JPS6210859A - Anode active material for battery - Google Patents
Anode active material for batteryInfo
- Publication number
- JPS6210859A JPS6210859A JP14662285A JP14662285A JPS6210859A JP S6210859 A JPS6210859 A JP S6210859A JP 14662285 A JP14662285 A JP 14662285A JP 14662285 A JP14662285 A JP 14662285A JP S6210859 A JPS6210859 A JP S6210859A
- Authority
- JP
- Japan
- Prior art keywords
- zinc
- powder
- battery
- active material
- alloy powder
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000006183 anode active material Substances 0.000 title abstract 3
- 239000000843 powder Substances 0.000 claims abstract description 55
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 46
- 229910001297 Zn alloy Inorganic materials 0.000 claims description 37
- 239000006182 cathode active material Substances 0.000 claims description 18
- QSHDDOUJBYECFT-UHFFFAOYSA-N mercury Chemical compound [Hg] QSHDDOUJBYECFT-UHFFFAOYSA-N 0.000 abstract description 24
- 229910052753 mercury Inorganic materials 0.000 abstract description 24
- 239000011701 zinc Substances 0.000 abstract description 23
- 229910052725 zinc Inorganic materials 0.000 abstract description 22
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 abstract description 18
- 229910045601 alloy Inorganic materials 0.000 abstract description 5
- 239000000956 alloy Substances 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 4
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 229910052738 indium Inorganic materials 0.000 description 6
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 4
- 229910000978 Pb alloy Inorganic materials 0.000 description 4
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 4
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000011592 zinc chloride Substances 0.000 description 4
- 235000005074 zinc chloride Nutrition 0.000 description 4
- 238000007796 conventional method Methods 0.000 description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 description 3
- 238000007789 sealing Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000004090 dissolution Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000011056 performance test Methods 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 239000011787 zinc oxide Substances 0.000 description 2
- ZJVTYKZWDWVIFD-UHFFFAOYSA-N zinc;hydrochloride Chemical compound Cl.[Zn] ZJVTYKZWDWVIFD-UHFFFAOYSA-N 0.000 description 2
- 239000011149 active material Substances 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000008151 electrolyte solution Substances 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002161 passivation Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/06—Electrodes for primary cells
- H01M4/08—Processes of manufacture
- H01M4/12—Processes of manufacture of consumable metal or alloy electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/42—Alloys based on zinc
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【発明の詳細な説明】
[発明の分野]
本発明は電池用陰極活物質に関し、詳しくCま無汞化亜
鉛粉末または無汞化亜鉛合金粉末と汞化亜鉛粉末または
汞化亜鉛合金粉末を混合することにより、低汞化で、水
素ガス発生を抑制し、シhXも電池の放電性能を高い水
準に維持する電池用陰極活物質に関する。[Detailed Description of the Invention] [Field of the Invention] The present invention relates to a cathode active material for a battery, and more specifically, a method of mixing a C-free zinc powder or a non-transferred zinc alloy powder with a hydrochloride zinc powder or a hydrochloride zinc alloy powder. By doing so, ShihX is related to a cathode active material for a battery that suppresses hydrogen gas generation with a low temperature and maintains the discharge performance of the battery at a high level.
[発明の背景]
亜鉛を陰極活物質として用いたアルカリ電池等において
は、水酸化カリウム水溶液等の強アルカリ性電解液を用
いるため、電池を密閉しなければならない。この電池の
密閉は電池の小型化を図る際には特に重要であるが、同
時に電池保存中の亜鉛の腐食により発生する水素ガスを
閉じ込めることになる。従って長期保存中に電池内部の
ガス圧が高まり、密閉が完全なほど爆発等の危険が伴な
う。[Background of the Invention] In an alkaline battery using zinc as a cathode active material, a strong alkaline electrolyte such as an aqueous potassium hydroxide solution is used, so the battery must be sealed tightly. This sealing of the battery is particularly important when attempting to miniaturize the battery, but it also traps hydrogen gas generated due to corrosion of zinc during battery storage. Therefore, during long-term storage, the gas pressure inside the battery increases, and the more completely the battery is sealed, the greater the risk of explosion.
