[go: up one dir, main page]

JPS6182477A - Conductivity modulation type MOSFET - Google Patents

Conductivity modulation type MOSFET

Info

Publication number
JPS6182477A
JPS6182477A JP59204427A JP20442784A JPS6182477A JP S6182477 A JPS6182477 A JP S6182477A JP 59204427 A JP59204427 A JP 59204427A JP 20442784 A JP20442784 A JP 20442784A JP S6182477 A JPS6182477 A JP S6182477A
Authority
JP
Japan
Prior art keywords
diffusion layer
layer
high resistance
type
base diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP59204427A
Other languages
Japanese (ja)
Other versions
JP2585505B2 (en
Inventor
Akio Nakagawa
明夫 中川
Yoshihiro Yamaguchi
好広 山口
Kiminori Watanabe
渡辺 君則
Hiromichi Ohashi
弘通 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP59204427A priority Critical patent/JP2585505B2/en
Priority to US06/738,188 priority patent/US4672407A/en
Priority to DE19853519389 priority patent/DE3519389A1/en
Priority to GB08513599A priority patent/GB2161649B/en
Priority to DE3546745A priority patent/DE3546745C2/en
Publication of JPS6182477A publication Critical patent/JPS6182477A/en
Priority to US07/019,337 priority patent/US4782372A/en
Priority to US07/116,357 priority patent/US4881120A/en
Priority to US07/146,405 priority patent/US5093701A/en
Priority to US07/205,365 priority patent/US4928155A/en
Priority to US07/712,997 priority patent/US5086323A/en
Priority to US07/799,311 priority patent/US5286984A/en
Priority to US08/261,254 priority patent/US5780887A/en
Application granted granted Critical
Publication of JP2585505B2 publication Critical patent/JP2585505B2/en
Priority to US09/104,326 priority patent/US6025622A/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D12/00Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
    • H10D12/411Insulated-gate bipolar transistors [IGBT]
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D12/00Bipolar devices controlled by the field effect, e.g. insulated-gate bipolar transistors [IGBT]
    • H10D12/411Insulated-gate bipolar transistors [IGBT]
    • H10D12/441Vertical IGBTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/103Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
    • H10D62/105Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] 
    • H10D62/106Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]  having supplementary regions doped oppositely to or in rectifying contact with regions of the semiconductor bodies, e.g. guard rings with PN or Schottky junctions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/124Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
    • H10D62/126Top-view geometrical layouts of the regions or the junctions
    • H10D62/127Top-view geometrical layouts of the regions or the junctions of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/393Body regions of DMOS transistors or IGBTs 

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (発明の技術分野) 本発明は、導電変調型MO3FETに関する。[Detailed description of the invention] (Technical field of invention) The present invention relates to a conductivity modulated MO3FET.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

導電変調型MO3FETは、通常のパワーMO3FET
のドレイン領域をソース領域とは逆の導電型にしたもの
である。従来の導電変調型MO3FETの構造を第4図
に示す。41はp+ドレイン層、42はn−型高抵抗層
であり、この高抵抗層42の表面にp型ベース拡散層4
3が形成され1.更にこのp型ベース拡散層43内にn
+型ソース拡散層44が形成されている。そしてソース
拡散1144と表面に露出している高抵抗層42に挟ま
れたp型ベース層43部分をチャネル領域49として、
この上にゲート絶縁膜45を介してゲート電極46を配
設し、また、ソース拡散1i44とベース拡散層43の
双方にコンタクトするソース電極47を形成している。
Conductivity modulation type MO3FET is a normal power MO3FET
The conductivity type of the drain region is opposite to that of the source region. The structure of a conventional conductivity modulation type MO3FET is shown in FIG. 41 is a p+ drain layer, 42 is an n- type high resistance layer, and a p type base diffusion layer 4 is formed on the surface of this high resistance layer 42.
3 is formed and 1. Furthermore, in this p-type base diffusion layer 43,
A + type source diffusion layer 44 is formed. Then, a portion of the p-type base layer 43 sandwiched between the source diffusion 1144 and the high resistance layer 42 exposed on the surface is used as a channel region 49.
A gate electrode 46 is disposed on this via a gate insulating film 45, and a source electrode 47 is formed in contact with both the source diffusion 1i44 and the base diffusion layer 43.

ドレイン層48の表面にはドレイン電極48が形成され
ている。
A drain electrode 48 is formed on the surface of the drain layer 48.

この導電変調型MO3FETでは、ゲート電極46にソ
ース電極4,7に対して正の電圧を印加するとチャネル
領域49に反転層が形成され、ソース拡散層44からの
電子がこのチャネル領域49を通ってn−型高抵抗層4
2に注入される。注入された電子は高抵抗層42を拡散
してドレイン電、  極48へ抜けるが、このときドレ
イン層41から正孔の注入を引起こす。この正孔の注入
により、高抵抗層42にはキャリアの蓄積による導電変
調が起こり、口の高抵抗層42の抵抗が低下する。
In this conductivity modulation type MO3FET, when a positive voltage is applied to the gate electrode 46 with respect to the source electrodes 4 and 7, an inversion layer is formed in the channel region 49, and electrons from the source diffusion layer 44 pass through this channel region 49. n-type high resistance layer 4
Injected into 2. The injected electrons diffuse through the high resistance layer 42 and escape to the drain electrode 48, but at this time, holes are caused to be injected from the drain layer 41. Due to the injection of holes, conductivity modulation occurs in the high resistance layer 42 due to accumulation of carriers, and the resistance of the high resistance layer 42 at the mouth decreases.

