[go: up one dir, main page]

JPS61146793A - substrate - Google Patents

substrate

Info

Publication number
JPS61146793A
JPS61146793A JP59268447A JP26844784A JPS61146793A JP S61146793 A JPS61146793 A JP S61146793A JP 59268447 A JP59268447 A JP 59268447A JP 26844784 A JP26844784 A JP 26844784A JP S61146793 A JPS61146793 A JP S61146793A
Authority
JP
Japan
Prior art keywords
diamond
substrate
film
carbon
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59268447A
Other languages
Japanese (ja)
Inventor
Yoshinori Kuwae
桑江 良昇
Emiko Higashinakagaha
東中川 恵美子
Masami Miyauchi
宮内 正視
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59268447A priority Critical patent/JPS61146793A/en
Publication of JPS61146793A publication Critical patent/JPS61146793A/en
Pending legal-status Critical Current

Links

Landscapes

  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

PURPOSE:To obtain the titled substrate whose base body is coated with the film of high-quality artificial diamond or artificial diamond-like carbon which resembles closely natural diamond by coating the base body having specified heat conductivity with a diamond film or a diamond-like carbon film. CONSTITUTION:A substrate is obtained by coating its base body with a diamond film or a diamond-like carbon film, and the surface part of the base body or the base body itself is formed of a substance having >=10w/(m.k) heat conductivity. The diamond-like carbon film is the film wherein diamond, graphite, and amorphous carbon are mixed. Besides, the base body is the material to be coated with the diamond film or the diamond-like carbon film. As the material having >=10w/(m.k) heat conductivity, silver [(lambda:420w/(m.k)], gold [lambda:290w/(m.k)], aluminum lambda:240w/(m.k)], beryllium oxide [lambda:250w/(m.k)], silicon carbide [lambda:270w/(m.k)], etc., are exemplified.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は基体が天然ダイヤモンドの特性に近似した高品
質の人造ダイヤモンド膜又はダイヤモンド状炭素膜で被
覆された基板に関する・〔発明の技術的背景とその問題
点〕 ダイヤモンドは、現在知られている物質の中では、硬度
、熱伝導率が最も大きく、また、極めて高い弾性率、圧
縮強さ、電気絶縁性を備え、かつ、透明で化学的にも安
定な物質である。したがって、その優れた特性を生かす
べく、治工具への耐摩耗コーティング、太陽電池の保護
膜。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a substrate coated with a high quality artificial diamond film or diamond-like carbon film having properties similar to natural diamond. The problem] Diamond has the highest hardness and thermal conductivity among currently known substances, and also has extremely high elastic modulus, compressive strength, and electrical insulation properties, and is transparent and chemically insulated. is also a stable substance. Therefore, in order to take advantage of its excellent properties, we apply wear-resistant coatings to jigs and tools and protective films for solar cells.

光学レンズ又は半導体の放熱板などへの用途開発が研究
されている。しかしながら、天然のダイヤモンドは産出
量が少なく極めて高価であるため列置工業用素材として
利用するわけにはいかない。
Research is underway to develop applications for optical lenses or semiconductor heat sinks. However, natural diamonds are produced in small quantities and are extremely expensive, so they cannot be used as a material for industrial use.

そのため、人造ダイヤモンドの製造研究が盛んに行なわ
れているが、従来知られている高温・高圧下における方
法で製造された人造ダイヤモンドも可成り高価であって
、工業用素材としての有用性には乏しい。しかも、これ
ら天然ダイヤモンド、人造ダイヤモンドはいずれもその
形状が一般に塊状若しくは粒状であって腺の製造は困難
であるため、ダイヤモンドが備える有用な特性を充分活
用し得ていない。
For this reason, research on the production of synthetic diamonds is actively being conducted, but synthetic diamonds produced using conventional methods under high temperature and high pressure are also quite expensive, and their usefulness as industrial materials is limited. poor. Moreover, both natural diamonds and artificial diamonds are generally lumpy or granular in shape, and it is difficult to manufacture glands, so that the useful properties of diamond cannot be fully utilized.

このようなことから、最近では、低温・低圧下にあって
もダイヤモンドを製造する、しかもダイヤモンド膜を製
造する研究が活発に進められている。その主要な方法は
以下の4つである。
For this reason, research has recently been actively conducted to produce diamonds even at low temperatures and low pressures, and moreover, to produce diamond films. There are four main methods:

すなわち、第1は、真空中でダイヤモンド粉末にレーザ
光又は電子線を照射してそれを加熱蒸発せしめ、その蒸
気を基体表面に被着せしめてダイヤモンド状炭素膜を形
成する真空蒸着法。
That is, the first method is a vacuum evaporation method in which diamond powder is irradiated with a laser beam or an electron beam in a vacuum to heat and evaporate it, and the vapor is deposited on the surface of a substrate to form a diamond-like carbon film.

第2は、加熱した基体の表面にエチレン、アセチレンの
ような炭化水素を導入し、基体表面の熱エネルギーで該
炭化水素を熱分解して活性種を生成せしめ、もって基体
表面にダイヤモンドを析出させるという化学気相成長法
、第3は、プラズマの中で炭化水素を分解して活性種を
生成せしめ、もって基体表面にダイヤモンドを析出させ
るというプラズマ化学気相成長法、第4は、炭化水素若
しくは黒鉛から炭素を含む正イオンを生成せしめ、これ
ら正イオンを集束して基体表面に射突せしめ、もって基
体表面にダイヤモンド又はダイヤモンド状炭素を析出さ
せるというイオンビーム法、などである。
Second, a hydrocarbon such as ethylene or acetylene is introduced onto the heated surface of the substrate, and the thermal energy of the substrate surface thermally decomposes the hydrocarbon to generate active species, thereby depositing diamond on the surface of the substrate. The third method is plasma chemical vapor deposition method, in which hydrocarbons are decomposed in plasma to generate active species, and diamond is deposited on the substrate surface. This method includes an ion beam method in which positive ions containing carbon are generated from graphite, and these positive ions are focused and impinged on the surface of a substrate, thereby depositing diamond or diamond-like carbon on the surface of the substrate.

