[go: up one dir, main page]

JPS62108798A - Production of diamond film or diamond like carbon film - Google Patents

Production of diamond film or diamond like carbon film

Info

Publication number
JPS62108798A
JPS62108798A JP24889885A JP24889885A JPS62108798A JP S62108798 A JPS62108798 A JP S62108798A JP 24889885 A JP24889885 A JP 24889885A JP 24889885 A JP24889885 A JP 24889885A JP S62108798 A JPS62108798 A JP S62108798A
Authority
JP
Japan
Prior art keywords
diamond
film
substrate
carbon
carbon film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24889885A
Other languages
Japanese (ja)
Inventor
Yoshinori Kuwae
桑江 良昇
Minoru Obata
稔 小畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24889885A priority Critical patent/JPS62108798A/en
Publication of JPS62108798A publication Critical patent/JPS62108798A/en
Pending legal-status Critical Current

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

PURPOSE:To remarkably increase the density of the formed film by grinding the surface of a substrate with polishing powder having comparatively small mean particle diameter as pretreatment when a diamond film or a diamond like carbon film is formed on the substrate. CONSTITUTION:When the diamond film or the diamond like carbon film is formed on the substrate, the surface of the substrate is ground with polishing powder having <1mum mean particle diameter and then the diamond film or the diamond like carbon film is formed on the substrate. The mean particle diameter of the polishing powder is most preferably controlled to <=0.8mum. The diamond film or the diamond like carbon film can be formed on the substrate by vacuum deposition, chemical vapor growth, plasma chemical vapor growth, or an ion-beam method.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は各81I基体の表面にダイヤモンド膜又はダイ
ヤモンド状炭素膜を形成する方法に関し、更に詳しくは
、非常に簡単な方法で密度の高いダイヤモンド膜又はダ
イヤモンド状炭素膜を形成できるダイヤモンド膜又はダ
イヤモンド状炭素膜の製造方法に関する。
Detailed Description of the Invention [Technical Field of the Invention] The present invention relates to a method for forming a diamond film or a diamond-like carbon film on the surface of each 81I substrate. Alternatively, the present invention relates to a diamond film or a method for manufacturing a diamond-like carbon film that can form a diamond-like carbon film.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

ダイヤモンドは、現在知られている物質の中では、硬度
、熱伝導率が最も大きく、また、億めで高い弾性率、圧
縮強さ、′g!気杷縁性を備え、かつ透明で化学的にも
安定な物質である。したがってその優れた特性を生かす
べく、治工具への耐摩耗コーディング、太陽電池の保禮
模、光学レンズ又は半導体の放熱板などへの用途開発が
研究されている。しかしながら、天然のダイヤモンドは
産出量も少なく極めて高価であるため到底工業用素材と
して利用するわけlこはいかない。
Diamond has the highest hardness and thermal conductivity of any currently known substance, and also has the highest elastic modulus, compressive strength, and g! It is a transparent and chemically stable substance with loquat properties. Therefore, in order to take advantage of its excellent properties, research is being carried out to develop applications such as wear-resistant coating for jigs and tools, protection for solar cells, optical lenses, and heat sinks for semiconductors. However, natural diamonds are produced in small quantities and are extremely expensive, so there is no way they can be used as industrial materials.

そのため1人造ダイヤモンドの製造研究が盛んlこ行な
われているが、従来知られている高温・高圧下における
方法で製造された人造ダイヤモンドも高価であって、工
業用素材としての有用性には乏しい。′しかも、これら
天然ダイヤモンド、人造ダイヤモンドはいずれもその形
状が一般に塊状若しくは粒状であって膜の製造は困難で
あるため、ダイヤモンドが備える有用な特性を光分活用
し得ていない。
For this reason, research on the production of synthetic diamonds is actively being carried out, but synthetic diamonds produced using conventional methods under high temperature and high pressure are also expensive and have little utility as industrial materials. . 'Moreover, both natural diamonds and artificial diamonds are generally lumpy or granular in shape, making it difficult to produce a film, so the useful properties of diamond cannot be utilized optically.

このようなことから最近では、低温・低圧下にあっても
ダイヤモンドを製造する、しかもダイヤモンド膜を製造
する研究が活発に進められている。
For this reason, research has recently been actively conducted to produce diamonds even at low temperatures and low pressures, and moreover, to produce diamond films.