これにより、通常のパワーMO8F E Tより低いオ
ン抵抗を持ったMOSFETが得られることになる。
As a result, a MOSFET with a lower on-resistance than a normal power MO8FET can be obtained.

ところでこの様な導電変調型MO8F E Tでは、p
+型ドレイン層4l−n−型高抵抗層42−p型ベース
拡散層43−n+型ソース拡散層44の四層がサイリス
タを構成する。この奇生サイリスタが導通すると、ゲー
ト・ソース間電圧を零にしても素子はオフできなくなり
、多くの場合素子破壊に繋がる。この寄生サイリスタが
オンになる原因は、p+型ドレイン層41から注入され
た正孔がソース電極47へ抜ける際にp型ベース拡散層
44を通ることにある。即ち、このような正孔電流が流
れ、ベース拡散層43のソース拡散層44直下の抵抗に
よる電圧降下がベース・ソース間のビルトイン電圧を越
えると、ソース層44からの電子注入をもたらし、寄生
サイリスタがオンしてしまう。
By the way, in such conductivity modulation type MO8FET, p
The four layers of the + type drain layer 4l, the n- type high resistance layer 42, the p type base diffusion layer 43, and the n+ type source diffusion layer 44 constitute a thyristor. When this strange thyristor becomes conductive, the device cannot be turned off even if the gate-source voltage is reduced to zero, which often leads to device destruction. The reason why this parasitic thyristor turns on is that holes injected from the p + -type drain layer 41 pass through the p-type base diffusion layer 44 when exiting to the source electrode 47 . That is, when such a hole current flows and the voltage drop due to the resistance of the base diffusion layer 43 directly below the source diffusion layer 44 exceeds the built-in voltage between the base and source, electron injection from the source layer 44 is caused, and the parasitic thyristor turns on.

このような寄生サイリスタのラッチング現象を防止する
ため、第5図に示すようにp型ベース拡散層43に高濃
度のp1型ベース拡散層50を形成してp型ベース拡散
層の抵抗を下げることが行われている。しかしこのよう
にしても、従来の導電変調型MOSFETでは高々20
OA/ci程度の電流しかオフすることができない、と
いう問題があった。その根本的な理由を追究した結果、
従来の導電変調型M、O,S、F E Tが、通常のパ
ワーMO3FETと同じソース、ゲートのパターンを用
いていることにあることが明らかになった。この点を以
下に詳細に説明する。
In order to prevent such a latching phenomenon of the parasitic thyristor, as shown in FIG. 5, a high concentration p1 type base diffusion layer 50 is formed in the p type base diffusion layer 43 to lower the resistance of the p type base diffusion layer. is being carried out. However, even with this method, the conventional conductivity modulation type MOSFET has a
There was a problem in that only a current of about OA/ci could be turned off. As a result of investigating the fundamental reason,
It has become clear that the conventional conductivity modulation type M, O, S, FET uses the same source and gate patterns as the normal power MO3FET. This point will be explained in detail below.

第6図は85図の導電変調型MO3FETの拡散層パタ
ーンを示している。図のようp型ベース拡散層43は六
角形状にWir11個拡散形成され、それぞれの周辺部
にチャネル領1149−が形成されるパターンとなって
いる。このようなパターンはパワーMO3FETで鵠、
ゲート面積を大きくしてオン抵抗を小さくする意味で有
効なものであった。
FIG. 6 shows a diffusion layer pattern of the conductivity modulation type MO3FET shown in FIG. 85. As shown in the figure, the p-type base diffusion layer 43 has a pattern in which 11 Wirs are diffused in a hexagonal shape, and a channel region 1149- is formed at the periphery of each. Such a pattern can be created using a power MO3FET.
This was effective in increasing the gate area and reducing the on-resistance.

しかしながら、寄生サイリスタをオンさせてはならない
、という要請がある導電変調型 MO3FETでは、このようなパターンでは次のような
不都合があった。
However, in the conduction modulation type MO3FET, where there is a requirement that the parasitic thyristor should not be turned on, such a pattern has the following disadvantages.

第1に、寄生サイリスタ動作を防止するためには、チャ
ネル領域49からp1型ベース拡散層50の開口部まで
の抵抗ができるだけ小さいことが望ましい。ところが第
6図のパターンでは、p+型ベース拡散層50のソース
、電極とのコンタクトがp型ベース拡散M43の中心部
に形成されていて、その周囲長はp型ベース拡散層43
の周辺にあるチャネル領域49の長さに比べて小さく、
その広がり抵抗のためチャネル領1449とp4型ベー
ス拡散層50のソース電極とコンタクトの間の抵抗を十
分小さくすることができない。
First, in order to prevent parasitic thyristor operation, it is desirable that the resistance from the channel region 49 to the opening of the p1 type base diffusion layer 50 be as small as possible. However, in the pattern shown in FIG. 6, the contact with the source and electrode of the p+ type base diffusion layer 50 is formed at the center of the p type base diffusion M43, and its peripheral length is equal to the p type base diffusion layer 43.
is smaller than the length of the channel region 49 around the
Due to the spread resistance, the resistance between the channel region 1449 and the source electrode of the p4 type base diffusion layer 50 and the contact cannot be made sufficiently small.

