[go: up one dir, main page]

JPS6240162A - Zinc alkaline battery - Google Patents

Zinc alkaline battery

Info

Publication number
JPS6240162A
JPS6240162A JP60177668A JP17766885A JPS6240162A JP S6240162 A JPS6240162 A JP S6240162A JP 60177668 A JP60177668 A JP 60177668A JP 17766885 A JP17766885 A JP 17766885A JP S6240162 A JPS6240162 A JP S6240162A
Authority
JP
Japan
Prior art keywords
weight
zinc
aluminum
lead
indium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60177668A
Other languages
Japanese (ja)
Other versions
JPH0421310B2 (en
Inventor
Nobuyori Kasahara
笠原 暢順
Toyohide Uemura
植村 豊秀
Keiichi Kagawa
賀川 恵市
Ryoji Okazaki
良二 岡崎
Kanji Takada
寛治 高田
Akira Miura
三浦 晃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Mining and Smelting Co Ltd
Panasonic Holdings Corp
Original Assignee
Mitsui Mining and Smelting Co Ltd
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Mining and Smelting Co Ltd, Matsushita Electric Industrial Co Ltd filed Critical Mitsui Mining and Smelting Co Ltd
Priority to JP60177668A priority Critical patent/JPS6240162A/en
Publication of JPS6240162A publication Critical patent/JPS6240162A/en
Publication of JPH0421310B2 publication Critical patent/JPH0421310B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/42Alloys based on zinc
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a zinc alkaline battery whose hydrogen gas evolution is reduced and discharge performance is improved by adding a specified amount of lead and indium, and at least one element of thallium, cadmium, bismuth, gallium, and silver, and aluminum to negative active material comprising zinc. CONSTITUTION:A zinc alloy containing 0.01-0.5wt% lead, 0.01-0.5wt% indium, and the total amount of 0.01-0.5wt% at least one element selected form thallium, cadmium, bismuth, gallium, and silver, and 0.005-0.2wt% aluminum is used as negative active material. If the content of each specified element is less than the lower limit, the expected effect cannot be obtained, and if the content exceeds the upper limit, self discharge of zind is increased, gas evolution is not retarded, and discharge performance is not improved.

Description

【発明の詳細な説明】 (発明の分野) 本発明は亜鉛アルカリ電池に関し、詳しくは鉛とインジ
ウムとタリウム、カドミウム、ビスマス、ガリウム、銀
より選ばれる1種以上とアルミニウムを特定範囲で含有
した亜鉛合金をそのまま、もしくは汞化して電池用負極
活物質として用いた亜鉛アルカリ電池に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of the Invention) The present invention relates to a zinc alkaline battery, and more specifically, a zinc alkaline battery containing lead, indium, one or more selected from thallium, cadmium, bismuth, gallium, and silver, and aluminum within a specific range. This invention relates to a zinc-alkaline battery in which the alloy is used as a battery negative electrode active material, either as it is or after it has been converted into a liquid.

(発明の背景) 亜鉛を負極活物質として用いたアルカリ電池等において
は、水酸化カリウム水溶液等の強アルカリ性電解液を用
いるため、N池を密閉しなければならない。この電池の
密閉は電池の小型化を図る際には特に重要であるが、同
時に電池保存中の亜鉛の腐食により発生する水素ガスを
閉じ込めることになる。従って長期保存中に電池内部の
ガス圧が高まり、密閉が完全なほど爆発等の危険が伴な
う。
(Background of the Invention) In alkaline batteries and the like that use zinc as a negative electrode active material, a strong alkaline electrolyte such as an aqueous potassium hydroxide solution is used, so the N pond must be sealed. This sealing of the battery is particularly important when attempting to miniaturize the battery, but it also traps hydrogen gas generated due to corrosion of zinc during battery storage. Therefore, during long-term storage, the gas pressure inside the battery increases, and the more completely the battery is sealed, the greater the risk of explosion.