その対策として、陰極活物質である亜鉛の腐食を防止し
て、電池内部の水素ガス発生を少なくすることが研究さ
れ、水銀の水素過電圧を利用した汞化亜鉛を陰極活物質
として用いることが専ら行なわれている。このため、今
日市販されているアルカリ電池の陰極活物質は5〜10
重量%重量%子量の水銀を含有した亜鉛粉末(以下、高
汞化亜鉛粉末と称す)を用いており、社会的ニーズとし
て、より低汞化の亜鉛粉末、あるいは無汞化の亜鉛粉末
を陰極活物質として用いた電池の開発が強く期持される
ようになってきた。As a countermeasure, research has been conducted to prevent corrosion of zinc, which is the cathode active material, and to reduce the generation of hydrogen gas inside the battery. It is being done. For this reason, the cathode active material of alkaline batteries commercially available today is 5 to 10
Zinc powder containing mercury in a molecular weight of %wt% is used (hereinafter referred to as high gradation zinc powder). There is a strong expectation for the development of batteries using cathode active materials.
そこで、電池内の水銀含有量を低減させるべく、亜鉛に
各種金属を添加した亜鉛合金粉末に関する提案が種々な
されている。例えば、亜鉛に鉛やインジウム等を添加し
た亜鉛合金粉末等がある。これら亜鉛合金粉末を使うこ
とによって水銀mを低減させ、かつ電池内部の水素ガス
発生を従来の高汞化亜鉛粉末と同等もしくはそれ以上に
抑制することができるが、一方では電池性能の劣化現象
が見られる。Therefore, various proposals have been made regarding zinc alloy powders in which various metals are added to zinc in order to reduce the mercury content in batteries. For example, there are zinc alloy powders made by adding lead, indium, etc. to zinc. By using these zinc alloy powders, it is possible to reduce mercury m and suppress hydrogen gas generation inside the battery to the same level or more than that of conventional high-grade zinc powders, but on the other hand, the phenomenon of deterioration of battery performance may occur. Can be seen.
これは従来法である「水銀の水素ガス過電圧」を利用し
たガス発生抑制に対して、「亜鉛粉末表面の不動態化」
を利用したガス発生抑制に帰因するものと考えられる。This method uses ``passivation of the zinc powder surface'' as opposed to the conventional method of suppressing gas generation using ``hydrogen gas overvoltage of mercury.''
This is thought to be due to the suppression of gas generation using
即ち、東鉛アルカリ電池を放電させると亜鉛は次式に従
ってアルカリ溶液内に溶解して行くと考えられる。That is, it is thought that when a Higashihinba alkaline battery is discharged, zinc dissolves into the alkaline solution according to the following equation.
Zn + 40t−I −)7n (O
H) 4 + 2e−ところが亜鉛の表面に
酸化亜鉛等の不動態化被膜が生成しているとこの反応が
円滑に進行しない。Zn+40t-I-)7n(O
H) 4 + 2e- However, if a passivating film such as zinc oxide is formed on the surface of zinc, this reaction does not proceed smoothly.
このように亜鉛表面の不動態化によって水素ガス発生を
抑制する効果があると同時に、放電時における亜鉛の溶
解反応を用害するため電池↑11能が劣化するものと考
えられる。As described above, passivation of the zinc surface has the effect of suppressing hydrogen gas generation, and at the same time, it is considered that the battery performance deteriorates because it impairs the dissolution reaction of zinc during discharge.
[発明の目的J
本発明はかかる現状に鑑み、電池内の水銀含有量を従来
ど異なった観点から著しく減少させつつ、水素ガス発生
を抑制し、しかも放電性能を高い水準に維持する電池用
陰極活物質を提供することをL1的どする。[Objective of the Invention J] In view of the current situation, the present invention provides a battery cathode that significantly reduces the mercury content in the battery from a different perspective than before, suppresses hydrogen gas generation, and maintains discharge performance at a high level. The L1 target is to provide active material.