第2に、第6図のパターンでは、n−型高抵抗層42の
基板ウェー八表面に露出する開口部、即ちゲート電極が
配設される部分の幅Laが大きいことがサイリスタ動作
をし易くしている。寄生サイリスタのラッチング時のド
レイン電流がLaに逆比例することは次のように示され
る。ゲート絶縁股下には略一様に電流が流れこれがp型
ベース層に流れる込むので、チャネル領域4つの単位長
さの横幅のゲート絶縁膜下には次の電流1pが流れ込む
Second, in the pattern of FIG. 6, the width La of the opening of the n-type high resistance layer 42 exposed on the surface of the substrate wafer, that is, the portion where the gate electrode is disposed, is large, which facilitates thyristor operation. are doing. The fact that the drain current during latching of the parasitic thyristor is inversely proportional to La is shown as follows. A current flows substantially uniformly under the gate insulating crotch and flows into the p-type base layer, so that the next current 1p flows under the gate insulating film having a width equal to the unit length of the four channel regions.

Ip −3a −Jp /T  ・・・・・・■ここで
Jpは正孔電流密度であり、SGは単位面積当りのn−
型高抵抗層開口部の面積、■は単位面積当りのp型ベー
ス拡散層の周囲長である。この電流がソース拡散層下の
ベース拡散層に流れ込み、ソース拡散層下の抵抗R8に
よる電圧降下がベース・ソース間のビルトイン電圧Vb
iより高くなると、寄生サイリスタがオンする。これを
式で表わすと、 Vl)i= Ip −Re /T =SG−JP −R日/T ・・・・・・■となる。但
しRaは単位の周囲長当りのp型ベース層のチャネルか
らp+コンタクトまでの抵抗である。これをJpについ
て解くと、 Jp =Vbi−T/Sa −Ra =−■となる。タ
ーンオフ時にはチャネルの反転層は消失し、殆ど正孔電
流になるので、ラッチングする電流密度Jt、は、 JL−Vbi−T/′SG −RB  ・・・・・・■
となる。Sa/Tは概略Laとなり、JLはLaに逆比
例することになる。このことは、本発明者らの実験デー
タである第8図からも明らかである。
Ip -3a -Jp /T......■Here, Jp is the hole current density, and SG is n- per unit area.
The area of the opening of the high-resistance layer, and ■ is the peripheral length of the p-type base diffusion layer per unit area. This current flows into the base diffusion layer under the source diffusion layer, and the voltage drop due to the resistor R8 under the source diffusion layer increases the built-in voltage Vb between the base and source.
When it becomes higher than i, the parasitic thyristor turns on. Expressing this in a formula, Vl)i=Ip-Re/T=SG-JP-Rday/T...■. However, Ra is the resistance from the channel of the p-type base layer to the p+ contact per unit of peripheral length. Solving this for Jp yields Jp =Vbi-T/Sa-Ra =-■. At turn-off, the channel inversion layer disappears and the current becomes mostly hole current, so the latching current density Jt is: JL-Vbi-T/'SG -RB ・・・・・・■
becomes. Sa/T is approximately La, and JL is inversely proportional to La. This is also clear from FIG. 8, which is the experimental data of the present inventors.

一方、第7図の斜視図に示すように、ゲート電極46を
多結晶シ!J :I >膜46t とAff#j!46
2(7)積層構造とした場合、Affil1462の幅
を30μ肌とすると、多結晶シリコン膜461の幅は5
0〜60μm必要である。即ち、従来の第6図のような
パターンを用いた場合には、n−型高抵抗層42の開口
部の幅しGとして50〜60μm必要になる。このこと
が従来の導電変調型MOSFETのラッチアップを効果
的に防止することができない理由となっていたのである
On the other hand, as shown in the perspective view of FIG. 7, the gate electrode 46 is made of polycrystalline silicon. J:I>film 46t and Aff#j! 46
2 (7) In the case of a laminated structure, if the width of Affil 1462 is 30 μm, the width of polycrystalline silicon film 461 is 5 μm.
0 to 60 μm is required. That is, when a conventional pattern as shown in FIG. 6 is used, the width G of the opening of the n-type high resistance layer 42 is required to be 50 to 60 μm. This was the reason why it was not possible to effectively prevent latch-up in conventional conduction modulation type MOSFETs.

〔発明の目的〕[Purpose of the invention]

本発明は上記の如き考察の結果導かれたもので、従来の
ものに比べて遥かに大きい電流までラッチアップしない
ようにした導電変調型MOSFETを提供することを目
的とする。
The present invention was developed as a result of the above considerations, and it is an object of the present invention to provide a conduction modulation type MOSFET that does not latch up to a much larger current than conventional MOSFETs.

〔発明の概要〕[Summary of the invention]

本発明にかかる導電変調型MOSFETは、高抵抗層の
ウェーハ表面に露出する部分がベース拡散層を取り囲む
従来のパターンとは逆に、高抵抗層のウェーハ表面に露
出する部分がベース拡散層に囲まれて複数の島状に配置
されるパターンとする。
In the conductivity modulation MOSFET according to the present invention, the part of the high resistance layer exposed to the wafer surface is surrounded by the base diffusion layer, contrary to the conventional pattern in which the part of the high resistance layer exposed to the wafer surface surrounds the base diffusion layer. The pattern is arranged in a plurality of islands.