その対策として、負極活物質である亜鉛の腐食を防止し
て、電池内部の水素ガス発生を少なくすることが研究さ
れ、水銀の水素過電圧を利用した汞化亜鉛を負極活物質
として用いることが専ら行なわれている。このため、今
日市販されているアルカリ電池の負極活物質は5〜10
重量%程度の多量の水銀を含有しており、社会的ニーズ
として、より低水銀のもの、あるいは無水銀の電池の開
発が強く期待されるようになってきた。
As a countermeasure, research has been conducted to prevent corrosion of zinc, which is an active material for the negative electrode, and to reduce the generation of hydrogen gas inside the battery. It is being done. For this reason, the negative electrode active material of alkaline batteries commercially available today is 5 to 10
It contains a large amount of mercury, on the order of % by weight, and as a social need, there are strong expectations for the development of lower mercury or mercury-free batteries.

そこで、電池内の水銀含有団を低減させるべく、亜鉛に
各種金属を添加した亜鉛合金粉末に関する提案が種々な
されている。例えば、亜鉛に鉛を添加した亜鉛合金粉末
、あるいは本発明者等による亜鉛に鉛とインジウムを添
加した亜鉛合金粉末(特開昭58−181266号公報
)等がある。しかし、これらの亜鉛合金粉末はある程度
のガス発生抑制効果を奏するが、まだ十分とは言えない
Therefore, various proposals have been made regarding zinc alloy powders in which various metals are added to zinc in order to reduce the amount of mercury-containing groups in batteries. For example, there is a zinc alloy powder made by adding lead to zinc, or a zinc alloy powder made by the present inventors by adding lead and indium to zinc (Japanese Unexamined Patent Publication No. 181266/1983). However, although these zinc alloy powders have a certain degree of gas generation suppressing effect, it is still not sufficient.

このように、負極活物質である亜鉛合金粉末を低汞化と
しつつ、水素ガス発生aを低減し、しかも電池性能であ
る放電性能を高い水準に維持する電池は未だ得られてい
ない。
As described above, a battery that reduces the hydrogen gas generation a while reducing the flux of the zinc alloy powder that is the negative electrode active material and maintains the discharge performance, which is the battery performance, at a high level has not yet been obtained.

(発明の目的) 本発明はかかる現状に鑑み、水銀の含有率を著しく減少
させつつ、水素ガス発生を抑制し、しかも放電性能を高
い水準に維持する負極活物質を用いた亜鉛アルカリ電池
を提供することを目的とする。
(Object of the Invention) In view of the current situation, the present invention provides a zinc-alkaline battery using a negative electrode active material that significantly reduces mercury content, suppresses hydrogen gas generation, and maintains discharge performance at a high level. The purpose is to

(発明の経緯) 本発明者らはこの目的に沿って鋭意研究の結果、亜鉛か
らなる負極活物質において、鉛とインジウムとタリウム
、カドミウム、ビスマス、ガリウム、銀より選ばれる1
種以上とアルミニウムを特定範囲の量添加することによ
り、これら添加元素の相乗的な効果によって、従来の低
汞化した亜鉛合金粉末よりも更に水素ガス発生量を低下
させ、しかも放電性能に優れた亜鉛アルカリ電池が得ら
れることを見出し本発明に到達した。
(Background of the invention) As a result of intensive research in line with this purpose, the present inventors have found that, in a negative electrode active material made of zinc, one selected from lead, indium, thallium, cadmium, bismuth, gallium, and silver is used.
By adding aluminum and aluminum in a specific range, the synergistic effect of these added elements reduces the amount of hydrogen gas generated even more than the conventional low-strength zinc alloy powder, and it also has excellent discharge performance. The inventors have discovered that a zinc-alkaline battery can be obtained and have arrived at the present invention.

(発明の構成) すなわち本発明は、鉛を0.01〜0.5重量%、イン
ジウムを0.01〜0,5重量%、タリウム、カドミウ
ム、ビスマス、ガリウム、銀より選ばれる1種以上の合
計量を0.01〜0.5重量%、アルミニウムを0.0
05〜0.5型組%含有する亜鉛合金を負極活物質とし
て用いたことを特徴とする亜鉛アルカリ電池にある。
(Structure of the Invention) That is, the present invention includes 0.01 to 0.5% by weight of lead, 0.01 to 0.5% by weight of indium, and one or more types selected from thallium, cadmium, bismuth, gallium, and silver. Total amount 0.01-0.5% by weight, aluminum 0.0%
The present invention provides a zinc alkaline battery characterized in that a zinc alloy containing 0.05 to 0.5% of mold composition is used as a negative electrode active material.