[発明の経11i! ]
本発明者らはこの目的に沿って鋭意研究の結果、無汞化
亜鉛粉末または無汞化亜鉛合金粉末と汞化亜鉛粉末また
は汞化亜鉛合金粉末を特定量混合することによって、従
来の低汞化した!IF鉛合金粉末と同等の水銀量であっ
ても、水素ガス発生量を抑制させつつ、放電性能を著し
く向上させた電池用陰極活物質が得られることを見出し
本発明に到達した。[The history of invention 11i! ] As a result of intensive research in line with this objective, the present inventors have found that by mixing specific amounts of non-transparent zinc powder or non-transparent zinc alloy powder and non-transparent zinc powder or non-transparent zinc alloy powder, the conventional low It turned into a cloud! The inventors have discovered that even with the same amount of mercury as in IF lead alloy powder, a cathode active material for batteries can be obtained that significantly improves discharge performance while suppressing the amount of hydrogen gas generated, and has thus arrived at the present invention.
[発明の構成]
すなわち本発明は、無汞化亜鉛粉末または無汞化亜鉛合
金粉末と汞化亜鉛粉末または汞化亜鉛合金粉末とを混合
させたことを特徴とする電池用陰極活物質にある。[Structure of the Invention] That is, the present invention resides in a cathode active material for a battery, which is characterized in that a non-transparent zinc powder or a non-transparent zinc alloy powder is mixed with a non-transparent zinc powder or a non-transparent zinc alloy powder. .
本発明においては、無汞化亜鉛粉末または無汞化亜鉛合
金粉末を用いるが、無汞化亜鉛合金粉末としては鉛、イ
ンジウム、アルミニウム等を添加して水素ガス発生を抑
制させた粉末が好ましく用いられる。一方、汞化亜鉛粉
末または汞化亜鉛合金粉末の水銀含有量は3〜10重量
%である。本発明者らは種々研究を進めた結束、これら
無汞化亜鉛粉末または無汞化亜鉛合金粉末と汞化亜鉛粉
末または汞化亜鉛合金粉末とを混合した後の平均水銀含
有率は3.0重間%以下であり、1.5重量%前後また
はそれ以下の少量であってもガス発生を抑制させ、かつ
電池特性を良好に保つことが可能であることを見出し、
本発明に到達したものである。In the present invention, a non-grading zinc powder or a non-grading zinc alloy powder is used, but as the non-grading zinc alloy powder, a powder to which lead, indium, aluminum, etc. are added to suppress hydrogen gas generation is preferably used. It will be done. On the other hand, the mercury content of the zinc chloride powder or the zinc chloride alloy powder is 3 to 10% by weight. The present inventors have conducted various studies on the binding, and the average mercury content after mixing these non-transparent zinc powders or non-transparent zinc alloy powders and non-transparent zinc powders or non-transparent zinc alloy powders is 3.0. % by weight or less, and found that it is possible to suppress gas generation and maintain good battery characteristics even at a small amount of around 1.5% by weight or less,
This has led to the present invention.
従って、無汞化亜鉛粉末または無汞化亜鉛合金粉末と汞
化亜鉛粉末または汞化亜鉛合金粉末との混合手量比は1
5:1〜1:1の範囲が望ましい。Therefore, the mixing ratio of non-viscous zinc powder or non-containing zinc alloy powder and non-containing zinc powder or non-containing zinc alloy powder is 1.
A range of 5:1 to 1:1 is desirable.
無汞化亜鉛粉末または無汞化亜鉛合金粉末と汞化亜鉛粉
末または汞化亜鉛合金粉末とを混合させた本発明の陰極
活物質の作用効果は充分に解明されていないが、推定覆
るに、電池の放電時、汞化亜鉛粉末または汞化亜鉛合金
粉末が優先的に亜鉛の溶解反応を起こし、後に残された
水銀が無汞化亜鉛粉末または無汞化亜鉛合金粉末と汞化
反応を起こし、放電反応が逐次円滑に開始するものと考
λられる。Although the effects of the cathode active material of the present invention, which is a mixture of non-transparent zinc powder or non-transparent zinc alloy powder and non-transparent zinc powder or non-transparent zinc alloy powder, have not been fully elucidated, it is estimated that: When the battery is discharged, the zinc chloride powder or zinc alloy powder undergoes a zinc dissolution reaction preferentially, and the mercury left behind causes a hydration reaction with the non-porous zinc powder or zinc alloy powder. , it is considered that the discharge reaction starts sequentially and smoothly.