〔発明の効果) 本発明によれば、チャネル領域下のベース層抵抗を従来
より小さくすることができ、またゲート絶縁膜下に開口
する高抵抗層の面積を従来より小さくすることができ、
750A/ca!以上の電流密度までラッチアップしな
い導電変調型 MOSFETが実現する。
[Effects of the Invention] According to the present invention, the base layer resistance under the channel region can be made smaller than before, and the area of the high resistance layer opening under the gate insulating film can be made smaller than before.
750A/ca! A conduction modulation type MOSFET that does not latch up at current densities above can be realized.

〔発明の実施例〕[Embodiments of the invention]

以下本発明の詳細な説明する。第1図は一実施例の導電
変調型MO3FETの構造を示すもので、(a)が平面
図、(b)、(c)、(d)はそれぞれta)のA−A
−、B−B−、C−C−断面図である。p+型ドレイン
層11の上に°n−型高抵抗層12があり、この高抵抗
層12の表面にp型ベース拡散層13が形成され、更に
ベース拡散層13内にn+型ソース拡散層14が形成さ
れている。そして、ソース拡散層14と^抵抗層12の
ウェーハ表面開口部の間をチャネル領域21として、こ
の上にゲート絶縁膜16を介して多結晶シリコン躾によ
るゲート電極17が形成されている。ソース拡散層14
とベース拡散層13の双方にコンタクトするソースIt
i18が設けられ、ウェーハ裏面のドレイン層11には
ドレイン電極19が設けられている。以上の基本構造は
従来と同様である。
The present invention will be explained in detail below. FIG. 1 shows the structure of a conductivity modulation type MO3FET according to an embodiment, where (a) is a plan view, and (b), (c), and (d) are A-A of ta), respectively.
-, BB-, CC- sectional views. There is an n-type high resistance layer 12 on the p+ type drain layer 11, a p type base diffusion layer 13 is formed on the surface of this high resistance layer 12, and an n+ type source diffusion layer 14 is formed in the base diffusion layer 13. is formed. A channel region 21 is formed between the source diffusion layer 14 and the wafer surface opening of the resistance layer 12, and a gate electrode 17 made of polycrystalline silicon is formed thereon via a gate insulating film 16. Source diffusion layer 14
The source It contacts both the base diffusion layer 13 and the base diffusion layer 13.
i18 is provided, and a drain electrode 19 is provided on the drain layer 11 on the back surface of the wafer. The basic structure described above is the same as the conventional one.

この実施例の特徴は、第1に、ゲート電極17下に開口
する高抵抗層12の部分を、第1図(a)に幅Laで示
される長方形として複数個マトリクス状に配列し、その
長辺に沿ってチャネル領域21を形成していることであ
る。長方形を用いた理由は、n−型高抵抗層を島状とす
る時チャネルa域の横幅を最も長くできるからである。
The features of this embodiment are as follows: First, the portions of the high resistance layer 12 that are open below the gate electrode 17 are arranged in a matrix in a plurality of rectangular shapes shown by the width La in FIG. A channel region 21 is formed along the sides. The reason for using a rectangular shape is that when the n-type high resistance layer is formed into an island shape, the width of the channel a region can be maximized.

第2の特徴は、そのような複数の長方形の開口部がp型
ベース拡散層にそれぞれ完全に囲まれて島状になるよう
にしていることである。即ち、多結晶シリコン膜ゲート
電極17はチャネル領域21と高抵抗層12の長方形状
開口部を覆うように基板ウェーハ全面に連続的に配設さ
れ、この上のソース電ti18が走らない部分にストラ
イブ状のARI!ゲート電極20が配設されるが、第1
図(b)〜(d)に示す如くソース電極18の下および
多結晶シリコン膜ゲート電極17上に重ねたAj2ゲー
ト電極20の下に高濃度のp4″型ベース拡散層15を
形成して、p型ベース拡散層13とp+型ベース拡散層
15によって高抵抗層12の長方形開口部を形成してい
る。
The second feature is that each of the plurality of rectangular openings is completely surrounded by the p-type base diffusion layer to form an island shape. That is, the polycrystalline silicon film gate electrode 17 is continuously disposed over the entire surface of the substrate wafer so as to cover the channel region 21 and the rectangular opening of the high resistance layer 12, and the gate electrode 17 is placed continuously on the entire surface of the substrate wafer where the source voltage ti18 does not run. Live ARI! A gate electrode 20 is provided, and the first
As shown in FIGS. (b) to (d), a highly concentrated p4″ type base diffusion layer 15 is formed under the source electrode 18 and under the Aj2 gate electrode 20 superimposed on the polycrystalline silicon film gate electrode 17. The p-type base diffusion layer 13 and the p + type base diffusion layer 15 form a rectangular opening in the high-resistance layer 12 .

なお、実際の素子製造は例えば、ドレイン層11となる
p+型Si基板を出発基板としてこれにn−型高抵抗層
12をエピタキシャル成長させたウェーハを用い、これ
に不純物拡散、電極形成を順次行なう。n−型高抵抗1
112を出発基板としても勿論よい。
In actual device manufacturing, for example, a wafer is used in which a p+ type Si substrate serving as the drain layer 11 is used as a starting substrate and an n- type high resistance layer 12 is epitaxially grown thereon, and impurity diffusion and electrode formation are sequentially performed on this wafer. n-type high resistance 1
Of course, 112 may be used as the starting substrate.