その主要な方法は以下の4つである。すなわち、嬉1は
、真空中でダイヤモンド粉末にレーザ光又は電子線を照
射してそれを加熱蒸発せしめ、そめ蒸気を基体表面に被
着せしめてダイヤモンド状炭素膜を形成する真空蒸着法
、第2は、加熱した基体の表面にメタン、エチレン、ア
セチレンのような炭化水素を導入し、基体に近設した熱
フィラメントの熱エネルギーで該炭化水素を熱分解して
活性1を生成せしめ、もって基体表面にダイヤモンドを
析出させるとbう化学気相成長法%第3は。
There are four main methods: That is, Raku 1 is a vacuum evaporation method in which a diamond-like carbon film is formed by irradiating diamond powder with a laser beam or an electron beam in a vacuum to heat and evaporate it, and then depositing the vapor on the substrate surface. In this method, a hydrocarbon such as methane, ethylene, or acetylene is introduced onto the surface of a heated substrate, and the hydrocarbon is thermally decomposed using the thermal energy of a hot filament placed close to the substrate to generate active 1, which causes the surface of the substrate to The third method is chemical vapor deposition to deposit diamond.

プラズマの中で炭化水素を分解して活性種を生成せしめ
、もって基体表面にダイヤモンドを析出させるというプ
ラズマ化学気相成長法、第4は、炭化水素若しくは黒鉛
から炭素を含む正イオンを生成せしめ、これら正イオン
を集束して基体表面に射突せしめ、もりて基体表面をこ
ダイヤモンド又はダイヤモンド状炭素を析出させるとい
うイオンビーム法、などである。
A plasma chemical vapor deposition method in which hydrocarbons are decomposed in plasma to generate active species, thereby depositing diamonds on the surface of a substrate.Fourthly, carbon-containing positive ions are generated from hydrocarbons or graphite, There is an ion beam method in which these positive ions are focused and bombarded onto the surface of a substrate to deposit diamond or diamond-like carbon on the surface of the substrate.

これらの方法はいずれも低温・低圧下で行なわれるので
工業的−こは有利であるが、しかし、これらの方法によ
り基体の表面に形成されたダイヤモンド膜又はダイヤモ
ンド状炭素膜はいずれも高品質のものではなく、黒色不
透明になりやすかったり、密度が小さくて気孔が多かっ
たりなどの欠点を有している。向えばダイヤモンドの優
れた熱伝導性(こ着目し発熱の激しい電子素子の放熱体
としてダイヤモンド膜又はダイヤモンド状炭素膜を使う
場合にこれらの模の密度が小さいと、放熱効果が悪くな
る。また、ダイヤモンドの優れた電気絶縁性に注目し、
各種部材を基体とし、その表面をダイヤモンド膜又ダイ
ヤモンド状炭素膜で被膜して電気絶縁性を与えたい場合
に、これら膜の密度が小さいと耐電圧が極めて小さくな
る恐れがあり、致命的な弱点を構成してしま5゜ したがってこれらの目的に対しては、高密度のダイヤモ
ンド膜又はダイヤモンド状炭XUIkの製造方法の実現
が強く要請されている。
All of these methods are industrially advantageous because they are carried out at low temperatures and low pressures; however, the diamond film or diamond-like carbon film formed on the surface of the substrate by these methods is of high quality. However, it has drawbacks such as being easily black and opaque, and having a low density and many pores. Considering the excellent thermal conductivity of diamond, when diamond films or diamond-like carbon films are used as heat dissipators for electronic devices that generate a lot of heat, if the density of these patterns is low, the heat dissipation effect will be poor. Focusing on diamond's excellent electrical insulation,
When using various materials as a base and coating the surface with a diamond film or diamond-like carbon film to provide electrical insulation, if the density of these films is low, the withstand voltage may become extremely low, which is a fatal weakness. Therefore, for these purposes, there is a strong demand for a method for producing a high-density diamond film or diamond-like carbon XUIk.

〔発明の目的〕[Purpose of the invention]

本発明は、上記要請番こ応えてなされたものでありて、
非常lこ簡単な方法で各i基体上lこ密度の大きいダイ
ヤモンド膜又はダイヤモンド状炭素膜を形成できるダイ
ヤモンド膜又はダイヤモンド状炭素膜の製造方法を提供
することを目的とする。
The present invention was made in response to the above request, and
It is an object of the present invention to provide a method for manufacturing a diamond film or a diamond-like carbon film that can form a diamond film or a diamond-like carbon film with a high density on each substrate using a very simple method.

