[go: up one dir, main page]

JPS61193362A - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JPS61193362A
JPS61193362A JP60031413A JP3141385A JPS61193362A JP S61193362 A JPS61193362 A JP S61193362A JP 60031413 A JP60031413 A JP 60031413A JP 3141385 A JP3141385 A JP 3141385A JP S61193362 A JPS61193362 A JP S61193362A
Authority
JP
Japan
Prior art keywords
zinc
negative electrode
weight
zinc alloy
alkaline
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60031413A
Other languages
Japanese (ja)
Other versions
JPH0418674B2 (en
Inventor
Nobuyori Kasahara
笠原 暢順
Toyohide Uemura
植村 豊秀
Keiichi Kagawa
賀川 恵市
Ryoji Okazaki
良二 岡崎
Kanji Takada
寛治 高田
Akira Miura
三浦 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP60031413A priority Critical patent/JPS61193362A/en
Publication of JPS61193362A publication Critical patent/JPS61193362A/en
Publication of JPH0418674B2 publication Critical patent/JPH0418674B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To acquire a cell of decreased hydrogen gas generation and a good discharge property, by making the active substance of a negative electrode consisting of zinc contain lead, indium and the like which have a function to enhance a hydrogen overvoltage of zinc, in a specific extent, and, an alkaline metal such as litium, also in a specific extent, and utilizing a synergism of them. CONSTITUTION:A zinc alloy is used for an active substance of the negative electrode, containing one or more metals of 0.01-0.5wt% selected from lead, indium, thallium, cadmium, tin, bismuth, gallium, aluminum, silver, and tantal, and one or more alkaline metals of 0.00005-1.0wt% selected from litium, sodi um, potassium, rubidium, and cesium. In other words, an alkaline solution of mainly caustic potash or caustic soda is used as an electrolyte, the above mentioned zinc alloy or amalgamated zinc alloy is used as a negative electrode active substance, and manganium dioxide, silver oxide, oxygen, etc. is used as a positive electrode active substance, to acquire a battery of a high discharge property.

Description

【発明の詳細な説明】 (発明の分野) 本発明は亜鉛アルカリ電池に関し、詳しくは亜鉛と共存
することにより亜鉛の水素過電圧を高める、あるいはア
ルカリ電解液中での亜鉛の腐食を抑制する作用を有する
、鉛、インジウム、タリウム、カドミウム、スズ、どス
マス、ガリウム、アルミニウム、銀、タンタルから選択
される1種以上ど、リチウム、ナトリウム、カリウム等
のアルカリ金属の1種以上をそれぞれ特定範囲で含有し
た亜鉛合金をそのまま、もしくは汞化して電池用負極活
物質として用いた亜鉛アルカリ電池に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to a zinc-alkaline battery, and more particularly, to a zinc-alkaline battery that increases the hydrogen overvoltage of zinc by coexisting with zinc or suppresses corrosion of zinc in an alkaline electrolyte. Contains one or more types of alkali metals such as lithium, sodium, potassium, etc., each in a specific range, such as one or more selected from lead, indium, thallium, cadmium, tin, sulfur, gallium, aluminum, silver, tantalum, etc. The present invention relates to a zinc-alkaline battery using a zinc alloy as a negative electrode active material for a battery, either as it is or after it has been converted into a liquid.

(発明の背景) 亜鉛を負極活物質として用いたアルカリ電池等において
は、水酸化カリウム水溶液等の強アルカリ性電解液を用
いるため、電池を密閉しな【プればならない。この電池
の密閉は電池の小型化を図る際には特に重要であるが、
同時に電池保存中の亜鉛の腐食により発生する水素ガス
を閉じ込めることになる。従って長期保存中に電池内部
のガス圧が高まり、密閉が完全なほど爆発等の危険が伴
なう。
(Background of the Invention) In alkaline batteries using zinc as a negative electrode active material, a strong alkaline electrolyte such as an aqueous potassium hydroxide solution is used, so the battery must be sealed. Sealing the battery is especially important when trying to downsize the battery.
At the same time, hydrogen gas generated by corrosion of zinc during battery storage is trapped. Therefore, during long-term storage, the gas pressure inside the battery increases, and the more completely the battery is sealed, the greater the risk of explosion.