この実施例では、第1図(a)から明らかなように、ゲ
ート電極17下に開口する長方形の高低抗層12の周囲
上にあるチャネルの全横幅と、ソース電極18とコンタ
クトするp4″型ベース拡散層15の開口部の周囲長が
ほぼ等しい。このため、第6図のような従来の構造に比
べて広がり抵抗がないのでソース拡散層下のベース拡散
層抵抗が小さい。また、高I!抗層12がウェーハ表面
に開口する部分の上は多結晶シリコン膜によるゲート電
極17のみであり、AItゲート電極がないから、この
部分のゲート電極幅Laは十分小さくできる。
In this example, as is clear from FIG. The peripheral lengths of the openings in the base diffusion layer 15 are almost equal.Therefore, compared to the conventional structure shown in FIG. !Only the gate electrode 17 made of a polycrystalline silicon film is present above the portion where the anti-layer 12 opens to the wafer surface, and there is no AIt gate electrode, so the gate electrode width La in this portion can be made sufficiently small.

このLaは前述したようにラッチングする電流密度に逆
比例する。実際の試作例ではLa = 15μmとして
いる。従ってこの実施例によれば、従来より効果的にラ
ッチアップ現象を防止することができ、ラッチアップの
電流密度750A/cdが得られている。また全動作面
積2011”として150Aまでの電流をターンオフす
ることができた。
As described above, this La is inversely proportional to the latching current density. In an actual prototype example, La = 15 μm. Therefore, according to this embodiment, the latch-up phenomenon can be prevented more effectively than before, and a latch-up current density of 750 A/cd is obtained. Furthermore, with a total operating area of 2011'', it was possible to turn off a current of up to 150A.

本発明は上記実施例に限られない。例えば、ウェーハ表
面に露出する高抵抗層部分の形状は必ずしも長方形でな
くてもよい。従来の第6図のパターンに対応させて、ソ
ース電極のコンタクトをとるp+型ベース拡散層とゲー
ト電極下に開口するn−型高抵抗層の配置をこれと逆に
した場合の実施例のパターンを第2図に示す。なお第2
図で第1図と対応する部分に第1図と同じ符号を付しで
ある。このようなパターンを用いれば、第6図との比較
で本発明の詳細な説明し易い。いま、ソース拡散層14
の幅しnが第6図と同じであり、かつチャネル領域21
の長さおよび横幅T(周囲長)がやはり第6図と同じと
する。第2図の場合、ゲート電極下の高抵抗層12から
チャネル領域21下を通ってp+型層13.15に扱け
る正孔電流の電流経路は第6図の従来のものとは逆であ
る。
The present invention is not limited to the above embodiments. For example, the shape of the high resistance layer portion exposed on the wafer surface does not necessarily have to be rectangular. This is an example pattern in which the arrangement of the p+ type base diffusion layer making contact with the source electrode and the n- type high resistance layer opening below the gate electrode is reversed to correspond to the conventional pattern shown in Fig. 6. is shown in Figure 2. Furthermore, the second
In the figure, parts corresponding to those in FIG. 1 are given the same reference numerals as in FIG. 1. If such a pattern is used, it will be easier to explain the present invention in detail in comparison with FIG. 6. Now, the source diffusion layer 14
The width n of the channel region 21 is the same as that in FIG.
It is also assumed that the length and width T (perimeter) are the same as in FIG. In the case of FIG. 2, the current path of the hole current that can be handled from the high resistance layer 12 under the gate electrode to the p+ type layer 13.15 passing under the channel region 21 is opposite to the conventional path shown in FIG. 6. .

従って同じ周辺長の高抵抗層開口部からのp+型ベース
拡散層のソースN極とのコンタクト部までのチャネル領
域下のベース抵抗は、第6図のようのp1型ベース拡散
層がチャネル領域に囲まれて中心にある場合に比べて明
らかに小さい。これにより、本発明のパターンの方が従
来よりラッチアップしにくいことになる。
Therefore, the base resistance under the channel region from the high resistance layer opening with the same peripheral length to the contact area with the source N pole of the p+ type base diffusion layer is as shown in Figure 6. It is obviously smaller than when it is surrounded and centered. As a result, the pattern of the present invention is less likely to latch up than the conventional pattern.

また島状の高抵抗層部分は、少なくとも平行な二辺を有
する長方形に類似の形状であって、それぞれの四辺また
は二つの長辺に沿ってチャネル領域が形成されるように
、してもよい。
Further, the island-like high resistance layer portion may have a shape similar to a rectangle having at least two parallel sides, and a channel region may be formed along each of the four sides or two long sides. .

また一般的に■式において、Saは高抵抗層の開口部の
面積、■は同開口部の周辺長即ちチャネネルの横幅であ
るから、第2図と第6図でTが同じである場合、5G−
8日は第6因の方が大きいので、一般的に第6図の方か
ラッチアップする電流密度JLは小さい。従来のパワー
MO3FETで用いられた第6図のようなパターンは現
在では全く使われていない。それは高耐圧パワーMOS
FETでは、高抵抗層の開口部の面積Saや周囲艮Tを
大きくしないとオン抵抗が増大してしまうことが明らか
になったためである。しかし導電変調型MOSFETは
n−型層は導電変調を受けるので、抵抗が低くなってい
るため開口部の面積をパワーMO3FETのように広く
する必要がない。
Furthermore, in general, in equation (2), Sa is the area of the opening in the high-resistance layer, and ■ is the peripheral length of the opening, that is, the width of the channel, so if T is the same in FIGS. 2 and 6, then 5G-
On the 8th, the 6th factor is larger, so the current density JL that causes latch-up is generally smaller than that shown in FIG. The pattern shown in FIG. 6, which was used in the conventional power MO3FET, is no longer used at all. It is a high voltage power MOS
This is because it has become clear that in FETs, on-resistance increases unless the area Sa of the opening of the high-resistance layer and the surrounding area T are increased. However, in a conductivity modulation type MOSFET, since the n-type layer undergoes conductivity modulation, the resistance is low, so there is no need to make the area of the opening as wide as in the power MO3FET.