本発明において、鉛とインジウムとタリウム、カドミウ
ム、ビスマス、ガリウム、銀より選ばれる 1種以上と
アルミニウムとを特定量添加した亜鉛合金は、そのまま
負極活物質として用いるか、亜鉛合金を汞化した後に負
極活物質として用いる。
In the present invention, a zinc alloy to which lead, indium, one or more selected from thallium, cadmium, bismuth, gallium, and silver and a specific amount of aluminum are added is used as a negative electrode active material as it is, or after the zinc alloy is converted into a Used as negative electrode active material.

汞化する場合の水銀含有率は、従来の負極活物質の水銀
含有率よりも少ない量、すなわち5.0重量%未満であ
るが、より汞化率を低くし、低公害性を考慮すると3.
0重量%以下である。また、1.0重量%前後またはそ
れ以下の少量であってもガス発生を抑制することが可能
である。特に、排気機構を備えた空気電池や水素吸収機
構を備えた亜鉛アルカリ電池等においては、水素ガスの
発生許容lは比較的大きいので、このような電池に本発
明を適用する場合は、1.0重量%以下の低張化率また
は無汞化の亜鉛合金が負極活物質として好ましく用いら
れる。
The mercury content when it is converted into water is lower than the mercury content of conventional negative electrode active materials, that is, less than 5.0% by weight. ..
It is 0% by weight or less. Further, even if the content is as small as around 1.0% by weight or less, it is possible to suppress gas generation. In particular, in air batteries equipped with an exhaust mechanism, zinc-alkaline batteries equipped with a hydrogen absorption mechanism, etc., the hydrogen gas generation tolerance l is relatively large, so when applying the present invention to such batteries, 1. A zinc alloy with a low tension ratio of 0% by weight or less or no tension ratio is preferably used as the negative electrode active material.

この負極活物質に用いられる亜鉛合金の鉛の含有率は0
.01〜G、Sm11%、インジウムの含有率は0.0
1〜0.5重量%、タリウム、カドミウム、ビスマス、
ガリウム、銀より選ばれる1種以上の合計量の含有率は
0.01〜0.5重量%、アルミニウムの含有率はo、
oos〜0.5重量%と少量で添加゛効果が発揮される
。鉛とインジウムとタリウム、カドミウム、ビスマス、
ガリウム、銀より選ばれる1種以上とアルミニウムの含
有率がそれぞれ下限未満では本発明の効果が得られず、
上限を越えると、不純物を含有した亜鉛のように、自己
放電が進み、ガス発生抑制および放電性能にとって良好
な結果が得られない。
The lead content of the zinc alloy used for this negative electrode active material is 0.
.. 01~G, Sm11%, indium content is 0.0
1 to 0.5% by weight, thallium, cadmium, bismuth,
The total content of one or more selected from gallium and silver is 0.01 to 0.5% by weight, the aluminum content is o,
The effect of addition is exhibited at a small amount of oos to 0.5% by weight. Lead, indium, thallium, cadmium, bismuth,
If the content of one or more selected from gallium and silver and aluminum is below the lower limit, the effects of the present invention cannot be obtained,
If the upper limit is exceeded, self-discharge will proceed as in the case of zinc containing impurities, and good results for suppressing gas generation and discharge performance will not be obtained.

なお、アルミニウムの含有率は0.005〜0.2重量
%の範囲が特に好ましく、0.2重量%を越えた場合に
はそれほどの含有効果は見られない。
Note that the content of aluminum is particularly preferably in the range of 0.005 to 0.2% by weight, and if it exceeds 0.2% by weight, no significant effect is seen.

これら各添加元素の作用効果は充分に解明されていない
が、推定するに亜鉛合金中に含まれている鉛、インジウ
ムおよびタリウム、カドミウム、ビスマス、ガリウム、
銀は水素過電圧を高める作用あるいはアルカリ電解液中
での亜鉛の腐食を抑制する作用を有すると考えられる。
Although the effects of each of these additive elements have not been fully elucidated, it is estimated that lead, indium, thallium, cadmium, bismuth, gallium, and
Silver is thought to have the effect of increasing hydrogen overvoltage or suppressing corrosion of zinc in an alkaline electrolyte.