その対策として、負極活物質である亜鉛の腐食を防止し
て、電池内部の水素ガス発生を少なくすることが研究さ
れ、水銀添加により亜鉛の水素過電圧を高めた汞化亜鉛
を負極活物質として用いることが専ら行なわれている。
As a countermeasure, research has been conducted to prevent the corrosion of zinc, which is an active material for the negative electrode, and to reduce the generation of hydrogen gas inside the battery.Zinc hydride, which has increased the hydrogen overvoltage of zinc by adding mercury, is used as the active material for the negative electrode. This is done exclusively.

このため、今日市販されているアルカリ電池の負極活物
質は5〜10重量%程度の多量の水銀を含有しており、
社会的ニーズとして、より低水銀のもの、あるいは無水
銀の電池の開発が強く要望されるようになってきた。
For this reason, the negative electrode active materials of alkaline batteries commercially available today contain a large amount of mercury, approximately 5 to 10% by weight.
As a social need, there has been a strong demand for the development of lower mercury or mercury-free batteries.

そこで、電池内の水銀含有量を低減させるべく、亜鉛に
各種金属を添加した亜鉛合金粉末に関する提案が種々な
されている。例えば亜鉛に鉛を添加した亜鉛合金粉末、
あるいは本発明者等による亜鉛に鉛とインジウムを添加
した亜鉛合金粉末(特開昭58−181266号公報)
等がある。しかし、これらの亜鉛合金粉末はある程度の
ガス発生抑制効果を奏するが、まだ十分とは言えない。
Therefore, various proposals have been made regarding zinc alloy powders in which various metals are added to zinc in order to reduce the mercury content in batteries. For example, zinc alloy powder made by adding lead to zinc.
Or a zinc alloy powder prepared by adding lead and indium to zinc by the present inventors (Japanese Unexamined Patent Publication No. 181266/1983)
etc. However, although these zinc alloy powders have a certain degree of gas generation suppressing effect, it is still not sufficient.

例えば、亜鉛に鉛とインジウムを添加した亜鉛合金粉末
については、これを水銀含有率1重量%程度の低汞化と
した場合、ガス発生試験の初期においては非常にガス発
生が抑制されているが、長時間となると次第にガス発生
速度が増大する傾向が見られた。
For example, in the case of zinc alloy powder, which is made by adding lead and indium to zinc, when the mercury content is reduced to about 1% by weight, gas generation is extremely suppressed in the early stage of the gas generation test. There was a tendency for the gas generation rate to gradually increase over a long period of time.

このように、負極活物質である東鉛合金粉末を低汞化と
しつつ、水素ガス発生量を低減し、しかも電池性能であ
る放電性能を高い水準に維持する電池は未だ得られてい
ない。
As described above, a battery has not yet been obtained in which the Higashi lead alloy powder, which is the negative electrode active material, has a low flux, the amount of hydrogen gas generated is reduced, and the discharge performance, which is the battery performance, is maintained at a high level.

(発明の目的) 本発明はかかる現状に鑑み、水銀の含有率を著しく減少
させつつ、水素、ガス発生を抑制し、しがも放電性能を
高い水準に維持する負極活物質を用いた亜鉛アルカリ電
池を提供することを目的とする。
(Object of the Invention) In view of the current situation, the present invention provides a zinc-alkaline solution using a negative electrode active material that significantly reduces the mercury content, suppresses hydrogen and gas generation, and maintains discharge performance at a high level. The purpose is to provide batteries.