以上の説明から明らかなように、本発明を導電変調型M
OSFETに適用するとパワーMOSFETに適用した
場合とは全く異なる大きい効果を発揮することかできる
As is clear from the above explanation, the present invention is a conductive modulation type M
When applied to OSFETs, it is possible to achieve a large effect that is completely different from when applied to power MOSFETs.

また上記実施例では、ドレイン電極をソース。Further, in the above embodiment, the drain electrode is used as the source.

ゲート電極と反対側の面に配した。いわゆる縦型MO3
FETを説明したが、本発明は横型MOSFETにも適
用することができる。第3図はその実施例の要部断面図
である。p4″4層型1の上にn−高抵抗層32があり
、この高抵抗層32の表面にp型ベース拡散層33.n
++ソース拡散層34が形成され、ソース拡散層34と
高抵抗層32の間をチャネル領域38としてこの上にゲ
ート絶縁[!35を介してゲート電極36を配設し、ま
たソース拡散層34とベース拡散層33の両方にコンタ
クトするソース電極37を配設している。この基本構造
は先の実施例と同じである。
It was placed on the opposite side of the gate electrode. So-called vertical MO3
Although FETs have been described, the present invention can also be applied to lateral MOSFETs. FIG. 3 is a sectional view of a main part of the embodiment. There is an n-high resistance layer 32 on the p4'' four-layer type 1, and a p-type base diffusion layer 33.n is on the surface of this high resistance layer 32.
++ A source diffusion layer 34 is formed, and a channel region 38 is formed between the source diffusion layer 34 and the high resistance layer 32, and a gate insulation [! A gate electrode 36 is disposed through the gate electrode 35, and a source electrode 37 is disposed in contact with both the source diffusion layer 34 and the base diffusion layer 33. This basic structure is the same as the previous embodiment.

この実施例では、高抵抗層32の表面に更にこれより高
濃度のn型層39を形成し、その表面にp+型トド14
2層40形成してこれにドレイン電極41を配設してい
る。このn型層39を設けることによって、この導電変
調型MOSFETが順方向阻止状態にある時、発生する
空乏層の伸びを抑えることができ、高抵抗1132のウ
ェーハ開口部の幅Logを小さくすることができる。そ
してこの構造の場合にも、p型ベース拡散層33がn−
型高抵抗層32のウェーハ開口部を完全に取り囲むよう
なパターンとすることにより、先の実施例と同様の効果
を得ることができる。
In this embodiment, an n-type layer 39 with a higher concentration is further formed on the surface of the high-resistance layer 32, and a p+-type layer 14 is formed on the surface of the n-type layer 39.
Two layers 40 are formed and a drain electrode 41 is provided thereon. By providing this n-type layer 39, when this conductivity modulation type MOSFET is in a forward blocking state, the extension of the depletion layer that occurs can be suppressed, and the width Log of the wafer opening of the high resistance 1132 can be reduced. I can do it. Also in this structure, the p-type base diffusion layer 33 is n-
By forming a pattern that completely surrounds the wafer opening of the high-resistance layer 32, the same effect as in the previous embodiment can be obtained.

なお、第3図のp++1131をn+型層にすることも
可能である。
Note that it is also possible to make the p++ layer 1131 in FIG. 3 an n+ type layer.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(d)は本発明の一実施例の導電変調型
MOSFETの構成を示す図、第2図は他の実施例の導
電変調型MOSFETの拡散層パターンを示す図、第3
図は更に他の実施例の導電変調型MOSFETの断面図
、第4図および第5図は従来の導電変調型MOSFET
の断面図、第6図は第5図の導電変調型MOSFETの
拡散層パターンを示す図、第7図は同じく斜視図、第8
図は同じくラッチング特性を示す実験データである。 11・・・p+型トド142層12・・・n−型高抵抗
層、13・・・p型ベース拡散層、14・・・n++ソ
ース拡散層、15・・・p4″型ベース拡散層、16・
・・ゲート絶縁膜、17・・・多結晶シリコン膜ゲート
電極、18・・・ソース電極、19・・・ドレイン電極
、20・・・A2ゲート電極、21・・・チャネル領域
。 出願人代理人 弁理士 鈴江武彦 第1図 第1図 (C)。 第3図 第4図 第8図 Lt、  <1JT1) 手続補正書 1、事件の表示 特願昭59−204427号 2、発明の名称 導電変調型MO5FET 3、補正をする者 事件との関係 特許出願人 (307)株式会社 東芝 4、代理人 6、補正の対象 %60.12f 7、補正の内容 (1)明細書第7頁第14行及び第17行のrRaJを
rReJと訂正する。 (2)図面中、第7図を別紙の通り訂正する。
1(a) to (d) are diagrams showing the configuration of a conductivity modulation type MOSFET according to one embodiment of the present invention, FIG. 2 is a diagram showing a diffusion layer pattern of a conductivity modulation type MOSFET according to another embodiment, and FIG. 3
The figure is a cross-sectional view of a conductivity modulation type MOSFET of another embodiment, and Figures 4 and 5 are conventional conductivity modulation type MOSFETs.
, FIG. 6 is a diagram showing the diffusion layer pattern of the conductivity modulation type MOSFET of FIG. 5, FIG. 7 is a perspective view of the same, and FIG.
The figure also shows experimental data showing the latching characteristics. 11... p+ type Todo 142 layer 12... n- type high resistance layer, 13... p type base diffusion layer, 14... n++ source diffusion layer, 15... p4'' type base diffusion layer, 16.
... Gate insulating film, 17... Polycrystalline silicon film gate electrode, 18... Source electrode, 19... Drain electrode, 20... A2 gate electrode, 21... Channel region. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 1 (C). Figure 3 Figure 4 Figure 8 Lt, <1JT1) Procedural amendment 1, Indication of case Patent application No. 59-204427 2, Title of invention Conductive modulation type MO5FET 3, Person making amendment Relationship with case Patent application Person (307) Toshiba Corporation 4, Agent 6, Target of amendment % 60.12f 7. Contents of amendment (1) rRaJ in lines 14 and 17 of page 7 of the specification is corrected to rReJ. (2) In the drawings, Figure 7 will be corrected as shown in the attached sheet.

