03-06 2024-06-25 Decision Sciences Medical Company, LLC Methods for manufacturing and distributing semi-rigid acoustic coupling articles and packaging for ultrasound imaging

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11309146A (en) * 1998-03-26 1999-11-09 General Electric Co <Ge> System and method for imaging flow of ultrasonic scatterer
JP4547065B2 (en) * 1999-04-23 2010-09-22 ゼネラル・エレクトリック・カンパニイ Imaging system and operating method thereof
JP2000333957A (en) * 1999-04-23 2000-12-05 General Electric Co <Ge> Imaging system and its operating method
JP2002034985A (en) * 2000-07-27 2002-02-05 Aloka Co Ltd Ultrasonograph
JP2005249770A (en) * 2003-12-17 2005-09-15 Denso Corp Distance detecting apparatus and body detecting apparatus
JP2007240516A (en) * 2006-03-07 2007-09-20 Leica Geosystems Ag Increased measurement speed in propagation time measurement equipment
US7944548B2 (en) 2006-03-07 2011-05-17 Leica Geosystems Ag Increasing measurement rate in time of flight measurement apparatuses
JP2008253663A (en) * 2007-04-09 2008-10-23 Toshiba Corp Ultrasonic diagnostic device and its control processing program
US10085722B2 (en) 2011-10-28 2018-10-02 Decision Sciences International Corporation Spread spectrum coded waveforms in ultrasound diagnostics
US11957516B2 (en) 2011-10-28 2024-04-16 Decision Sciences International Corporation Spread spectrum coded waveforms in ultrasound diagnostics
US10993699B2 (en) 2011-10-28 2021-05-04 Decision Sciences International Corporation Spread spectrum coded waveforms in ultrasound diagnostics
JP2018011997A (en) * 2011-10-28 2018-01-25 ディスィジョン サイエンシズ インターナショナル コーポレーション Spread spectrum coded waveforms in ultrasound imaging
US11596388B2 (en) 2011-10-28 2023-03-07 Decision Sciences International Corporation Spread spectrum coded waveforms in ultrasound diagnostics
US12121394B2 (en) 2013-09-13 2024-10-22 Decision Sciences International Corporation Coherent spread-spectrum coded waveforms in synthetic aperture image formation
US10321889B2 (en) 2013-09-13 2019-06-18 Decision Sciences International Corporation Coherent spread-spectrum coded waveforms in synthetic aperture image formation
US11096661B2 (en) 2013-09-13 2021-08-24 Decision Sciences International Corporation Coherent spread-spectrum coded waveforms in synthetic aperture image formation
US11607192B2 (en) 2013-09-13 2023-03-21 Decision Sciences International Corporation Coherent spread-spectrum coded waveforms in synthetic aperture image formation
US10743838B2 (en) 2015-02-25 2020-08-18 Decision Sciences Medical Company, LLC Acoustic signal transmission couplants and coupling mediums
US11191521B2 (en) 2015-02-25 2021-12-07 Decision Sciences Medical Company, LLC Acoustic signal transmission couplants and coupling mediums
US11839512B2 (en) 2015-02-25 2023-12-12 Decision Sciences Medical Company, LLC Acoustic signal transmission couplants and coupling mediums
US12251259B2 (en) 2015-10-08 2025-03-18 Decision Sciences Medical Company, LLC Acoustic orthopedic tracking system and methods
US11737726B2 (en) 2015-10-08 2023-08-29 Decision Sciences Medical Company, LLC Acoustic orthopedic tracking system and methods
US12017389B2 (en) 2019-03-06 2024-06-25 Decision Sciences Medical Company, LLC Methods for manufacturing and distributing semi-rigid acoustic coupling articles and packaging for ultrasound imaging
US11154274B2 (en) 2019-04-23 2021-10-26 Decision Sciences Medical Company, LLC Semi-rigid acoustic coupling articles for ultrasound diagnostic and treatment applications
WO2021019769A1 (en) * 2019-08-01 2021-02-04 三菱電機株式会社 Lateral obstacle detection device
JPWO2021019769A1 (en) * 2019-08-01 2021-11-11 三菱電機株式会社 Side obstacle detector
US11520043B2 (en) 2020-11-13 2022-12-06 Decision Sciences Medical Company, LLC Systems and methods for synthetic aperture ultrasound imaging of an object

Also Published As

Publication number Publication date
JPH0226971B2 (en) 1990-06-13

Similar Documents

Publication Publication Date Title
KR100737029B1 (en) Angle independent ultrasound volume flow measurement
US9351707B2 (en) Methods and apparatus to determine shear wave propagation property
US6859659B1 (en) Estimation of vector velocity
US6132377A (en) Medical diagnostic ultrasonic imaging system and method using differential sub-band detection techniques
JPS62117535A (en) Ultrasonic doppler apparatus
WO1996011413A1 (en) Quantitative color flow
JP2004255213A (en) Ultrasound doppler flow measuring system with tissue movement discrimination function
JPH08308842A (en) Ultrasonographic diagnostic device
US5738097A (en) Vector Doppler system for stroke screening
JPH057588A (en) Ultrasonic Doppler diagnostic device
Cathignol et al. Transcutaneous blood flow measurements using pseudorandom noise Doppler system
EP0885593A3 (en) Ultrasonic diagnosing apparatus
US5501224A (en) Ultrasonic diagnostic apparatus
JPH03162837A (en) Medical ultrasonic device
JP2953083B2 (en) High limit speed pulse Doppler measurement system
JPS60139239A (en) Ultrasonic diagnostic apparatus
JP3352211B2 (en) Ultrasound Doppler diagnostic equipment
CN114642449B (en) Blood flow imaging method and ultrasonic imaging device
JPH05168630A (en) Ultrasonic diagnostic system
JPH0556975A (en) Ultrasonic diagnostic device
JPH0523334A (en) Ultrasonic doppler image apparatus
JPH07286999A (en) Ultrasonic wave diagnosis device
JPS6266843A (en) Ultrasonic diagnostic apparatus
JPH0274241A (en) Ultrasonic diagnostic apparatus
JPS6122576B2 (en)

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term