〔発明の概要〕[Summary of the invention]

本発明者らは上記目的を達成すべく鋭意研究を重ねた結
果、前述した4つのダイヤモンド膜の製造方法等におい
て、前処理として基体の表面を比較的小さい平均粒径を
持つ研摩粉で研摩すると、形成されるダイヤモンド膜又
はダイヤモンド状炭素膜の密度が飛躍的に増大するとの
!J!実を見い出し、本発明方法を開発するに到った。
As a result of intensive research to achieve the above object, the present inventors found that in the four diamond film manufacturing methods described above, it is possible to polish the surface of the substrate with an abrasive powder having a relatively small average particle size as a pretreatment. , the density of the diamond film or diamond-like carbon film that is formed increases dramatically! J! This discovery led to the development of the method of the present invention.

すなわち、本発明のダイヤモンド膜又はダイヤモンド状
炭素膜の製造方法は、基体上にダイヤモンド膜又はダイ
ヤモンド状炭素UKを形成する製造方法において、該基
体の表面を平均粒径が1μm未満の研摩粉で研摩した麦
、該基体上lこダイヤモンド膜又はダイヤモンド状炭素
膜を形成することを特徴とする。
That is, the method for manufacturing a diamond film or diamond-like carbon film of the present invention is a manufacturing method for forming a diamond film or diamond-like carbon UK on a substrate, in which the surface of the substrate is polished with abrasive powder having an average particle size of less than 1 μm. The method is characterized in that a diamond film or a diamond-like carbon film is formed on the substrate.

まず1本発明tこおける用語:°ダイヤモンド状炭素嗅
°と(ま、ダイヤモンドと黒鉛若しくは無定形炭素が混
在する膜を指す。また、本発明でいり基体とは、ダイヤ
モンド嘆若しくはダイヤモンド状炭素(漠で被損すべき
材料をいう。
First of all, terminology used in the present invention: diamond-like carbon (or diamond-like carbon) refers to a film in which diamond and graphite or amorphous carbon are mixed. Materials that are subject to damage in the wild.

本発明の最大の特徴は、予め基体の表面が平均粒径が1
μm 未満の研摩粉で研摩することにある。
The most important feature of the present invention is that the surface of the substrate has an average particle diameter of 1.
The purpose is to polish with abrasive powder of less than μm.

その後、例えば前述の4つの方法、すなわち、X空蒸着
法、化学気相成長法、プラズマ化学気相成長法、イオン
ビーム法を適用すればよい。基体の材料としては、ポリ
エチレン、ポリアセチレン。
Thereafter, for example, the four methods described above, namely, the X-vacuum deposition method, the chemical vapor deposition method, the plasma chemical vapor deposition method, and the ion beam method may be applied. The base material is polyethylene or polyacetylene.

ポリテトラフルオルエチレン 物材料:各1の単体金属.合金.セラミックス。polytetrafluoroethylene Materials: 1 element each. alloy. Ceramics.

ガラスなどの無機質材料二また複合材料であってよく格
別限定されるものではない。研摩粉としては,酸化アル
ミニウム、酸化クロム、酸化チタン、炭化ケイ累,窒化
ケイ素、酸化ジルコニウム、酸化イツトリウム、ダイヤ
モンドのよりなものを挙げるCとができ、格別限定され
るものではない。
It may be an inorganic material such as glass, or a composite material, but is not particularly limited. Examples of the polishing powder include aluminum oxide, chromium oxide, titanium oxide, silicon carbide, silicon nitride, zirconium oxide, yttrium oxide, and diamond, but are not particularly limited.