(発明の経緯) 本発明者らは、この目的に沿って鋭意研究した結果、亜
鉛からなる負極活物質において、亜鉛の水素過電圧を高
める作用をもつ元素である、鉛、インジウム、タリウム
、カドミウム、スズ、ビスマス、ガリウム、アルミニウ
ム、銀、タンタルより選ばれる1種以上を特定範囲で含
有させ、さらにリチウム等のアルカリ金属の1種以上を
特定範囲で含有させることにより、これらの添加元素の
相乗的な効果によって、従来の低汞化した亜鉛合金粉末
よりも大幅に水素ガス発生量を低減化し、しかも放電性
能においても優れた亜鉛アルカリ電(発明の構成) すなわち本発明は、鉛、インジウム、タリウム、カドミ
ウム、スズ、ビスマス、ガリウム、アルミニウム、銀、
タンタルより選ばれる1種以上を0.01〜0,5重量
%、アルカリ金属の1種以上を′□活物質として用いた
ことを特徴とする亜鉛アルカリ電池□であ□る。
(Background of the invention) As a result of intensive research in line with this purpose, the present inventors found that in a negative electrode active material made of zinc, lead, indium, thallium, cadmium, which is an element that has the effect of increasing the hydrogen overvoltage of zinc, By containing one or more selected from tin, bismuth, gallium, aluminum, silver, and tantalum in a specific range, and further containing one or more alkali metals such as lithium in a specific range, the synergistic effects of these additive elements can be enhanced. As a result of these effects, the amount of hydrogen gas generated is significantly reduced compared to conventional zinc alloy powders with reduced flux, and the zinc alkaline powder has excellent discharge performance. , cadmium, tin, bismuth, gallium, aluminum, silver,
This is a zinc-alkaline battery □ characterized in that 0.01 to 0.5% by weight of one or more selected from tantalum and one or more alkali metals are used as an active material.

1本発明において、上述のように亜鉛の水素過電圧を高
める、あるいはアルカリ電解液中での亜鉛の□腐食を抑
制する作用を有する鉛等の元−とアル ′カリ金属元素
を特定範囲で含有させた亜鉛合金は、そのまま負極活物
質として用いるが、亜鉛合金を′汞化した後に負極活物
質として用いる。汞化する□有季よりも少ない量、すな
わち5.0重−%未満であるが、より汞化率を低(し、
低公害性を考慮すると3.0重量%以下である。特に本
発明の合金組成においては、その添加酸2分の組合せに
よる相乗効果は極めて大きく、1,0重量%前後または
それ以下の水銀含有率であっても、水素ガス発生を抑制
することが可能である。さらに、排気機構を備えた空気
電池や水素吸収機構を備えた亜鉛アルカリ電池等におい
ては、ある程度の水素発生許容量゛があるので、このよ
うな電池に本発明を適用する場合は、無汞化の亜鉛合金
の状態で使用することも可能である。
1. In the present invention, as mentioned above, lead and alkali metal elements, which have the effect of increasing the hydrogen overvoltage of zinc or suppressing the corrosion of zinc in an alkaline electrolyte, are contained within a specific range. The zinc alloy is used as a negative electrode active material as it is, but it is used as a negative electrode active material after the zinc alloy is converted into a metal. □ Less amount than seasonal, that is, less than 5.0% by weight, but with a lower rate of
Considering low pollution, it is 3.0% by weight or less. In particular, in the alloy composition of the present invention, the synergistic effect of the combination of 2 parts of the added acid is extremely large, and hydrogen gas generation can be suppressed even at a mercury content of around 1.0% by weight or less. It is. Furthermore, since air batteries equipped with an exhaust mechanism and zinc-alkaline batteries equipped with a hydrogen absorption mechanism have a certain amount of hydrogen generation capacity, when applying the present invention to such batteries, it is necessary to It is also possible to use it in the form of a zinc alloy.