一方、アルミニウムは亜鉛合金表面を平滑化させる効果
があり、これによって反応表面積を減少させ、耐食性の
向上に役立つと考えられる。
On the other hand, aluminum has the effect of smoothing the surface of the zinc alloy, which is thought to reduce the reaction surface area and help improve corrosion resistance.

本発明は、これら各作用の相乗効果により、放電特性を
劣化させることなく、耐食性のよい亜鉛合金が得られた
ものである。
In the present invention, due to the synergistic effect of these respective actions, a zinc alloy with good corrosion resistance is obtained without deteriorating the discharge characteristics.

このように本発明の亜鉛アルカリ電池は、電解液に苛性
カリ、苛性ソーダ等を主成分とするアルカリ水溶液を用
い、魚種活物質に上記した亜鉛合金または汞化した亜鉛
合金、正極活物質に二酸化マンガン、酸化銀、酸素等を
用いることにより得られる。
As described above, the zinc-alkaline battery of the present invention uses an alkaline aqueous solution containing caustic potash, caustic soda, etc. as the main components as the electrolyte, the above-mentioned zinc alloy or aqueous zinc alloy as the fish seed active material, and manganese dioxide as the positive electrode active material. , silver oxide, oxygen, etc.

(実施例の説明) 以下、実施例および比較例に基づいて本発明を具体的に
説明する。
(Description of Examples) The present invention will be specifically described below based on Examples and Comparative Examples.

実施例1〜18および比較例1〜8 純度99.997%以上の亜鉛地金を約500℃で溶融
し、これに第1表に示すごとく鉛、インジウム、タリウ
ム、アルミニウムの含有率がそれぞれo、os 重量%
となるように添加して亜鉛合金を作成し、これを高圧ア
ルゴンガス〈噴出圧5kg/Ci)を使って粉体化した
。次に水酸化カリウム10%のアルカリ性溶液中にて上
記粉末に 1.0重量%になるように水銀を添加して、
汞化処理を行ない亜鉛合金粉末(実施例1)を得た。
Examples 1 to 18 and Comparative Examples 1 to 8 Zinc ingots with a purity of 99.997% or more are melted at about 500°C, and the contents of lead, indium, thallium, and aluminum are respectively o as shown in Table 1. , os weight%
A zinc alloy was prepared by adding the above zinc alloy, and this was pulverized using high-pressure argon gas (ejection pressure: 5 kg/Ci). Next, mercury was added to the above powder in an alkaline solution of 10% potassium hydroxide to give a concentration of 1.0% by weight.
A zinc alloy powder (Example 1) was obtained by carrying out a filtration treatment.