これら4つの方法はいずれも低温・低圧下で行なわれる
ので工業的には有利であるが、しかし、これらの方法に
より基体の表面に形成されたダイヤモンド膜又はダイヤ
モンド状炭素膜はいずれも高品質のものではなく、以下
に列挙するような欠点を少なくとも1つは備えている。
All of these four methods are industrially advantageous because they are carried out at low temperatures and low pressures; however, the diamond film or diamond-like carbon film formed on the surface of the substrate by these methods is of high quality. However, it has at least one of the drawbacks listed below.

すなわち、それら欠点とは、■黒鉛や無定形炭素が混在
する、■比較的硬度が低い、■電気絶縁性が悪い、■膜
厚が均一ではない、■ダイヤモンドの析出速度が小さい
、■膜面の平滑性に劣る。の基体との密着性が悪く剥離
しやすい、■黒色不透明になシやすい、■熱的に不安定
であって、例えば750Cの温度で黒鉛に転化してしま
う、などの問題である。
In other words, these disadvantages are: ■Contains graphite and amorphous carbon, ■Relatively low hardness, ■Poor electrical insulation, ■Uneven film thickness, ■Slow diamond precipitation rate, and ■Membrane surface. Poor smoothness. Problems include: poor adhesion to the substrate and easy peeling, 1) easily turning black and opaque, and 2) being thermally unstable and converting into graphite at a temperature of, for example, 750C.

このような問題は、例えば超硬合金を基体とし、その表
面にダイヤモンド膜を形成して耐摩耗性治工具を製造す
る場合、または、半導体の放熱用基板を製造する場合に
おいて、致命的な弱点を構成する。
Such problems can be a fatal weakness, for example, when manufacturing wear-resistant jigs and tools using cemented carbide as a base and forming a diamond film on its surface, or when manufacturing semiconductor heat dissipation substrates. Configure.

したがって、上記した■〜■の不都合を生ずることのな
いダイヤモンド膜を製造することは、ダイヤモンド本来
の特性を有効に発揮せしめることとなシ、その工業的価
値は極めて大であるといわなければなら々い。
Therefore, it must be said that manufacturing a diamond film that does not cause the above-mentioned disadvantages ① to ② will effectively demonstrate the inherent characteristics of diamond, and its industrial value is extremely large. Many.

〔発明の目的〕[Purpose of the invention]

本発明は、上記要請に応え、基体が、天然ダイヤモンド
の特性に近似したダイヤモンド膜又はダイヤモンド状炭
素膜で被覆され九基板の提供を目的とする。
In response to the above-mentioned needs, the present invention aims to provide a substrate in which the substrate is coated with a diamond film or a diamond-like carbon film having properties similar to natural diamond.

〔発明の概要〕[Summary of the invention]

本発明者らは、上記目的を達成すべく鋭意研究を重ねた
結果、前述した4つのダイヤモンド膜製造方法において
、基体又は基体の表面部分を高熱伝導性の物質で構成す
ると、形成されたダイヤモンド膜又はダイヤモンド状炭
素膜の特性が極めて良好になるとの事実を見出し、本発
明の基板を開発するに到った。
As a result of intensive research to achieve the above object, the present inventors have found that in the four diamond film manufacturing methods described above, when the substrate or the surface portion of the substrate is made of a material with high thermal conductivity, the formed diamond film They also discovered that the properties of diamond-like carbon films are extremely good, and developed the substrate of the present invention.

すなわち、本発明の基板は、基体と、該基体を被覆する
ダイヤモンド膜若しくはダイヤモンド状炭素膜とから成
る基板であって、該基体の表面部分又は基体それ自身が
、IOW/(m@k)以上の熱伝導率を有する物質で構
成されていることを特徴とする。
That is, the substrate of the present invention is a substrate consisting of a base and a diamond film or diamond-like carbon film covering the base, and the surface portion of the base or the base itself has an IOW/(m@k) or more. It is characterized by being composed of a material having a thermal conductivity of .

まず、本発明における用語:′″ダイヤモンド状炭素膜
″とは、ダイヤモンドと黒鉛若しくは無定形炭素が温布
する膜を指す。また、本発明でいう基体とは、ダイヤモ
ンド膜若しくはダイヤモンド状炭素膜で被覆すべき材料
をいう。
First, the term ``diamond-like carbon film'' in the present invention refers to a film in which diamond and graphite or amorphous carbon are heated. Further, the term "substrate" as used in the present invention refers to a material to be coated with a diamond film or a diamond-like carbon film.

本発明の最大の特徴は、基体それ自身又は基体の表面部
分が熱伝導率(J) 10W/ (m −’k )以上
である物質で構成されていることである。この値が10
W/ (m−k )未満の場合には本発明の目的が達成
されない。
The most important feature of the present invention is that the substrate itself or the surface portion of the substrate is made of a material having a thermal conductivity (J) of 10 W/(m −'k ) or more. This value is 10
If it is less than W/(m-k), the object of the present invention will not be achieved.