本発明の負極活物質に用いられる亜鉛合金には、鉛、イ
ンジウム、カドミウム、スズ、ビスマ臘、ガリウム、ア
ルミニウム、銀、タンタルより選ばれる1種以上が0.
01〜0.5重醋%の範囲で含有されることによって、
得られる亜鉛合金の水素過電圧を高め、亜鉛合金の腐食
抑制作用を示す。この含有量が0.01重量%未満では
所期の添加効架が得られず、0.5重゛量%を越えると
、電池の□自己放電を促進し、またガス発生抑制および
放電性能6一 にどっても良好な結果が得られない。なお、これらの元
素を適当量の範囲で添加した亜鉛合金は、既に実際の電
池に実用化され、一応の評価を得ているが、最近の低水
銀化に対する社会的ニーズに対応するには未だ不十分で
ある。
The zinc alloy used in the negative electrode active material of the present invention contains at least one selected from lead, indium, cadmium, tin, bismuth, gallium, aluminum, silver, and tantalum in an amount of 0%.
By containing in the range of 0.01 to 0.5% by weight,
It increases the hydrogen overvoltage of the resulting zinc alloy and exhibits a corrosion inhibiting effect on the zinc alloy. If the content is less than 0.01% by weight, the desired addition effect cannot be obtained, and if it exceeds 0.5% by weight, it will promote self-discharge of the battery, suppress gas generation, and improve discharge performance. Even if I go back to the first step, I can't get a good result. Zinc alloys containing these elements in appropriate amounts have already been put into practical use in actual batteries and have received some praise, but they are still insufficient to meet the recent social needs for low mercury. Not enough.

従って、本発明者等は、さらに研究を重ね、上述の鉛等
の元素を添加した合金組成に対して、さらに新たに微量
のアルカリ金属を添加することによって、ガス発生の抑
fli+1に著しく効果があることを見出したものであ
る。
Therefore, the present inventors conducted further research and found that by adding a small amount of alkali metal to the alloy composition to which the above-mentioned elements such as lead were added, it was found that it was significantly effective in suppressing gas generation (fli+1). I have discovered something.

ここに用いられるアルカリ金属(水素を除く周1n率表
IAM)としては、リチウム、ナトリウム、カリウムが
入手も容易で好ましいが、その仙ルビジウム、セシウム
も使用可能である。このアルカリ金属の含有量は0.0
0005〜1.0重量%(0,5〜i oooo重ip
pm)含有されることが必要であり、実用的には0.5
0〜0.0001重量%の範囲であることが好ましい。
As the alkali metals (IAM, excluding hydrogen) used here, lithium, sodium, and potassium are preferred because they are easily available, but rubidium and cesium can also be used. This alkali metal content is 0.0
0005-1.0% by weight (0.5-i oooo heavy ip
pm) must be contained, practically 0.5
It is preferably in the range of 0 to 0.0001% by weight.

この含右母が0.00005重量%未渦では1十分な水
素ガス発生抑制効果が期待できず、また1、0重量%を
越える量を含有させてもそれ以上の効果は得られない。
If this right-containing matrix is 0.00005% by weight without swirling, a sufficient hydrogen gas generation suppressing effect cannot be expected, and even if it is contained in an amount exceeding 1.0% by weight, no further effect can be obtained.

従来、亜鉛に対して微量のリチウムを添加しで、耐クリ
ープ性等の物理的性−能を改善する試みは知られている
が、亜鉛中の微量のアルカリ金属が何故化学的反応であ
るガス発生を抑制する作用を有するかは、今までの知見
からは明らかでない。強いて推論すれば、その強い還元
作用により、鉛、インジウムなどの水素過電圧を高める
添加物の作用を長期にわたって維持させるのではないか
と考えられる。そして、本発明のごとく、負極活物質用
の低汞化または未汞化の亜鉛合金においては、アルカリ
金属を添加した例は従来においてはなかった。
Previous attempts have been made to improve physical properties such as creep resistance by adding a small amount of lithium to zinc. It is not clear from the knowledge so far whether it has the effect of suppressing the occurrence. If we were to force a guess, we would think that the strong reducing action of lead, indium, and other additives that increase hydrogen overvoltage may maintain their effects over a long period of time. As in the present invention, there has never been an example in which an alkali metal is added to a zinc alloy with low or no stress for use as a negative electrode active material.