第1表はシリコンウェハーを基体として用い、該シリコ
ンウェハーを各4平均粒径を持つ酸化アルミニウム又は
炭化ケイ素で研摩した後、前述の2の方法、即ち化学気
相成長法で約10μmの厚さのダイヤモンド膜を核シリ
コンウェハー表面上に形成した仮の密度を測定した結果
を示す。密度の測定には、ダイヤモンド膜を化学的また
は機械的にシリコンウェハーから剥離後、比重液法(比
重が既知で、かつ比重が異なる液を何種か用意し、ダイ
ヤモンド膜が膣液に浮くのかまたは沈むのかで、該ダイ
ヤモンド膜の密度を求めるもので、誤差は約2係である
)を用いた。第1表から明らかなように密度の増大が起
こる。特に平均被径が0.8μm以下の研摩粉の場合に
密度の格段の増大が見られる。
Table 1 shows that using a silicon wafer as a substrate, the silicon wafer is polished with aluminum oxide or silicon carbide each having four average particle sizes, and then deposited to a thickness of about 10 μm by the above-mentioned method 2, that is, chemical vapor deposition. The results of measuring the density of a diamond film formed on the surface of a core silicon wafer are shown. To measure the density, after chemically or mechanically peeling the diamond film from the silicon wafer, we use the specific gravity liquid method (prepare several liquids with known specific gravity and different specific gravity, and check whether the diamond film floats in the vaginal fluid. The density of the diamond film is determined based on whether it sinks or sinks, and the error is about 2 factors). As is clear from Table 1, an increase in density occurs. In particular, in the case of abrasive powder with an average diameter of 0.8 μm or less, a marked increase in density is observed.

(以下余白) 第1表 現在の所、限定された平均粒径でのみ、密度が大きくな
る理由は明らかではない。
(Margin below) Table 1 At present, it is not clear why the density increases only with a limited average particle size.

また、その他の基体、その他の研摩粉およびその他の形
成方法でも第1表とほぼ同様の結果が得られた。
Further, almost the same results as in Table 1 were obtained using other substrates, other abrasive powders, and other forming methods.

C発明の実施列〕 モリブデンを基体として用い、平均粒径0.25μmの
ダイヤモンド粉で該モリブデンの表面を研撃した。つい
で、メタンと水素の混合ガス(体積比1:100)を反
応ガスとし、ガス圧40Torr,反応時間8時間の条
件下にて、マイクロ波を用いたプラズマ化学気相成長法
を適用して上記モリブデンの上lこ厚み10μmのダイ
ヤモンド膜を形成した。
Example C of the invention] Molybdenum was used as a substrate, and the surface of the molybdenum was abraded with diamond powder having an average particle size of 0.25 μm. Next, using a mixed gas of methane and hydrogen (volume ratio 1:100) as a reaction gas, plasma chemical vapor deposition using microwaves was applied under conditions of a gas pressure of 40 Torr and a reaction time of 8 hours. A diamond film with a thickness of 10 μm was formed on top of molybdenum.

比較のため、平均粒径15μmのダイヤモンド粉で研摩
したモリブデンを基体として用いて、上と同様の条件下
にて厚み10μmのダイヤモンド膜を形成した。上で得
られた2種類のダイヤモンド膜の密度を比重液法で測定
した所、平均粒径0.25μmのダイヤモンド粉で研摩
したものは3.117cm”平均粒径15μmのダイヤ
モンド粒で研摩したものは2.0 I 7cm”であっ
た。このことから本発明方法で得られるダイヤモンド膜
又はダイヤモンド状炭素膜は高密度であることがわかる
For comparison, a diamond film with a thickness of 10 μm was formed under the same conditions as above using molybdenum ground with diamond powder having an average particle size of 15 μm as a substrate. When the densities of the two types of diamond films obtained above were measured using the specific gravity liquid method, the density of the diamond film polished with diamond powder with an average particle size of 0.25 μm was 3.117 cm, and the density of the diamond film polished with diamond particles with an average particle size of 15 μm was 3.117 cm. was 2.0 I 7cm". This shows that the diamond film or diamond-like carbon film obtained by the method of the present invention has a high density.

〔発明の効果〕〔Effect of the invention〕

以上の説明で明らかなように1本発明方法は基体の表面
に密度の高いダイヤモンド膜又はダイヤモンド状炭素膜
を容易に製造することができ、その工業的価値は大きい
As is clear from the above description, the method of the present invention can easily produce a high-density diamond film or diamond-like carbon film on the surface of a substrate, and has great industrial value.