また、第1表に示すごとく、下記の組成でそれぞれ、 1)鉛0.05重量%、インジウム0.05重量%、カ
ドミウム0.05重量%、アルミニウム0.05重量%
(実施例2) 2)鉛0.05重量%、インジウム0.05重量%、ビ
スマス0.05重量%、アルミニウム0.05重量%(
実施例3) 3)鉛0.05重世%、インジウム0.05重量%、ガ
リウム0.05重世%、アルミニウム0.05’1f2
1%(実施例4) 4)鉛0.05重量%、インジウム0.05重量%、銀
0.05重量%、アルミニウム0.05重量%(実施例
5) 5)鉛0.Of重伍%、インジウム0.01重世%、タ
リウム0.01重量%、アルミニウム0.005重量%
(実施例6) 6)鉛0.01重済%、インジウム0.01重量%、カ
ドミウム0.01重量%、アルミニウムo、oos重量
%(実施例7) 7)鉛0.01重量%、インジウム0.01重層%、ビ
スマス0.01重量%、アルミニウム0.005重世%
(実施例8) 8)鉛0.01重量%、インジウム0.01重量%、ガ
リウム0.01重量%、アルミニウムo、oos重量%
(実施例9) 9)鉛0.01装置%、インジウム0.01重量%、銀
0.01重量%、アルミニウム0.005重道%(実施
例10) 10)鉛0.5重量%、インジウム0.5重世%、タリ
ウム0.5重量%、アルミニウム0.2重ffi%(実
施例11) 11)鉛0.5重量%、インジウム0.5重量%、カド
ミウム0,5重量%、アルミニウム0.2重量%(実施
例12) 12)鉛0.5重量%、インジウム0.5重口%、ビス
マス0.5重量%、アルミニウム0,2重fi%〈実施
例13) 13)鉛0.5重量%、インジウム0.5重量%、ガリ
ウム0.5重量%、アルミニウム0.2重量%(実施例
14) 14)鉛0.5重量%、インジウム0.5重量%、銀0
.5重量%、アルミニウム0.2重量%(実施例15)
15)鉛0.5重j%、インジウム0.5重置%、タリ
ウム0.5重量%、アルミニウム0.5重量%(実施例
16) 16)鉛0.05重量%、インジウム0.05重量%、
タリウム0.01重量%、カドミウム0.01重量%、
ビスマス0.01重量%、ガリウム0.01重量%、銀
0.01重量%、アルミニウム0.05重量%(実施例
1γ) 17)鉛0.5重量%、インジウム0.5重量%、カド
ミウム0.1重量%、ビスマス0.2重量%、ガリウム
0.2重量%、アルミニウム0.2重量%(実施例18
) 18)鉛0.05重量%(比較例1) 19〉鉛0.05重量%、インジウム0.05重恐%(
比較例2) 20)鉛0.05重量%、インジウム00OS重量%、
タリウム0.05重量%(比較例3) 21)鉛0.05重量%、インジウム0.05重間%、
カドミウム0.05重量%(比較例4)22)鉛1.0
重量%、インジウム0.05重量%、タリウム0.05
重量%、アルミニウム0,05重量%(比較例5) 23)鉛0.05重昂%、インジウム1.0重量%、タ
リウム0.05重量%、アルミニウム0605重世%(
比較例6) 24)鉛0.05重量%、インジウム0.05重世%、
カドミウム1.0重量%、アルミニウム0.05重量%
(比較例7) 25)鉛0.05重量%、インジウム0.05 jl!
 fjM %、カドミウム0.05重量%、アルミニウ
ム1.0重量%(比較例8) からなる亜鉛合金をそれぞれ作成し、これを前記と同様
な方法で粉体化し、汞化処理を行なって水銀含有率が1
.0重量%の亜鉛合金粉末(実施例2〜18および比較
例1〜8)を得た。
In addition, as shown in Table 1, the following compositions: 1) 0.05% by weight of lead, 0.05% by weight of indium, 0.05% by weight of cadmium, and 0.05% by weight of aluminum.
(Example 2) 2) 0.05% by weight of lead, 0.05% by weight of indium, 0.05% by weight of bismuth, 0.05% by weight of aluminum (
Example 3) 3) 0.05% lead, 0.05% indium, 0.05% gallium, 0.05'1f2 aluminum
1% (Example 4) 4) Lead 0.05% by weight, Indium 0.05% by weight, Silver 0.05% by weight, Aluminum 0.05% by weight (Example 5) 5) Lead 0.05% by weight. Of 5%, indium 0.01% by weight, thallium 0.01% by weight, aluminum 0.005% by weight
(Example 6) 6) Lead 0.01% by weight, indium 0.01% by weight, cadmium 0.01% by weight, aluminum o, oos% by weight (Example 7) 7) Lead 0.01% by weight, indium 0.01% by weight, 0.01% by weight of bismuth, 0.005% by weight of aluminum
(Example 8) 8) 0.01% by weight of lead, 0.01% by weight of indium, 0.01% by weight of gallium, 0.01% by weight of aluminum o, oos
(Example 9) 9) Lead 0.01% by weight, indium 0.01% by weight, silver 0.01% by weight, aluminum 0.005% by weight (Example 10) 10) Lead 0.5% by weight, indium 0.5% by weight, 0.5% by weight of thallium, 0.2% by weight of aluminum (Example 11) 11) 0.5% by weight of lead, 0.5% by weight of indium, 0.5% by weight of cadmium, aluminum 0.2% by weight (Example 12) 12) 0.5% by weight of lead, 0.5% by weight of indium, 0.5% by weight of bismuth, 0.2% by weight of aluminum (Example 13) 13) 0 lead .5% by weight, indium 0.5% by weight, gallium 0.5% by weight, aluminum 0.2% by weight (Example 14) 14) Lead 0.5% by weight, indium 0.5% by weight, silver 0
.. 5% by weight, aluminum 0.2% by weight (Example 15)
15) 0.5% by weight of lead, 0.5% by weight of indium, 0.5% by weight of thallium, 0.5% by weight of aluminum (Example 16) 16) 0.05% by weight of lead, 0.05% by weight of indium %,
Thallium 0.01% by weight, cadmium 0.01% by weight,
Bismuth 0.01% by weight, Gallium 0.01% by weight, Silver 0.01% by weight, Aluminum 0.05% by weight (Example 1γ) 17) Lead 0.5% by weight, Indium 0.5% by weight, Cadmium 0 .1% by weight, 0.2% by weight of bismuth, 0.2% by weight of gallium, 0.2% by weight of aluminum (Example 18)
) 18) Lead 0.05% by weight (Comparative Example 1) 19> Lead 0.05% by weight, Indium 0.05% by weight (
Comparative Example 2) 20) 0.05% by weight of lead, 0.05% by weight of indium 00OS,
Thallium 0.05% by weight (Comparative Example 3) 21) Lead 0.05% by weight, Indium 0.05% by weight,
Cadmium 0.05% by weight (Comparative Example 4) 22) Lead 1.0
wt%, indium 0.05 wt%, thallium 0.05
weight%, aluminum 0.05% by weight (Comparative Example 5) 23) Lead 0.05% by weight, indium 1.0% by weight, thallium 0.05% by weight, aluminum 0605% by weight (
Comparative Example 6) 24) 0.05% by weight of lead, 0.05% by weight of indium,
Cadmium 1.0% by weight, aluminum 0.05% by weight
(Comparative Example 7) 25) Lead 0.05% by weight, Indium 0.05 jl!
A zinc alloy consisting of fjM%, cadmium 0.05% by weight, and aluminum 1.0% by weight (Comparative Example 8) was prepared, and this was powdered in the same manner as described above, and subjected to a hydration treatment to make it contain mercury. rate is 1
.. 0% by weight zinc alloy powder (Examples 2-18 and Comparative Examples 1-8) was obtained.