そのような物質としては、例えば、銀(λ:420W/
(m−k) L金(λ: 290W/(m−k) ) 
、アルミニウム(λ: 240W/ (m−k) ) 
、銅(λ:390W/(m@k))、モリブデン(λ:
 140W/ (m−k) ) 。
As such a substance, for example, silver (λ: 420W/
(m-k) L gold (λ: 290W/(m-k) )
, aluminum (λ: 240W/ (m-k))
, copper (λ: 390W/(m@k)), molybdenum (λ:
140W/(m-k)).

ケイ素(λ: 125W/ (m−k) ) (Dよう
な金X単体;酸化ベリリウム(λ: zsow/(m−
k))、 酸化アルミニウム(λ: 20W/ (m@
k) )のような酸化物;炭化ケイ素(λ: 270W
/ (nll’k) ) v炭化yJt’)1(λ:2
0W/(m−k))のような炭化物;窒化アルミニウム
(λ: 100W/ (m−k ) ) +六方晶窒化
ホウ素(λ:60W/(m−k))のような窒化物;5
US304ステンレス鋼(λ:15W/(m−k))の
ような合金をあげることができる。
Silicon (λ: 125W/(m-k)) (gold X alone like D; beryllium oxide (λ: zsow/(m-
k)), aluminum oxide (λ: 20W/ (m@
oxides such as k) ); silicon carbide (λ: 270W
/ (nll'k) ) v carbonization yJt') 1 (λ: 2
0W/(m-k)); aluminum nitride (λ: 100W/(m-k)) + nitride such as hexagonal boron nitride (λ: 60W/(m-k)); 5
An alloy such as US304 stainless steel (λ: 15W/(m-k)) can be mentioned.

本発明の基板を製造するに当っては、基体それ自身を上
記した各物質で構成し、それに前述の4つの方法、すな
わち、真空蒸着法、化学気相成長法、プラズマ化学気相
成長法、イオンビーム法を適用すればよい。
In manufacturing the substrate of the present invention, the substrate itself is composed of each of the above-mentioned substances, and the above-mentioned four methods, namely, vacuum evaporation method, chemical vapor deposition method, plasma chemical vapor deposition method, The ion beam method may be applied.

また、基体が上記し丸物質ではなく熱伝導車が10W/
(m−k)未満の他の金属又は各種合金など他の物質で
あった場合には、この基体の表面部分に上記した1 0
W/ (m−k)以上の熱伝導率を有する物質の層を形
成し、しかるのちに前述の4つの方法でダイヤモンド膜
又はダイヤモンド状炭素膜を形成して基板を得ることが
できる@この後者の場合、上記物質の層の形成に関して
は、基体の表面に1例えば塗布法、溶射法。
In addition, the base body is not a round material but a heat conduction wheel with a power consumption of 10W/
(m-k) of other metals or various alloys, the above-mentioned 10
A substrate can be obtained by forming a layer of a material having a thermal conductivity of W/(m-k) or higher, and then forming a diamond film or a diamond-like carbon film using the four methods described above. In this case, the layer of the above substance can be formed on the surface of the substrate by, for example, a coating method or a thermal spraying method.

化学気相成長法、めっき法、真空蒸着法、スパッタ法、
イオンブレーティング法のような公知の成膜技術を適用
して上記物質の層を形成したり、又は基体を上記金属で
構成し、それに酸化。
Chemical vapor deposition method, plating method, vacuum evaporation method, sputtering method,
A layer of the above-mentioned substance is formed by applying a known film-forming technique such as an ion-blating method, or the substrate is made of the above-mentioned metal and then oxidized.

窒化、炭化などの処理を施して表面に上記酸化物、窒化
物、炭化物の層を形成したりする方法が適用可能である
。その際、層の厚みがあまり薄いと層にピンホール等が
発生するので好ましくは0.05μm以上とする。
A method of forming a layer of the above-mentioned oxide, nitride, or carbide on the surface by performing a treatment such as nitriding or carbonizing is applicable. At this time, if the thickness of the layer is too thin, pinholes etc. will occur in the layer, so the thickness is preferably 0.05 μm or more.

〔発明の実施例〕[Embodiments of the invention]

場合 基体を石英ガラスとし、この上に真空蒸着法によって厚
み1μmの銀層を形成した。
In this case, the substrate was made of quartz glass, and a 1 μm thick silver layer was formed thereon by vacuum evaporation.

ついで、メタンと水素の混合ガス(体積比1:50)を
反応ガスとし、ガス圧25 Torr、フィラメント温
度1950CI反応時間5時間の条件下にて、化学気相
成長法の1種である熱フイラメント法を適用して上記銀
層の上に厚み10μmのダイヤモンド膜を形成し、石英
ガラス。
Next, using a mixed gas of methane and hydrogen (volume ratio 1:50) as a reaction gas, thermal filament deposition, which is a type of chemical vapor deposition method, was performed under the conditions of a gas pressure of 25 Torr, a filament temperature of 1950 CI, and a reaction time of 5 hours. A diamond film with a thickness of 10 μm was formed on the silver layer by applying the method, and then a diamond film with a thickness of 10 μm was formed on the quartz glass.

銀、ダイヤモンドの3層構造体である基板を製造した。A substrate having a three-layer structure of silver and diamond was manufactured.

これを実施例1とする。This is referred to as Example 1.

基体を酸化マグネシウム板とし、この上にスパッタによ
って厚み5μmの銀層を形成した。
A magnesium oxide plate was used as the substrate, and a 5 μm thick silver layer was formed thereon by sputtering.

ついで、メタンと水素の混合ガス(体積比1:10)を
反応ガスとし、ガス圧0. I Torr 。
Next, a mixed gas of methane and hydrogen (volume ratio 1:10) was used as the reaction gas, and the gas pressure was 0. I Torr.