Claims (3)

【特許請求の範囲】[Claims] (1)高濃度、第1導電型のドレイン層と第2導電型の
高抵抗層を有する半導体基板ウェーハの前記高抵抗層部
分に第1導電型のベース拡散層が形成され、このベース
拡散層内に高濃度、第2導電型のソース拡散層が形成さ
れ、このソース拡散層と前記高抵抗層に挟まれたチャネ
ル領域となるベース拡散層上にゲート絶縁膜を介してゲ
ート電極が形成され、前記ソース拡散層とベース拡散層
の双方にコンタクトするソース電極が形成された導電変
調型MOSFETにおいて、前記高抵抗層のウェーハ表
面に露出した開口部が前記ベース拡散層に完全に囲まれ
た複数の島状をなしていることを特徴とする導電変調型
MOSFET。
(1) A base diffusion layer of a first conductivity type is formed in the high resistance layer portion of a semiconductor substrate wafer having a highly concentrated drain layer of a first conductivity type and a high resistance layer of a second conductivity type; A high concentration, second conductivity type source diffusion layer is formed within the base diffusion layer, and a gate electrode is formed via a gate insulating film on a base diffusion layer which becomes a channel region sandwiched between the source diffusion layer and the high resistance layer. , in a conductivity modulation type MOSFET in which a source electrode is formed in contact with both the source diffusion layer and the base diffusion layer, a plurality of openings exposed on the wafer surface of the high resistance layer are completely surrounded by the base diffusion layer; A conductivity modulation type MOSFET characterized by having an island shape.
(2)前記複数の島状の高抵抗層部分は、それぞれ長方
形をなしてマトリクス状に配列形成され、それぞれの長
辺に沿ってチャネル領域が形成されていることを特徴と
する特許請求の範囲第1項記載の導電変調型MOSFE
T。
(2) The plurality of island-shaped high-resistance layer portions are each rectangular and arranged in a matrix, and a channel region is formed along each long side. Conductivity modulation type MOSFE according to item 1
T.
(3)前記ゲート電極は、前記複数の島状の高抵抗層部
分を覆うように基板ウェーハは上に連続的に網目状に配
設された多結晶シリコン膜とこの上に重ねてストライプ
状に配設された金属膜とからなり、この金属膜下に前記
複数の高抵抗層部分を分離するための高濃度ベース拡散
層が形成されていることを特徴とする特許請求の範囲第
1項記載の導電変調型MOSFET。
(3) The gate electrode is formed by forming a polycrystalline silicon film on top of a polycrystalline silicon film continuously arranged in a mesh pattern so as to cover the plurality of island-like high resistance layer parts, and forming a stripe pattern on top of the polycrystalline silicon film. Claim 1, characterized in that a high concentration base diffusion layer is formed under the metal film to separate the plurality of high resistance layer portions. conductivity modulation type MOSFET.
JP59204427A 1984-05-30 1984-09-29 Conduction modulation type MOSFET Expired - Lifetime JP2585505B2 (en)

Priority Applications (13)

Application Number Priority Date Filing Date Title
JP59204427A JP2585505B2 (en) 1984-09-29 1984-09-29 Conduction modulation type MOSFET
US06/738,188 US4672407A (en) 1984-05-30 1985-05-28 Conductivity modulated MOSFET
DE19853519389 DE3519389A1 (en) 1984-05-30 1985-05-30 VARIABLE CONDUCTIVITY MOSFET
GB08513599A GB2161649B (en) 1984-05-30 1985-05-30 Conductivity modulated mosfet
DE3546745A DE3546745C2 (en) 1984-05-30 1985-05-30 Variable conductivity power MOSFET
US07/019,337 US4782372A (en) 1984-05-30 1987-02-26 Lateral conductivity modulated MOSFET
US07/116,357 US4881120A (en) 1984-05-30 1987-11-04 Conductive modulated MOSFET
US07/146,405 US5093701A (en) 1984-05-30 1988-01-21 Conductivity modulated mosfet
US07/205,365 US4928155A (en) 1984-05-30 1988-06-10 Lateral conductivity modulated MOSFET
US07/712,997 US5086323A (en) 1984-05-30 1991-06-10 Conductivity modulated mosfet
US07/799,311 US5286984A (en) 1984-05-30 1991-11-27 Conductivity modulated MOSFET
US08/261,254 US5780887A (en) 1984-05-30 1994-06-14 Conductivity modulated MOSFET
US09/104,326 US6025622A (en) 1984-05-30 1998-06-25 Conductivity modulated MOSFET