このようにして得られた亜鉛合金粉末を使って水素ガス
発生試験を行ない、その結果を第1表に示す。なお、ガ
ス発生試験は、電解液として濃度40重量%の水酸化カ
リウム水溶液に酸化亜鉛を飽和させたものを511用い
、亜鉛合金粉末を10 g用いて45℃で50日間のガ
ス発生量(yf/g)を測定した。
A hydrogen gas generation test was conducted using the zinc alloy powder thus obtained, and the results are shown in Table 1. In addition, in the gas generation test, an aqueous potassium hydroxide solution with a concentration of 40% by weight was saturated with zinc oxide (511) as an electrolyte, and 10 g of zinc alloy powder was used to calculate the amount of gas generated (yf) for 50 days at 45°C. /g) was measured.

また、これらの亜鉛合金粉末を負極活物質として第1図
に示すアルカリマンガン電池を用いて電池性能を評価し
た。第1図のアルカリマンガン電池は、正極缶1、正極
2、負極3、セパレーター4、封口体5、負極底板6、
負極集電体7、キャップ8、熱収縮性樹脂チューブ9、
絶縁リング10゜11、外装缶12で構成されている。
Further, battery performance was evaluated using an alkaline manganese battery shown in FIG. 1 using these zinc alloy powders as a negative electrode active material. The alkaline manganese battery shown in FIG. 1 includes a positive electrode can 1, a positive electrode 2, a negative electrode 3, a separator 4, a sealing body 5, a negative electrode bottom plate 6,
negative electrode current collector 7, cap 8, heat-shrinkable resin tube 9,
It consists of an insulating ring 10°11 and an outer can 12.

このアルカリマンガン電池を用いて放電負荷4Ω、20
℃の放電条件により終止電圧0.9vまでの放電持続時
間を測定し、従来の負極活物質を用いた後述する比較例
9の測定値を100とした指数で示した。結果を第1表
に示す。
Using this alkaline manganese battery, the discharge load is 4Ω, 20Ω.
The discharge duration up to a final voltage of 0.9 V was measured under the discharge conditions of 0.9° C., and expressed as an index with the measured value of Comparative Example 9, which will be described later, using a conventional negative electrode active material as 100. The results are shown in Table 1.