このようにして、放電反応に関与している亜鉛粉末また
は亜鉛合金粉末は常に適当量の水銀を保つことができ、
放電反応が円滑に進行するための具体的手段を提供した
ところに、本発明の従来予想され得なかった技術的思想
がある。その結果、本発明によって電池内の水銀量を低
減させることについて、均一に水銀量を低減さける従来
方式と電池内の全水銀量が同じ程度であっても、従来方
式と比較して水素ガス発生を抑制させつつ、電池性能を
著しく向上させた陰極活物質が得られたものである。In this way, the zinc powder or zinc alloy powder involved in the discharge reaction can always keep an appropriate amount of mercury,
The technical idea of the present invention, which could not have been predicted in the past, lies in providing a concrete means for the discharge reaction to proceed smoothly. As a result, when reducing the amount of mercury in a battery using the present invention, even if the total amount of mercury in the battery is the same as the conventional method that uniformly reduces the amount of mercury, the amount of hydrogen gas generated is higher than that of the conventional method. A cathode active material has been obtained that significantly improves battery performance while suppressing .
[実施例の説明1
以下、実施例おJ:び比較例に基づいて本発明を具体的
に説明する。[Description of Examples 1 Hereinafter, the present invention will be specifically described based on Example J and Comparative Example.
実 施 例 1
水銀含有率6.0市間%の汞化亜鉛粉末と水銀を含まな
い無汞化亜鉛合金粉末(鉛0.05重量%、インジウム
0.10重量%、アルミニウム0.05 fi量%、亜
鉛残部)とを1:3の車量比で混合して平均水銀含有率
を1.5重量%とした混合亜鉛合金粉末を1qだ。Example 1 A zinc powder with a mercury content of 6.0% and a zinc alloy powder without mercury (lead 0.05% by weight, indium 0.10% by weight, aluminum 0.05% by weight) %, remaining zinc) at a volume ratio of 1:3 to give an average mercury content of 1.5% by weight.1q of mixed zinc alloy powder.
この混合亜鉛合金粉末を使って水素ガス発住試験を行な
い、その結果を第1表に示す。A hydrogen gas emission test was conducted using this mixed zinc alloy powder, and the results are shown in Table 1.
なお、水素ガス発生試験は、電解液として濃度40重量
%の水酸化カリウム水溶液に酸化亜鉛を飽和させたもの
を51!用い、混合亜鉛合金粉末10キ1を用いて45
℃で50[1間のガス発生1(if/(1)を測定した
。In addition, in the hydrogen gas generation test, an aqueous solution of potassium hydroxide with a concentration of 40% by weight was saturated with zinc oxide as an electrolytic solution. 45 using 10 pieces of mixed zinc alloy powder
The gas evolution 1 (if/(1)) during 50[1]C was measured.
また、これらの混合亜鉛合金粉末2.42(Iを使って
陰極活物質とし、第1図に示すアルカリマンガン電池を
用いて電池性能を評価1)だ。第1図のアルカリマンガ
ン電池は陽極(正極)缶1、陽極(正極)2、陰極(負
極)3、セパレーター4、封口体5、陰極(負極)底板
6、陰極(負極)集電体7、キャップ8、熱収縮性樹脂
チューブ9、絶縁リング10.11、外装缶12で構成
されている。In addition, the mixed zinc alloy powder 2.42 (I was used as the cathode active material, and the battery performance was evaluated using the alkaline manganese battery shown in FIG. 1). The alkaline manganese battery shown in Fig. 1 includes an anode (positive electrode) can 1, an anode (positive electrode) 2, a cathode (negative electrode) 3, a separator 4, a sealing body 5, a cathode (negative electrode) bottom plate 6, a cathode (negative electrode) current collector 7, It is composed of a cap 8, a heat-shrinkable resin tube 9, an insulating ring 10, 11, and an outer can 12.
このアルカリマンガン電池を用いて放電負荷10Ω、2
0℃の放電条件により終止電圧0.9vまでの放電持続
時間と放電負荷2Ω、20℃のパルス放電により終止電
圧069Vまでの全放電時間(休止時間も含む)を測定
した。結果を第1表に示す。Using this alkaline manganese battery, discharge load 10Ω, 2
The discharge duration to a final voltage of 0.9 V under discharge conditions of 0°C and the total discharge time (including rest time) to a final voltage of 069 V by pulse discharge at 20°C under a discharge load of 2Ω were measured. The results are shown in Table 1.