反応時間5時間の条件下にて、マイクロ波を用いたプラ
ズマ化学気相成長法を適用して上記銀層の上に厚み8μ
mのダイヤモンド膜を形成して基板を製造した。これを
実施例2とする。
A film with a thickness of 8 μm was deposited on the silver layer by plasma chemical vapor deposition using microwaves under conditions of a reaction time of 5 hours.
A substrate was manufactured by forming a diamond film of m. This is referred to as Example 2.

実施例1の場合と同様にして石英ガラスの表面に厚み1
μmの銀層を形成した。メタンを反応ガスとし、ガス圧
0.01 Torr 、反応時間1時間の条件下にて、
熱陰極のイオンビーム蒸着法を適用して上記銀層の上に
厚み10μmのダイヤモンド状炭素膜を形成して基板を
製造した。これを実施例3とする@ 比較のため、実施例1と同様の条件下にて、石英ガラス
の表面に直接厚み4μmのダイヤモンド膜を形成し、石
英ガラス、ダイヤモンドから成る2層構造体の基板を製
造した。これを比較例1とする。
In the same manner as in Example 1, the surface of the quartz glass was coated with a thickness of 1
A silver layer of .mu.m was formed. Using methane as the reaction gas, under the conditions of a gas pressure of 0.01 Torr and a reaction time of 1 hour,
A substrate was manufactured by forming a diamond-like carbon film with a thickness of 10 μm on the silver layer using a hot cathode ion beam evaporation method. This is referred to as Example 3 @ For comparison, a 4 μm thick diamond film was directly formed on the surface of quartz glass under the same conditions as Example 1, and a substrate with a two-layer structure consisting of quartz glass and diamond was formed. was manufactured. This is referred to as Comparative Example 1.

第2の比較例として、実施例2と同様の条件下にて、酸
化マグネシウム板の表面に直接厚み4μmのダイヤモン
ド膜を形成し、酸化マグネシウム板、ダイヤモンドから
成る2層構造の基板を製造した。これを比較例2とする
As a second comparative example, a 4 μm thick diamond film was directly formed on the surface of a magnesium oxide plate under the same conditions as in Example 2 to produce a two-layered substrate consisting of a magnesium oxide plate and diamond. This is referred to as Comparative Example 2.

また、第3の比較例として、実施例3と同様の条件下に
て、石英ガラスの表面に直接厚み8μmのダイヤモンド
状炭素膜を形成して基板を製造し九。これを比較例3と
する。
In addition, as a third comparative example, a substrate was manufactured by directly forming a diamond-like carbon film with a thickness of 8 μm on the surface of quartz glass under the same conditions as in Example 3. This is referred to as Comparative Example 3.

以上6種類の基板のダイヤモンド膜又はダイヤモンド状
炭素膜につき、X線回折、電子線回折、ラマンスペクト
ル、赤外線吸収スペクトル。
X-ray diffraction, electron diffraction, Raman spectra, and infrared absorption spectra for the diamond films or diamond-like carbon films of the above six types of substrates.

エネルギー損失スペクトルを測定してその結晶形を判定
し、あわせて電気抵抗、グイツカース硬度、黒鉛化温度
、膜表面の平滑性、基体への密着性を測定・評価した。
The energy loss spectrum was measured to determine its crystal form, and the electrical resistance, Guitzkaas hardness, graphitization temperature, film surface smoothness, and adhesion to the substrate were also measured and evaluated.

外お、膜表面の平滑性は、 JIS BO601に規定
する方法で最大高さくRmax)を測定し、1maxが
1.0μm未満の場合を良、 Rmaxが1.0 fi
m以上3.0μm未満の場合を普通、 Rmaxが3.
0μm以上の場合を不良として判定した。また、密着性
に関しては、基板を厚み方向に切断してその切断面を研
摩し、膜と基体(又は銀層)との間に露出した隙間の存
在割合をもって評価し、隙間の存在割合が10%未満の
場合を良、10%以上50ts未満の場合を普通、50
%以上の場合を不良と判定した。
For the smoothness of the membrane surface, measure the maximum height (Rmax) using the method specified in JIS BO601, and if 1max is less than 1.0 μm, it is considered good, and Rmax is 1.0 fi.
If Rmax is 3.0 μm or more and less than 3.0 μm, it is normal.
A case of 0 μm or more was judged as defective. Regarding adhesion, the substrate was cut in the thickness direction, the cut surface was polished, and the ratio of exposed gaps between the film and the substrate (or silver layer) was evaluated. % is good, 10% or more and less than 50ts is fair, 50
% or more was determined to be defective.

以上の結果を一括して第1表に示した。なお、表には6
膜の析出成長速度も記した。また、参考のために、天然
ダイヤモンドの各特性も併記した。
The above results are collectively shown in Table 1. In addition, the table shows 6
The deposition growth rate of the film was also noted. For reference, the characteristics of natural diamonds are also listed.

合 実施例1〜3の銀層に代えて金層を形成したことを除い
ては、実施例1〜3と同様にして3枚の基板を製造し九
。これら3枚のダイヤモンド膜又はダイヤモンド状炭素
膜の特性を測定しその結果を第2表に示した。
Three substrates were manufactured in the same manner as in Examples 1 to 3, except that a gold layer was formed in place of the silver layer in Examples 1 to 3. The properties of these three diamond films or diamond-like carbon films were measured and the results are shown in Table 2.