比較例9 実施例1と同様の方法で亜鉛に水銀を5.0重f%添加
した従来より用いられている汞化亜鉛合金粉末(比較例
9)を得た。これを実施例1と同様の方法で水素ガス発
生試験と電池性能試験を行ない、その結果を第1表に示
した。
Comparative Example 9 A conventionally used zinc chloride alloy powder (Comparative Example 9) in which 5.0% by weight of mercury was added to zinc was obtained in the same manner as in Example 1. This was subjected to a hydrogen gas generation test and a battery performance test in the same manner as in Example 1, and the results are shown in Table 1.

第1表に示されるごとく、亜鉛に鉛とインジウムとタリ
ウム、カドミウム、ビスマス、ガリウム、銀より選ばれ
る1種以上とアルミニウムを特定聞添加して汞化させた
汞化亜鉛合金粉末を負極活物質に用いた実施例1〜18
は、比較例1〜8や亜鉛に水銀のみを添加した従来より
用いられている汞化亜鉛合金粉末を魚種活物質に用いた
比較例9に比べて、水素ガス発生抑制効果が大きく、放
電性能も優れていることがわかる。
As shown in Table 1, the negative electrode active material is made of zinc oxide alloy powder, which is made by adding lead, indium, one or more selected from thallium, cadmium, bismuth, gallium, and silver to zinc and aluminum in a specific amount. Examples 1 to 18 used for
Compared to Comparative Examples 1 to 8 and Comparative Example 9 in which the conventionally used zinc chloride alloy powder, in which only mercury was added to zinc, was used as the fish seed active material, the effect of suppressing hydrogen gas generation was greater, and the discharge It can be seen that the performance is also excellent.

(発明の効果) 以上説明のごとく、鉛とインジウムとタリウム、カドミ
ウム、ビスマス、ガリウム、銀より選ばれる1種以上と
アルミニウムを特定範囲で含有した亜鉛合金をそのまま
、もしくは汞化して負極活物質として用いた本発明の亜
鉛アルカリ電池は、水素ガス発生率を抑制しつつ、電池
性能を向上させることが可能であり、また水銀が低含有
率もしくは含有しないことから、社会的ニーズにも沿っ
たものである。従って、本発明の亜鉛アルカリ電池は広
範な用途に使用可能である。
(Effects of the invention) As explained above, a zinc alloy containing lead, indium, one or more selected from thallium, cadmium, bismuth, gallium, and silver and aluminum within a specific range can be used as a negative electrode active material either as it is or after being made into a liquid. The zinc-alkaline battery of the present invention used can improve battery performance while suppressing the hydrogen gas generation rate, and also meets social needs because it contains low or no mercury. It is. Therefore, the zinc-alkaline battery of the present invention can be used in a wide range of applications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係わるアルカリマンガン電池の原理図
を示す。 1:正極缶、  2:正極、  3:負極、4:セパレ
ーター、5:封口体、6:負極底板、7:負極集電体、
8:キャップ、 9:熱収縮性樹脂チューブ、 10.17:絶縁リング、12:外装缶。
FIG. 1 shows a principle diagram of an alkaline manganese battery according to the present invention. 1: positive electrode can, 2: positive electrode, 3: negative electrode, 4: separator, 5: sealing body, 6: negative electrode bottom plate, 7: negative electrode current collector,
8: Cap, 9: Heat-shrinkable resin tube, 10.17: Insulating ring, 12: Exterior can.