実 施 例 2
水銀含有率3.0重量%の汞化亜鉛合金粉末(鉛0.0
5重量%、インジウム0.10重量%、アルミニウム0
.05重量%、水銀3.0型部%、亜鉛残部)と無汞化
亜鉛合金粉末(鉛0.05重量%、インジウム0.10
重量%、アルミニウム0.05重量%、残部亜鉛)とを
1:1の重量比で混合して平均水銀含有率を1.5重量
%とじた混合亜鉛合金粉末を得た。この混合亜鉛合金粉
末を使って実施例1と同様の方法で水素ガス発生試験と
電池性能試験を行ない、その結果を第1表にポした。Example 2 Zinc alloy powder with mercury content of 3.0% by weight (lead 0.0%)
5% by weight, indium 0.10% by weight, aluminum 0
.. 05% by weight, mercury 3.0% by weight, zinc balance) and anodized zinc alloy powder (lead 0.05% by weight, indium 0.10% by weight)
% by weight, 0.05% by weight of aluminum, and the balance being zinc) at a weight ratio of 1:1 to obtain a mixed zinc alloy powder with an average mercury content of 1.5% by weight. Using this mixed zinc alloy powder, a hydrogen gas generation test and a battery performance test were conducted in the same manner as in Example 1, and the results are shown in Table 1.
L(九にL
水銀含有率1.5■…%の汞化亜鉛合金粉末(鉛0.0
5重量%、インジウム0.10重醋%、アルミニウム0
.05重量%、水銀1.5重量%、亜鉛残部)を比較例
1とし、水銀含有率6.0重量%の汞化亜鉛粉末を比較
例2として、実施例1と同様の方法で水素ガス発生試験
と電池性能試験を行ない、その結果を第1表に示した。L (Nine L) Zinc alloy powder with mercury content of 1.5% (lead 0.0%)
5% by weight, 0.10% indium, 0% aluminum
.. 05% by weight, mercury 1.5% by weight, zinc balance) as Comparative Example 1, and zinc chloride powder with mercury content of 6.0% by weight as Comparative Example 2, hydrogen gas was generated in the same manner as in Example 1. Tests and battery performance tests were conducted and the results are shown in Table 1.
第1表に示されるように、汞化並鉛粉末または汞化亜鉛
合金粉末と無汞化亜鉛合金粉末とをn4合した混合並鉛
合金粉末を陰極活物質に用いた実施例1〜2は、従来方
式による低汞化曲鉛合金粉末を陰極活物質に用いた比較
例1に比べて、水素ガス発生を抑制するど其に、放電性
能が著しく優れている。また高汞化亜鉛粉末を陰極活物
質に用いた比較例2と比べても、水素ガス発生抑制効果
および放電性能のいずれも優れていることがわかる。As shown in Table 1, Examples 1 and 2 in which a mixed normal lead alloy powder obtained by combining a normalized lead powder or a zinc alloy powder without a normalized structure with a normalized lead alloy powder as a cathode active material were used as the cathode active material. Compared to Comparative Example 1 in which a conventional low-fragility curved lead alloy powder was used as the cathode active material, hydrogen gas generation was suppressed and the discharge performance was significantly superior. Furthermore, even when compared with Comparative Example 2 in which high-branched zinc powder was used as the cathode active material, it can be seen that both the hydrogen gas generation suppressing effect and the discharge performance are excellent.
なお、比較例2の高汞化亜鉛粉末と比較して実施例1〜
2の放電時間が長いのは電池内の亜鉛粉末重量が同一で
あるため、低汞化1F鉛粉末のほうが放電に寄与する亜
鉛量が多いことに起因すると考えられる。In addition, in comparison with the high tensile strength zinc powder of Comparative Example 2, Examples 1-
The reason why the discharge time of No. 2 is longer is considered to be because since the weight of zinc powder in the battery is the same, the low-fragility 1F lead powder has a larger amount of zinc contributing to the discharge.