第  2  表 基体をポリメタクリル酸メチル板とし、この上に真、空
蒸着法によって厚み1μmのアルミニウム層を形成し喪
。ついで、10−’ Torrの真空下で、ダイヤモン
ド粉末に出力50Wの収束レーザ光を照射して蒸発せし
め、厚み4μmのダイヤモンド状炭素膜をアルミニウム
層の上に形成して、ポリメタクリル酸メチル、アルミニ
ウム。
Table 2 A polymethyl methacrylate plate was used as the substrate, and an aluminum layer with a thickness of 1 μm was formed thereon by vacuum vapor deposition. Next, under a vacuum of 10-' Torr, the diamond powder was evaporated by irradiating a focused laser beam with an output of 50 W to form a diamond-like carbon film with a thickness of 4 μm on the aluminum layer. .

ダイヤモンド状炭素の3層構造の基板を製造した。これ
を実施例7とする。
A substrate with a three-layer structure of diamond-like carbon was manufactured. This is referred to as Example 7.

ポリメタクリル酸メチル板上にアルミニウム層を形成せ
ず、直接ポリメタクリル酸メチル板の上に上記レーザに
よる蒸着法で厚み4μm のダイヤモンド状炭素膜を形
成し、ポリメタクリル酸メチル、ダイヤモンド状炭素の
2層構造の基板を製造した。これを比較例4とする。
Without forming an aluminum layer on the polymethyl methacrylate plate, a diamond-like carbon film with a thickness of 4 μm was formed directly on the polymethyl methacrylate plate by the laser vapor deposition method described above, and two layers of polymethyl methacrylate and diamond-like carbon were formed. A layered substrate was manufactured. This is referred to as Comparative Example 4.

実施例3の場合と同様にして酸化ジルコニウム板の上に
厚みxttmのアルミニウム層を形成したのち、実施例
30条件下でイオンビーム蒸着法を適用して厚み10μ
mのダイヤモンド状炭素膜を形成した3層構造の基板を
製造した。これを実施例8とする。
An aluminum layer with a thickness of xttm was formed on the zirconium oxide plate in the same manner as in Example 3, and then an aluminum layer with a thickness of 10 μm was formed by applying the ion beam evaporation method under the conditions of Example 30.
A substrate with a three-layer structure on which a diamond-like carbon film of m thickness was formed was manufactured. This is referred to as Example 8.

これら各層の特性を第3表に示した。Table 3 shows the characteristics of each of these layers.

第   3   表 場合 基体を酸化マグネシウム板とし、この上に真空蒸着法に
よって厚み1μmの銅層を形成した。
In the case shown in Table 3, the substrate was a magnesium oxide plate, and a 1 μm thick copper layer was formed thereon by vacuum evaporation.

ついで、メタンと水素の混合ガス(体積比1:50)を
反応ガスとし、ガス圧30Torr、フィラメント温度
2000C,反応時間5時間の条件下にて、化学気相成
長法の1梅である熱フイラメント法を適用して上記銅層
の上に厚み10μmのダイヤモンド膜を形成し、酸化マ
グネシウム、銅、ダイヤモンドの3層構造体である基板
を製造した。これを実施例9とする。
Next, using a mixed gas of methane and hydrogen (volume ratio 1:50) as a reaction gas, a thermal filament, which is one of the methods of chemical vapor deposition, was formed under the conditions of a gas pressure of 30 Torr, a filament temperature of 2000 C, and a reaction time of 5 hours. A diamond film with a thickness of 10 μm was formed on the copper layer by applying the method, and a substrate having a three-layer structure of magnesium oxide, copper, and diamond was manufactured. This is referred to as Example 9.

比較のため、実施例9と同様の条件下にて、酸化マグネ
シウム板の表面に直接厚み5μmのダイヤモンド膜を形
成し、酸化マグネシウム、ダイヤモンドから成る2層構
造体の基板を製造した。これを比較例5とする・ 基体をパイレックスガラスとし、この上に電子ビーム蒸
着法によって厚み5μmの銅層を形成した。
For comparison, a diamond film with a thickness of 5 μm was directly formed on the surface of a magnesium oxide plate under the same conditions as in Example 9 to produce a substrate with a two-layer structure consisting of magnesium oxide and diamond. This is referred to as Comparative Example 5. The substrate was Pyrex glass, and a 5 μm thick copper layer was formed thereon by electron beam evaporation.

ついで、メタンと水素の混合ガス(体積比1:10)を
反応ガスとし、ガス圧0. I Tart 、反応時間
5時間の条件下にて、マイクロ波を用いたプラズマ化学
気相成長法を適用して上記鋼層の上に厚み6μmのダイ
ヤモンド膜を形成して基板を製造した。これを実施例1
0とする・比較のために、実施例10と同様の条件下に
てパイレックスガラスの表面に直接厚み4μmのダイヤ
モンド膜を形成し、パイレックスガラス、ダイヤモンド
から成る2層構造の基板を製造した。これを比較例6と
する。
Next, a mixed gas of methane and hydrogen (volume ratio 1:10) was used as the reaction gas, and the gas pressure was 0. A substrate was manufactured by forming a diamond film with a thickness of 6 μm on the steel layer by applying plasma chemical vapor deposition using microwaves under conditions of I Tart and reaction time of 5 hours. Example 1
0. For comparison, a diamond film with a thickness of 4 μm was directly formed on the surface of Pyrex glass under the same conditions as in Example 10 to produce a substrate with a two-layer structure consisting of Pyrex glass and diamond. This is referred to as Comparative Example 6.