Claims (1)

【特許請求の範囲】 1、鉛を0.01〜0.5重量%、インジウムを0.0
1〜0.5重量%、タリウム、カドミウム、ビスマス、
ガリウム、銀より選ばれる1種以上の合計量を0.01
〜0.5重量%、アルミニウムを0.005〜0.5重
量%含有する亜鉛合金を負極活物質として用いたことを
特徴とする亜鉛アルカリ電池。 2、前記亜鉛合金が汞化されている前記特許請求の範囲
第1項記載の亜鉛アルカリ電池。
[Claims] 1. 0.01 to 0.5% by weight of lead, 0.0% of indium
1 to 0.5% by weight, thallium, cadmium, bismuth,
The total amount of one or more selected from gallium and silver is 0.01
A zinc-alkaline battery characterized in that a zinc alloy containing 0.005 to 0.5% by weight of aluminum and 0.005 to 0.5% by weight of aluminum is used as a negative electrode active material. 2. The zinc-alkaline battery according to claim 1, wherein the zinc alloy is made of aluminum.
JP60177668A 1985-08-14 1985-08-14 Zinc alkaline battery Granted JPS6240162A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60177668A JPS6240162A (en) 1985-08-14 1985-08-14 Zinc alkaline battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60177668A JPS6240162A (en) 1985-08-14 1985-08-14 Zinc alkaline battery

Publications (2)

Publication Number Publication Date
JPS6240162A true JPS6240162A (en) 1987-02-21
JPH0421310B2 JPH0421310B2 (en) 1992-04-09

Family

ID=16035019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60177668A Granted JPS6240162A (en) 1985-08-14 1985-08-14 Zinc alkaline battery

Country Status (1)

Country Link
JP (1) JPS6240162A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118036A (en) * 1986-11-07 1988-05-23 Dowa Mining Co Ltd Zinc alloy for battery
JPS63304571A (en) * 1987-01-21 1988-12-12 Dowa Mining Co Ltd Zinc alloy for battery and its manufacturing method
US4920020A (en) * 1987-07-13 1990-04-24 Metallurgie Hoboken-Overpelt Zinc powder for alkaline batteries
WO1996007765A1 (en) * 1994-09-05 1996-03-14 N.V. Union Miniere S.A. Zinc powder for alkaline batteries
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture
US6284410B1 (en) 1997-08-01 2001-09-04 Duracell Inc. Zinc electrode particle form

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63118036A (en) * 1986-11-07 1988-05-23 Dowa Mining Co Ltd Zinc alloy for battery
JPS63304571A (en) * 1987-01-21 1988-12-12 Dowa Mining Co Ltd Zinc alloy for battery and its manufacturing method
US4920020A (en) * 1987-07-13 1990-04-24 Metallurgie Hoboken-Overpelt Zinc powder for alkaline batteries
US5626988A (en) * 1994-05-06 1997-05-06 Battery Technologies Inc. Sealed rechargeable cells containing mercury-free zinc anodes, and a method of manufacture
WO1996007765A1 (en) * 1994-09-05 1996-03-14 N.V. Union Miniere S.A. Zinc powder for alkaline batteries
BE1008715A3 (en) * 1994-09-05 1996-07-02 Union Miniere Sa Zinc powder for alkaline batteries.
US6284410B1 (en) 1997-08-01 2001-09-04 Duracell Inc. Zinc electrode particle form

Also Published As

Publication number Publication date
JPH0421310B2 (en) 1992-04-09

Similar Documents

Publication Publication Date Title
JPS6177259A (en) Zinc alkaline battery
JPS6240162A (en) Zinc alkaline battery
JPH0375985B2 (en)
JPS61153950A (en) Zinc alkaline storage battery
JPS6240161A (en) Zinc alkaline battery
JPH0418671B2 (en)
JPS62176053A (en) Zinc alkaline battery
JPS6240160A (en) Zinc alkaline battery
JPH0622122B2 (en) Zinc alkaline battery
JPH0371739B2 (en)
JPS61153952A (en) Zinc alkaline storage battery
JPH0418674B2 (en)
JPS6240159A (en) Zinc alkaline battery
JPS6240158A (en) Zinc alkaline battery
JPS61290652A (en) Zinc alkaline battery
JPS62176050A (en) Zinc alkaline battery
JPS6240163A (en) Zinc alkaline battery
JPS62176049A (en) Zinc alkaline battery
JPS61153951A (en) Zinc alkaline storage battery
JPH0375983B2 (en)
JPS62176052A (en) Zinc alkaline battery
JPS61290655A (en) Zinc alkaline battery
JPS62123657A (en) Zinc-alkaline battery
JPH0375984B2 (en)
JPS62176051A (en) Zinc alkaline battery