[発明の効果]
以上説明のごとく、無汞化亜鉛粉末または亜鉛合金粉末
と汞化並鉛粉末または亜鉛合金粉末とを混合させた本発
明の電池用陰極活物質は、水素ガス発生率を抑制しつつ
、電池性能を向上させることが可能であり、また水銀が
低含有率であるため社会的ニーズにも沿ったtうのであ
る。[Effects of the Invention] As explained above, the cathode active material for batteries of the present invention, which is a mixture of non-hydrogenated zinc powder or zinc alloy powder and normal lead powder or zinc alloy powder, suppresses the hydrogen gas generation rate. However, it is possible to improve battery performance, and because the mercury content is low, it also meets social needs.
第1図は本発明に係わるアルカリマンガン電池の断面図
を示す。
1・・・陽極(正極)缶、2・・・陽極(正極)、3・
・・陰極(負極)、 4・・・セパレーター、5・・・
封口体、 6・・・陰極(負極)底板、7・・・
陰極(負極)集電体、8・・・ギャップ、9・・・熱収
縮性樹脂チコーブ、
10、11・・・絶縁リング、12・・・外装缶。FIG. 1 shows a sectional view of an alkaline manganese battery according to the present invention. 1...Anode (positive electrode) can, 2...Anode (positive electrode), 3.
... Cathode (negative electrode), 4... Separator, 5...
Sealing body, 6... Cathode (negative electrode) bottom plate, 7...
Cathode (negative electrode) current collector, 8... Gap, 9... Heat-shrinkable resin Chicove, 10, 11... Insulating ring, 12... Exterior can.
Claims (1)
鉛粉末または汞化亜鉛合金粉末とを混合させたことを特
徴とする電池用陰極活物質。 2、前記無汞化亜鉛粉末または無汞化亜鉛合金粉末と汞
化亜鉛粉末または汞化亜鉛合金粉末との混合重量比が1
5:1〜1:1である前記特許請求の範囲第1項記載の
電池用陰極活物質。[Scope of Claims] 1. A cathode active material for a battery, characterized in that a non-transparent zinc powder or a non-transparent zinc alloy powder is mixed with a non-transparent zinc powder or a non-transparent zinc alloy powder. 2. The mixing weight ratio of the non-visculating zinc powder or non-visculating zinc alloy powder and the non-visculating zinc powder or non-visculating zinc alloy powder is 1.
The cathode active material for a battery according to claim 1, wherein the ratio is 5:1 to 1:1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14662285A JPS6210859A (en) | 1985-07-05 | 1985-07-05 | Anode active material for battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP14662285A JPS6210859A (en) | 1985-07-05 | 1985-07-05 | Anode active material for battery |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS6210859A true JPS6210859A (en) | 1987-01-19 |
Family
ID=15411898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP14662285A Pending JPS6210859A (en) | 1985-07-05 | 1985-07-05 | Anode active material for battery |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS6210859A (en) |
-
1985
- 1985-07-05 JP JP14662285A patent/JPS6210859A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS6240162A (en) | Zinc alkaline battery | |
JPH0955207A (en) | Zinc-alkali battery | |
JPH0375985B2 (en) | ||
JPS6210859A (en) | Anode active material for battery | |
JPS61153950A (en) | Zinc alkaline storage battery | |
JPH0418671B2 (en) | ||
JPH0622122B2 (en) | Zinc alkaline battery | |
JPH0317181B2 (en) | ||
JPS6240161A (en) | Zinc alkaline battery | |
JP2563109B2 (en) | Alkaline battery | |
JPS6240160A (en) | Zinc alkaline battery | |
JP2563106B2 (en) | Alkaline battery | |
JPS61193362A (en) | Zinc alkaline battery | |
JPH0375983B2 (en) | ||
JPH05174826A (en) | Zinc alkaline battery | |
JPS6240157A (en) | Zinc alkaline battery | |
JPH06223829A (en) | Zinc alkaline battery | |
JPS62123657A (en) | Zinc-alkaline battery | |
JPS6240159A (en) | Zinc alkaline battery | |
JPH0375984B2 (en) | ||
JPS61290652A (en) | Zinc alkaline battery | |
JPH0955206A (en) | Zinc-alkali battery | |
JPH0244649A (en) | Negative electrode material for alkaline battery | |
JPS6240158A (en) | Zinc alkaline battery | |
JPH0375982B2 (en) |