実施例9の場合と同様にして酸化マグネシウム板の表面
に厚み1μmの銅層を形成した。メタンを反応ガスとし
、ガス圧0.01 Torr、反応時間1時間の条件下
にて、熱陰極のイオンビーム蒸着法を適用して上記鋼層
の上に厚み8μmのダイヤモンド状炭素膜を形成して基
板を製造した〇これを実施例11とする。
A copper layer having a thickness of 1 μm was formed on the surface of the magnesium oxide plate in the same manner as in Example 9. A diamond-like carbon film with a thickness of 8 μm was formed on the steel layer using hot cathode ion beam evaporation under conditions of methane as a reaction gas, gas pressure of 0.01 Torr, and reaction time of 1 hour. A substrate was manufactured using the following steps. This is referred to as Example 11.

また、比較のために、実施例11と同様の条件下にて、
酸化マグネシウム板の表面に直接厚み8μmのダイヤモ
ンド状炭素膜を形成して基板を製造した。これを比較例
7とする。
For comparison, under the same conditions as Example 11,
A substrate was manufactured by directly forming a diamond-like carbon film with a thickness of 8 μm on the surface of a magnesium oxide plate. This is referred to as Comparative Example 7.

以上6種類の基板のダイヤモンド膜又はダイヤモンド状
炭素膜の特性を測定しその結果を第4表に示した。
The characteristics of the diamond film or diamond-like carbon film of the above six types of substrates were measured and the results are shown in Table 4.

石英ガラスを基体とし、この基体に、50 ’l’or
rのアルゴン雰囲気中において、電圧32V、を流80
0Aの操作条件で325メツシユ下のモリブデン粉末を
用いてプラズマ溶射法を施し、基体表面に厚み100μ
mのモリブデン層を形成した。
The base is made of quartz glass, and 50'l'or
In an argon atmosphere of r, a voltage of 32 V is applied to a current of 80
Plasma spraying was performed using molybdenum powder under 325 mesh under operating conditions of 0A, and a thickness of 100μ was applied to the substrate surface.
A molybdenum layer of m was formed.

その後、機械研摩によジモリブデン層の表面粗さ1ma
xを3μmとした。
After that, the surface roughness of the dimolybdenum layer was 1ma by mechanical polishing.
x was 3 μm.

ついで、メタンと水素の混合ガス(体積比l:10)を
反応ガスとし、ガス圧Q、 1 ’I’orr 、反応
時間5時間の条件下にて、マイクロ波を用いたプラズマ
化学気相成長法を適用して上記モリブデン層の上に厚み
8μmのダイヤモンド膜を形成して3層構造の基板を得
た。これを実施例12とする。
Next, using a mixed gas of methane and hydrogen (volume ratio 1:10) as a reaction gas, plasma chemical vapor deposition using microwaves was performed under the conditions of gas pressure Q, 1'I'orr, and reaction time of 5 hours. A diamond film having a thickness of 8 μm was formed on the molybdenum layer by applying the method to obtain a substrate with a three-layer structure. This is referred to as Example 12.

比較のために、この実施例と同一の条件下で石英ガラス
の表面に直接厚み3μmのダイヤモンド膜を形成して2
層構造の基板を得た。これを比較例8とする。
For comparison, a diamond film with a thickness of 3 μm was directly formed on the surface of quartz glass under the same conditions as in this example.
A substrate with a layered structure was obtained. This is referred to as Comparative Example 8.

得られた各ダイヤモンド膜の特性を測定し、第  5 
 表 実施例13 基体表面に窒化アルミニウム層を形成した
場合 基体な醗・化ジルコニウム板とし、この上に塩化アルミ
ニウムとアンモニアの混合ガスを用いた化学気相成長法
によって厚み2μmの窒化7ついで、メタンと水素の混
合ガス(体積比1:50)を反応ガスとし、ガス圧30
Torr、フィラメント温度2000 C,反応時間5
時間の条件下にて熱フイラメント法(化学気相成長法の
1種)を適用して窒化アルミニウム層の上に厚み15μ
mのダイヤモンド膜を形成した。得られ九3層構造の基
板を実施例13とする。
The characteristics of each diamond film obtained were measured, and the
Table Example 13 In the case of forming an aluminum nitride layer on the surface of a substrate A zirconium chloride plate was used as the substrate, and a 2 μm thick nitride layer was deposited on this by chemical vapor deposition using a mixed gas of aluminum chloride and ammonia. The reaction gas is a mixed gas of hydrogen and hydrogen (volume ratio 1:50), and the gas pressure is 30
Torr, filament temperature 2000 C, reaction time 5
The thermal filament method (a type of chemical vapor deposition method) was applied under the condition of 15 μm thickness on the aluminum nitride layer.
A diamond film of m thickness was formed. The obtained substrate having a 93-layer structure is referred to as Example 13.

比較のために、上記条件にて酸化ジルコニウム板の上に
直接厚み5μmのダイヤモンド膜を形成した。得られた
2層構造の基板を比較例9とする。
For comparison, a diamond film with a thickness of 5 μm was formed directly on a zirconium oxide plate under the above conditions. The obtained two-layer structure substrate is referred to as Comparative Example 9.

各ダイヤモンド膜の特性を測定しその結果を第6表に示
した。
The characteristics of each diamond film were measured and the results are shown in Table 6.