このにうに、本発明の亜鉛アルカリ電池は、電解液に苛
性カリ、苛性ソーダ等を主成分とするアルカリ水溶液を
用い、負極活物質に上記した亜鉛合金または汞化した亜
鉛合金、正極活物質に二酸化マンガン、酸化銀、酸素等
を用いることにより得られる。
In addition, the zinc-alkaline battery of the present invention uses an alkaline aqueous solution mainly composed of caustic potash, caustic soda, etc. as the electrolyte, uses the above-mentioned zinc alloy or aqueous zinc alloy as the negative electrode active material, and manganese dioxide as the positive electrode active material. , silver oxide, oxygen, etc.

(実施例の説明) 以下、実施例および比較例に基づいて本発明を具体的に
説明する。
(Description of Examples) The present invention will be specifically described below based on Examples and Comparative Examples.

実施例1〜8ならびに比較例1〜2 純度99.997%以上の亜鉛地金を約500℃で溶融
し、これに第1表に示すごとく、鉛とインジウムがそれ
ぞれ0.05重量%含有するように添加し、次いでアル
ゴンガス雰囲気中で、第1表に示すごとくナトリウムを
0.05重量%含有するように、攪拌しながら素早く添
加して溶解させた。このようにして得た亜鉛合金をルツ
ボ細孔より550℃の温度で流出させ、加圧空気(噴出
圧3に9 / cIIi)を用い、通常のアトマイズ法
により噴霧し粉末状亜鉛合金粉を作成した。次に、10
%の水酸化カリウム水溶液中にて上記粉末に含有率が1
,0重量%になるように水銀を攪拌しながら添加して、
汞化処理を行ない汞化亜鉛合金粉末(実施例1)を得た
Examples 1 to 8 and Comparative Examples 1 to 2 Zinc ingots with a purity of 99.997% or more were melted at about 500°C, and as shown in Table 1, each contained 0.05% by weight of lead and indium. Then, in an argon gas atmosphere, sodium was quickly added and dissolved with stirring so as to contain 0.05% by weight of sodium as shown in Table 1. The zinc alloy thus obtained was flowed out from the pores of the crucible at a temperature of 550°C, and atomized using pressurized air (ejection pressure 3 to 9/cIIi) using a normal atomization method to create a powdered zinc alloy powder. did. Next, 10
% potassium hydroxide aqueous solution, the above powder has a content of 1
, Add mercury while stirring so that it becomes 0% by weight,
A chlorinated zinc alloy powder (Example 1) was obtained by carrying out a chlorinating treatment.