代理人 弁理士  則 近 Wl  重囲     竹
 花 喜久男
Agent Patent Attorney Chika Nori Wl Kikuo Takehana

Claims (2)

【特許請求の範囲】[Claims] (1)基体上にダイヤモンド膜又はダイヤモンド状炭素
膜を形成する製造方法において、該基体の表面を平均粒
径が1μm未満の研摩粉で研摩した後、該基体上にダイ
ヤモンド膜又はダイヤモンド状炭素膜を形成することを
特徴とするダイヤモンド膜又はダイヤモンド状炭素膜の
製造方法。
(1) In a manufacturing method for forming a diamond film or a diamond-like carbon film on a substrate, the surface of the substrate is polished with abrasive powder having an average particle size of less than 1 μm, and then a diamond film or a diamond-like carbon film is formed on the substrate. A method for producing a diamond film or a diamond-like carbon film, the method comprising: forming a diamond film or a diamond-like carbon film.
(2)平均粒径が0.8μm以下の研摩粉であることを
特徴とする特許請求の範囲第1項記載のダイヤモンド膜
又はダイヤモンド状炭素膜の製造方法。
(2) The method for producing a diamond film or diamond-like carbon film according to claim 1, wherein the abrasive powder has an average particle size of 0.8 μm or less.
JP24889885A 1985-11-08 1985-11-08 Production of diamond film or diamond like carbon film Pending JPS62108798A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24889885A JPS62108798A (en) 1985-11-08 1985-11-08 Production of diamond film or diamond like carbon film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24889885A JPS62108798A (en) 1985-11-08 1985-11-08 Production of diamond film or diamond like carbon film

Publications (1)

Publication Number Publication Date
JPS62108798A true JPS62108798A (en) 1987-05-20

Family

ID=17185074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24889885A Pending JPS62108798A (en) 1985-11-08 1985-11-08 Production of diamond film or diamond like carbon film

Country Status (1)

Country Link
JP (1) JPS62108798A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173761A (en) * 1991-01-28 1992-12-22 Kobe Steel Usa Inc., Electronic Materials Center Semiconducting polycrystalline diamond electronic devices employing an insulating diamond layer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5173761A (en) * 1991-01-28 1992-12-22 Kobe Steel Usa Inc., Electronic Materials Center Semiconducting polycrystalline diamond electronic devices employing an insulating diamond layer

Similar Documents

Publication Publication Date Title
US5308661A (en) Pretreatment process for forming a smooth surface diamond film on a carbon-coated substrate
US5474816A (en) Fabrication of amorphous diamond films
US4698256A (en) Articles coated with adherent diamondlike carbon films
TWI388686B (en) Acceptor
EP0097764B1 (en) X-ray lithographic mask
US5660894A (en) Process for depositing diamond by chemical vapor deposition
JPH07506799A (en) Enhanced crystal nucleation for chemical vapor deposition of diamonds
Chen et al. Optical absorption edge characteristics of cubic boron nitride thin films
US4767666A (en) Wafer base for silicon carbide semiconductor device
JPS62108798A (en) Production of diamond film or diamond like carbon film
CN112223133A (en) CMP pad conditioner and method of making the same
JPS60190557A (en) Coating material and its manufacture
Nyaiesh et al. New radio frequency technique for deposition of hard carbon films
Ullmann et al. Diamond-like amorphous carbon films prepared by rf sputtering in argon
Angus et al. Diamond and" diamondlike" phases grown at low pressure: growth, properties and optical applications
JPS61151096A (en) Formation of diamond film or diamond-like carbon film
JPS62108799A (en) Production of diamond film or diamond like carbon film
Cheng et al. Substrate bias dependence of the structure and internal stress of TiN films deposited by the filtered cathodic vacuum arc
Andújar et al. Microstructure of highly oriented, hexagonal, boron nitride thin films grown on crystalline silicon by radio frequency plasma‐assisted chemical vapor deposition
JP2799849B2 (en) Diamond synthesis by chemical vapor deposition
JPH1095694A (en) Adhesive diamond thin film deposition method
Rusop et al. Effects of annealing temperature on the optical, bonding, structural and electrical properties of nitrogenated amorphous carbon thin films grown by surface wave microwave plasma chemical vapor deposition
Pool Diamond Films Sparkle As They Come to Market: High-fidelity tweeters, scratch-proof sunglasses, and fail-safe semiconductor devices are some of the potential applications
JPS6355197A (en) Production of diamond having high purity
JPS61146793A (en) substrate