第  6  表 基体を酸化マグネシウム板とし、この上に四塩化ケイ素
とプロパンガスの混合ガスを用いた化学気相成長法(温
度:約14001:l’ )によって厚み3μmの炭化
ケイ素層を形成した。ついでs 10  Torrの真
空下で、ダイヤモンド粉末に出力60Wの収束レーザ光
を照射してこれを蒸発せしめ、炭化ケイ素層の上に厚み
4μmのダイヤモンド状炭素膜を形成した。得られた3
層構造の基板を実施例14とした。
Table 6 A magnesium oxide plate was used as the substrate, and a 3 μm thick silicon carbide layer was formed thereon by chemical vapor deposition using a mixed gas of silicon tetrachloride and propane gas (temperature: about 14001:1'). Then, under a vacuum of s 10 Torr, the diamond powder was irradiated with a focused laser beam with an output of 60 W to vaporize it, thereby forming a diamond-like carbon film with a thickness of 4 μm on the silicon carbide layer. Obtained 3
Example 14 was a substrate with a layered structure.

比較のために、炭化ケイ素層を形成せず酸化マグネシウ
ム板の上に上記と同一の条件で厚み4μmのダイヤモン
ド状炭素膜を形成し、得られた2層構造の基板を比較例
10とした。
For comparison, a 4 μm thick diamond-like carbon film was formed on a magnesium oxide plate under the same conditions as above without forming a silicon carbide layer, and the resulting two-layer structure substrate was designated as Comparative Example 10.

各基板のダイヤモンド状炭素膜の特性を測定しその結果
を第7表に示した。
The characteristics of the diamond-like carbon film of each substrate were measured and the results are shown in Table 7.

第  7  表 実施例15 基体として銅板を用いた場合メタンと水素
の混合ガス(体積比1:50)を反応ガスとし、ガス圧
30Torr、フィラメント温度2000 C,反応時
間5時間の条件下にて、化学気相成長法の1種である熱
フイラメント法を適用して、銅板の上に直接厚み10μ
mのダイヤモンド膜を形成し、銅、ダイヤモンドから成
る2層構造体の基板を製造した。これを実施例15とす
る〇 比較のため、実施例15と同様の条件下にて、石英ガラ
スの表面に直接厚み5μmのダイヤモンド膜を形成し、
石英ガラス、ダイヤモンドから成る2層構造体の基板を
製造した。これを比較例11とする。
Table 7 Example 15 When a copper plate was used as the substrate A mixed gas of methane and hydrogen (volume ratio 1:50) was used as the reaction gas, under the conditions of a gas pressure of 30 Torr, a filament temperature of 2000 C, and a reaction time of 5 hours. Applying the hot filament method, which is a type of chemical vapor deposition method, the film is deposited directly on the copper plate to a thickness of 10 μm.
A diamond film of m thickness was formed to produce a substrate with a two-layer structure consisting of copper and diamond. This is referred to as Example 15. For comparison, a 5 μm thick diamond film was directly formed on the surface of quartz glass under the same conditions as Example 15.
A two-layer structure substrate made of quartz glass and diamond was manufactured. This is referred to as Comparative Example 11.

得られた各ダイヤモンド膜の特性を測定し、その結果を
第8表に示した。
The characteristics of each diamond film obtained were measured and the results are shown in Table 8.

第   8   表 用いた場合 メタンと水素の混合ガス(体積比1:10)を反応ガス
とし、ガス圧0. I Torr、反応時間5時間の条
件下にて、マイクロ波を用いたプラズマ化学気相成長法
を適用してモリブデン板の上に直接厚み8μmのダイヤ
モンド膜を形成して、モリブデン、ダイヤモンドから成
る2N構造体の基板を製造した。これを実施例16とす
る。
When Table 8 is used, a mixed gas of methane and hydrogen (volume ratio 1:10) is used as the reaction gas, and the gas pressure is 0. Under the conditions of I Torr and reaction time of 5 hours, a diamond film with a thickness of 8 μm was formed directly on the molybdenum plate by applying plasma chemical vapor deposition using microwaves. A substrate for the structure was manufactured. This is referred to as Example 16.

比較のため、実施例16と同様の条件下にて、酸化マグ
ネシウム板の表面に直接厚み4μmのダイヤモンド膜を
形成し酸化マグネシウム、ダイヤモンドから成る2層構
造体の基板を製造した。
For comparison, a 4 μm thick diamond film was directly formed on the surface of a magnesium oxide plate under the same conditions as in Example 16 to produce a substrate with a two-layer structure consisting of magnesium oxide and diamond.

これを比較例12とする。This is referred to as Comparative Example 12.

得られた各ダイヤモンド膜の特性を測定し、その結果を
第9表に示した。
The characteristics of each diamond film obtained were measured and the results are shown in Table 9.

第  9  表 実施例17  基板として炭化ケイ素板を用いた場合 I Q−”forrの真空下で、ダイヤモンド粉末に出
力55Wの収束レーザ光を照射してこれを蒸発せしめ、
炭化ケイ素板の上に直接厚み4μmのダイヤモンド状炭
素膜を形成して、炭化ケイ素、ダイヤモンド状炭素膜か
ら成る2層構造体の基板を製造した。これを実施例17
とする。
Table 9 Example 17 When a silicon carbide plate is used as the substrate Diamond powder is irradiated with a convergent laser beam with an output of 55 W under a vacuum of I
A diamond-like carbon film with a thickness of 4 μm was directly formed on a silicon carbide plate to produce a substrate with a two-layer structure consisting of silicon carbide and a diamond-like carbon film. Example 17
shall be.

比較のため、実施例17と同様の条件下にて、ポリメタ
クリル威メチル板の表面に直接厚み4μmのダイヤモン
ド状炭素膜を形成し、ポリメタクリル酸メチル、ダイヤ
モンド状炭素膜から成る2層構造体の基板を製造した。
For comparison, a diamond-like carbon film with a thickness of 4 μm was directly formed on the surface of a polymethyl methacrylate plate under the same conditions as in Example 17, and a two-layer structure consisting of polymethyl methacrylate and a diamond-like carbon film was obtained. A board was manufactured.