また、第1表に示すごとく、下記の組成でそれぞれ 1)鉛0.10重量%、タリウム0.04重量%、リチ
ウム0.0005車量%(実施例2)、2)鉛0.20
重量%、インジウム0.10重量%、ガリウム0.10
重量%、ナトリウム0.002fj量%(実施例3)、 3)インジウム0.01重量%、タリウム0.005重
量%、スズ0.005重量%、カリウム0.05重閤%
(実施例4)、 4)インジウム0.05重量%、カドミウム0.30重
量%、ビスマス0.05重ω%、セシウムo、ooi重
量%(実施例5)、 5)インジウム0.30重量%、アルミニウム0.20
重量%、リチウム0.01重量%(実施例6)6)タリ
ウム0.05重量%、銀0.05重量%、リチウム0.
01重量%(実施例7)、7)カドミウム0.005重
量%、タンタル0.005重量%、リチウムo、oi重
量%(実施例8)、8)鉛0.05重間%(比較例1)
、 9)鉛0.05重量%、インジウム0.05重ω%、(
比較例2)、 からなる亜鉛合金をそれぞれ作成し、これを前記と同様
な方法で粉体化し、汞化処理を行なって、実施例2〜8
では水銀含有率が1.0重量%の亜鉛合金粉末を、比較
例1〜2では水銀含有率が2.0重量%の亜鉛合金粉末
を得た。
In addition, as shown in Table 1, the following compositions were used: 1) 0.10% by weight of lead, 0.04% by weight of thallium, 0.0005% by weight of lithium (Example 2), 2) 0.20% by weight of lead.
wt%, indium 0.10 wt%, gallium 0.10
wt%, sodium 0.002fj wt% (Example 3), 3) indium 0.01 wt%, thallium 0.005 wt%, tin 0.005 wt%, potassium 0.05 wt%
(Example 4), 4) Indium 0.05% by weight, cadmium 0.30% by weight, bismuth 0.05w%, cesium o, ooi% by weight (Example 5), 5) Indium 0.30% by weight , aluminum 0.20
% by weight, 0.01% by weight of lithium (Example 6) 6) 0.05% by weight of thallium, 0.05% by weight of silver, 0.01% by weight of lithium.
01% by weight (Example 7), 7) 0.005% by weight of cadmium, 0.005% by weight of tantalum, 0.01% by weight of lithium (Example 8), 8) 0.05% by weight of lead (Comparative Example 1) )
, 9) Lead 0.05% by weight, Indium 0.05% by weight, (
Comparative Example 2) Zinc alloys each consisting of
In Comparative Examples 1 and 2, zinc alloy powders with a mercury content of 1.0% by weight were obtained, and in Comparative Examples 1 and 2, zinc alloy powders with a mercury content of 2.0% by weight were obtained.

このようにして得られた亜鉛合金粉末を使って水素ガス
発生試験を行ない、その結果を第2表に示す。なお、ガ
ス発生試験は、電解液として濃度40重量%の水酸化カ
リウム水溶液に酸化亜鉛を飽和させたものを5InIl
用い、亜鉛合金粉末を10g加えて45℃で50日間の
ガス発生量(mffi/(1)を測定した。
A hydrogen gas generation test was conducted using the zinc alloy powder thus obtained, and the results are shown in Table 2. In addition, in the gas generation test, an aqueous potassium hydroxide solution with a concentration of 40% by weight was saturated with zinc oxide as an electrolytic solution.
The amount of gas generated (mffi/(1)) was measured at 45° C. for 50 days with the addition of 10 g of zinc alloy powder.

また、これらの亜鉛台金粉末を負極活物質として第1図
に示すアルカリマンガン電池を用いて電池性能を評価し
た。第1図のアルカリマンガン電池は、正極缶1、正極
2、セパレーター3、亜鉛合金粉末をカルボキシメチル
セルロースでゲル化した負極4、負極集電体5、ゴムパ
ツキン6、押さえ板7で構成されている。このアルカリ
マンガン電池を用いて放電負荷4Ω、20℃の放電条件
により終止電圧0.9■までの放電持続時間を測定し、
従来の負極活物質を用いた比較例2の測定値を100ど
した指数で示した。結果を第2表に示す。
Further, battery performance was evaluated using an alkaline manganese battery shown in FIG. 1 using these zinc base metal powders as a negative electrode active material. The alkaline manganese battery shown in FIG. 1 is composed of a positive electrode can 1, a positive electrode 2, a separator 3, a negative electrode 4 made of zinc alloy powder gelled with carboxymethyl cellulose, a negative electrode current collector 5, a rubber packing 6, and a pressing plate 7. Using this alkaline manganese battery, we measured the discharge duration to a final voltage of 0.9■ under discharge conditions of 4Ω discharge load and 20°C.
The measured values of Comparative Example 2 using a conventional negative electrode active material are shown as an index multiplied by 100. The results are shown in Table 2.

第  2  表 第2表に示されるごとく、亜鉛に鉛、インジウム、タリ
ウム、カドミウム、スズ、ビスマス、ガリウム、アルミ
ニウム、銀、タンタルより選ばれる1種以上を特定量含
有させ、さらにアルカリ金属を特定量含有させた汞化亜
鉛合金粉末を負極活物質として用いた実施例1〜8は、
亜鉛に鉛を添加した汞化亜鉛合金粉末を負極活物質に用
いた比較例1や亜鉛に鉛とインジウムを添加した汞化亜
鉛合金粉末を負極活物質に用いた比較例2に比べてその
汞化量が1.0%と半量であるにもかかわらず、水素ガ
ス発生抑制効果が極めて大きく、放電性能も優れている
ことがわかる。
Table 2 As shown in Table 2, zinc contains a specific amount of one or more selected from lead, indium, thallium, cadmium, tin, bismuth, gallium, aluminum, silver, and tantalum, and further contains a specific amount of alkali metal. Examples 1 to 8 in which the contained zinc chloride alloy powder was used as the negative electrode active material,
Compared to Comparative Example 1, in which a zinc chloride alloy powder in which lead was added to zinc was used as the negative electrode active material, and Comparative Example 2, in which a zinc chloride alloy powder, in which lead and indium were added to zinc, was used as the negative electrode active material. It can be seen that even though the amount of hydrogen gas is only 1.0%, which is half the amount, the hydrogen gas generation suppressing effect is extremely large and the discharge performance is also excellent.

(発明の効果) 以上説明のごとく、鉛等の水素過電圧を高める成分を特
定範囲で含有させると共に、アルカリ金属を特定範囲で
含有させた本発明の亜鉛合金をそのまま、もしくは汞化
して負極活物質として用いた亜鉛アルカリ電池は、水素
ガス発生率を著しく抑制しつつ、電池性能を向上させる
ことが可能であり、また水銀が低含有率もしくは含有さ
れないことから、社会的ニーズにも沿ったものである。
(Effects of the Invention) As explained above, the zinc alloy of the present invention, which contains a component that increases hydrogen overvoltage such as lead in a specific range, and an alkali metal in a specific range, is used as a negative electrode active material as it is or by forming it into a liquid. The zinc-alkaline battery used as a battery is capable of improving battery performance while significantly suppressing the hydrogen gas generation rate, and also meets social needs because it contains low or no mercury. be.

従って、本発明の亜鉛アルカリ電池は広範な用途に使用
可能である。
Therefore, the zinc-alkaline battery of the present invention can be used in a wide range of applications.

−I → −-I → -

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明に係わるアルカリマンガン電池の断面図
を示す。 1:正極缶、2:正極、3:セパレーター、4:負極、
5:負極集電体、6:ゴムパツキン、7:押さえ板。
FIG. 1 shows a sectional view of an alkaline manganese battery according to the present invention. 1: positive electrode can, 2: positive electrode, 3: separator, 4: negative electrode,
5: Negative electrode current collector, 6: Rubber packing, 7: Pressing plate.

Claims (1)

【特許請求の範囲】 1、鉛、インジウム、タリウム、カドミウム、スズ、ビ
スマス、ガリウム、アルミニウム、銀、タンタルより選
ばれる1種以上を0.01〜0.5重量%、アルカリ金
属の1種以上を0.00005〜1.0重量%を含有す
る亜鉛合金を負極活物質として用いたことを特徴とする
亜鉛アルカリ電池。 2、前記アルカリ金属が、リチウム、ナトリウム、カリ
ウム、ルビジウム、セシウムである前記特許請求の範囲
第1項記載の亜鉛アルカリ電池。 3、前記亜鉛合金が汞化されている前記特許請求の範囲
第1項または第2項記載の亜鉛アルカリ電池。
[Claims] 1. 0.01 to 0.5% by weight of one or more selected from lead, indium, thallium, cadmium, tin, bismuth, gallium, aluminum, silver, and tantalum, and one or more alkali metals. A zinc-alkaline battery characterized in that a zinc alloy containing 0.00005 to 1.0% by weight of is used as a negative electrode active material. 2. The zinc-alkaline battery according to claim 1, wherein the alkali metal is lithium, sodium, potassium, rubidium, or cesium. 3. The zinc-alkaline battery according to claim 1 or 2, wherein the zinc alloy is made of aluminum.
JP60031413A 1985-02-21 1985-02-21 Zinc alkaline battery Granted JPS61193362A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60031413A JPS61193362A (en) 1985-02-21 1985-02-21 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60031413A JPS61193362A (en) 1985-02-21 1985-02-21 Zinc alkaline battery