これを比較例13とする。This is referred to as Comparative Example 13.

得られた各ダイヤモンド膜の特性を測定し、その結果を
第1θ表に示した。
The characteristics of each diamond film obtained were measured and the results are shown in Table 1θ.

第  10  表 〔発明の効果〕 以上の説明で明らかなように、本発明の基板の表面被覆
層を構成するダイヤモンド粉末又はダイヤモンド状炭素
膜は、その結晶形、電気抵抗。
Table 10 [Effects of the Invention] As is clear from the above description, the diamond powder or diamond-like carbon film constituting the surface coating layer of the substrate of the present invention has a certain crystal shape and electrical resistance.

硬度などの特性において天然ダイヤモンド°のそれに近
似しており、また、膜の表面平滑性が優れると同時に、
基体又は基体表面にある上舊己各物質の層との密着性も
良好であり、ダイヤモンドの有用な特性を有効に生かし
た基板である。
Properties such as hardness are similar to those of natural diamond, and the surface smoothness of the film is excellent.
It has good adhesion to the substrate or to the layers of the various substances on the surface of the substrate, and is a substrate that makes effective use of the useful properties of diamond.

したがって、本発明の基板は、治工具、半導体用の放熱
板としての用途分野が展望されその工業的価値は大であ
る。
Therefore, the substrate of the present invention is expected to be used as a heat sink for jigs and tools and semiconductors, and has great industrial value.

Claims (1)

【特許請求の範囲】 基体と、該基体を被覆するダイヤモンド膜若しくはダイ
ヤモンド状炭素膜とから成る基板であつて、 該基体の表面部分又は基体それ自身が、10W/(m・
k)以上の熱伝導率を有する物質で構成されていること
を特徴とする基板。
[Claims] A substrate consisting of a base and a diamond film or diamond-like carbon film covering the base, wherein the surface portion of the base or the base itself has a power of 10 W/(m·
k) A substrate characterized in that it is made of a substance having a thermal conductivity higher than or equal to above.
JP59268447A 1984-12-21 1984-12-21 substrate Pending JPS61146793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59268447A JPS61146793A (en) 1984-12-21 1984-12-21 substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59268447A JPS61146793A (en) 1984-12-21 1984-12-21 substrate

Publications (1)

Publication Number Publication Date
JPS61146793A true JPS61146793A (en) 1986-07-04

Family

ID=17458631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59268447A Pending JPS61146793A (en) 1984-12-21 1984-12-21 substrate

Country Status (1)

Country Link
JP (1) JPS61146793A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138198A (en) * 1987-11-26 1989-05-31 Nec Corp Production of diamond film
US5645937A (en) * 1994-12-28 1997-07-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Thin film layered member
JP2015002199A (en) * 2013-06-13 2015-01-05 株式会社カネカ Interlayer thermal connection member, method of manufacturing interlayer thermal connection member, and interlayer thermal connection method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01138198A (en) * 1987-11-26 1989-05-31 Nec Corp Production of diamond film
JPH0534319B2 (en) * 1987-11-26 1993-05-21 Nippon Electric Co
US5645937A (en) * 1994-12-28 1997-07-08 Kabushiki Kaisha Toyota Chuo Kenkyusho Thin film layered member
JP2015002199A (en) * 2013-06-13 2015-01-05 株式会社カネカ Interlayer thermal connection member, method of manufacturing interlayer thermal connection member, and interlayer thermal connection method

Similar Documents

Publication Publication Date Title
Gao et al. Structure, optical properties and thermal stability of TiC-based tandem spectrally selective solar absorber coating
Zhao et al. A novel TiC-TiN based spectrally selective absorbing coating: Structure, optical properties and thermal stability
Zagho et al. A brief overview of RF sputtering deposition of boron carbon nitride (BCN) thin films
CN114196914A (en) A carbide high entropy ceramic material, carbide ceramic layer and preparation method and application thereof
JPS63239103A (en) Cubic boron nitride coated body and production thereof
Ivashchenko et al. Structure and Mechanical Properties of Ti–Al–C and Ti–Al–Si–C Films: Experimental and First-Principles Studies
CN108330455B (en) Cr (chromium)2Preparation method of coating with adjustable AlC phase purity
Martin et al. The preparation and characterization of optical thin films produced by ion‐assisted deposition
JPS61146793A (en) substrate
JPS62202897A (en) Production of diamond
Silva et al. Low roughness diamond films produced at temperatures less than 600° C
KR101695590B1 (en) ELECTRODE FOR WATER TREATMENT WITH DIAMOND COATING LAYER ON Ti SUBSTRATE AND MANUFACTURING METHOD THREREOF
JP3252926B2 (en) Diamond coated body and method for producing the same
JPS61151096A (en) Formation of diamond film or diamond-like carbon film
Yin et al. Cathodic arc deposition of solar thermal selective surfaces
Poulon-Quintin et al. Bilayer systems of tantalum or zirconium nitrides and molybdenum for optimized diamond deposition
Pascual et al. Spectroscopic ellipsometric study of boron nitride thin films
JPS5918474B2 (en) coated cemented carbide
JPH05202211A (en) Abrasion-resistant plastic molding and its production
JPS62108799A (en) Production of diamond film or diamond like carbon film
JP2861753B2 (en) Substrate coated with boron nitride containing film
JP2002167206A (en) Nitrogen carbon silicon-based hard material, method for producing the same, and use thereof
JP2579926B2 (en) Diamond manufacturing method
JPS63222095A (en) Coating of carbonaceous film
JPS62132799A (en) Formation of diamond or diamond-like carbon membrane