Publications (2)

Publication Number Publication Date
JPS61193362A true JPS61193362A (en) 1986-08-27
JPH0418674B2 JPH0418674B2 (en) 1992-03-27

Family

ID=12330568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60031413A Granted JPS61193362A (en) 1985-02-21 1985-02-21 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPS61193362A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3902650A1 (en) * 1989-01-30 1990-08-02 Varta Batterie GALVANIC PRIME ELEMENT
JPH08510010A (en) * 1993-02-25 1996-10-22 エン.ファウ.ユニオン ミニーレ エス.アー. Zinc powder for alkaline batteries
US6284410B1 (en) 1997-08-01 2001-09-04 Duracell Inc. Zinc electrode particle form

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164074A (en) * 1984-09-06 1986-04-02 Toshiba Battery Co Ltd Zinc alloy powder for the negative electrode of a mercury-free alkaline battery and its manufacture
JPS6164073A (en) * 1984-09-06 1986-04-02 Toshiba Battery Co Ltd Zinc alloy for negative electrode of an alkaline battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6164074A (en) * 1984-09-06 1986-04-02 Toshiba Battery Co Ltd Zinc alloy powder for the negative electrode of a mercury-free alkaline battery and its manufacture
JPS6164073A (en) * 1984-09-06 1986-04-02 Toshiba Battery Co Ltd Zinc alloy for negative electrode of an alkaline battery

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3902650A1 (en) * 1989-01-30 1990-08-02 Varta Batterie GALVANIC PRIME ELEMENT
JPH08510010A (en) * 1993-02-25 1996-10-22 エン.ファウ.ユニオン ミニーレ エス.アー. Zinc powder for alkaline batteries
US6284410B1 (en) 1997-08-01 2001-09-04 Duracell Inc. Zinc electrode particle form

Also Published As

Publication number Publication date
JPH0418674B2 (en) 1992-03-27

Similar Documents

Publication Publication Date Title
JPS6177259A (en) Zinc alkaline battery
JPS61193362A (en) Zinc alkaline battery
JPH0371738B2 (en)
JPH0421310B2 (en)
JPH0375985B2 (en)
JPS6177257A (en) Zinc alkaline battery
JPS62123658A (en) Zinc-alkaline battery
JPS6240161A (en) Zinc alkaline battery
JPS61153951A (en) Zinc alkaline storage battery
JPH0418672B2 (en)
JPS61153952A (en) Zinc alkaline storage battery
JPS61290655A (en) Zinc alkaline battery
JPS6177256A (en) Zinc alkaline battery
JPS61290652A (en) Zinc alkaline battery
JPS62123657A (en) Zinc-alkaline battery
JPS61290651A (en) Zinc alkaline battery
JPH0375983B2 (en)
JPS61290653A (en) Zinc alkaline battery
JPS6177260A (en) Zinc alkaline battery
JPS62123655A (en) Zinc-alkaline battery
JPS6240160A (en) Zinc alkaline battery
JPS61290654A (en) Zinc alkaline battery
JPH0371739B2 (en)
JPS62176051A (en) Zinc alkaline battery
JPH0418673B2 (en)