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59204427A JP2585505B2 (en) 1984-09-29 1984-09-29 Conduction modulation type MOSFET

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP10864194A Division JP2645219B2 (en) 1994-05-23 1994-05-23 Conduction modulation type MOSFET
JP6108640A Division JPH0789588B2 (en) 1994-05-23 1994-05-23 Lateral conductivity modulation type MOSFET

Publications (2)

Publication Number Publication Date
JPS6182477A true JPS6182477A (en) 1986-04-26
JP2585505B2 JP2585505B2 (en) 1997-02-26

Family

ID=16490355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59204427A Expired - Lifetime JP2585505B2 (en) 1984-05-30 1984-09-29 Conduction modulation type MOSFET

Country Status (1)

Country Link
JP (1) JP2585505B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62113477A (en) * 1985-09-30 1987-05-25 ゼネラル・エレクトリツク・カンパニイ Insulated gate type semiconductor device
JPS6373670A (en) * 1986-09-17 1988-04-04 Toshiba Corp Conductivity modulation type MOSFET
JPS6481367A (en) * 1987-09-24 1989-03-27 Hitachi Ltd Power insulated-gate semiconductor device
JPS6490561A (en) * 1987-09-30 1989-04-07 Mitsubishi Electric Corp Semiconductor device
US4980743A (en) * 1987-02-26 1990-12-25 Kabushiki Kaisha Toshiba Conductivity-modulation metal oxide semiconductor field effect transistor
JPH0397268A (en) * 1989-09-11 1991-04-23 Toshiba Corp Power semiconductor equipment
US5086324A (en) * 1988-07-11 1992-02-04 Mitsubishi Denki Kabushiki Kaisha Insulated gate bipolar transistor
US5105243A (en) * 1987-02-26 1992-04-14 Kabushiki Kaisha Toshiba Conductivity-modulation metal oxide field effect transistor with single gate structure
US5171696A (en) * 1988-11-07 1992-12-15 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
US5212396A (en) * 1983-11-30 1993-05-18 Kabushiki Kaisha Toshiba Conductivity modulated field effect transistor with optimized anode emitter and anode base impurity concentrations
US5237186A (en) * 1987-02-26 1993-08-17 Kabushiki Kaisha Toshiba Conductivity-modulation metal oxide field effect transistor with single gate structure
JPH0897168A (en) * 1994-07-04 1996-04-12 Sgs Thomson Microelettronica Spa High density MOS power device manufacturing method and high density MOS power device manufactured by this method
JP2008543031A (en) * 2005-05-24 2008-11-27 アーベーベー・シュバイツ・アーゲー Cathode cell design
WO2014027520A1 (en) * 2012-08-13 2014-02-20 住友電気工業株式会社 Silicon carbide semiconductor device
KR20160091882A (en) * 2013-09-20 2016-08-03 모노리스 세미컨덕터 아이엔씨. High voltage mosfet devices and methods of making the devices
US10692999B2 (en) 2013-09-20 2020-06-23 Monolith Semiconductor Inc. High voltage MOSFET devices and methods of making the devices

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197771A (en) * 1982-04-05 1983-11-17 ゼネラル・エレクトリツク・カンパニイ Insulated gate rectifier improved for energizing capacity
JPS59149058A (en) * 1983-02-15 1984-08-25 Matsushita Electric Works Ltd MOS type transistor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58197771A (en) * 1982-04-05 1983-11-17 ゼネラル・エレクトリツク・カンパニイ Insulated gate rectifier improved for energizing capacity
JPS59149058A (en) * 1983-02-15 1984-08-25 Matsushita Electric Works Ltd MOS type transistor

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5212396A (en) * 1983-11-30 1993-05-18 Kabushiki Kaisha Toshiba Conductivity modulated field effect transistor with optimized anode emitter and anode base impurity concentrations
JPS62113477A (en) * 1985-09-30 1987-05-25 ゼネラル・エレクトリツク・カンパニイ Insulated gate type semiconductor device
JPS6373670A (en) * 1986-09-17 1988-04-04 Toshiba Corp Conductivity modulation type MOSFET
US5237186A (en) * 1987-02-26 1993-08-17 Kabushiki Kaisha Toshiba Conductivity-modulation metal oxide field effect transistor with single gate structure
US4980743A (en) * 1987-02-26 1990-12-25 Kabushiki Kaisha Toshiba Conductivity-modulation metal oxide semiconductor field effect transistor
US5105243A (en) * 1987-02-26 1992-04-14 Kabushiki Kaisha Toshiba Conductivity-modulation metal oxide field effect transistor with single gate structure
JPS6481367A (en) * 1987-09-24 1989-03-27 Hitachi Ltd Power insulated-gate semiconductor device
JPS6490561A (en) * 1987-09-30 1989-04-07 Mitsubishi Electric Corp Semiconductor device
US5086324A (en) * 1988-07-11 1992-02-04 Mitsubishi Denki Kabushiki Kaisha Insulated gate bipolar transistor
US5171696A (en) * 1988-11-07 1992-12-15 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and method of manufacturing the same
JPH0397268A (en) * 1989-09-11 1991-04-23 Toshiba Corp Power semiconductor equipment
JPH0897168A (en) * 1994-07-04 1996-04-12 Sgs Thomson Microelettronica Spa High density MOS power device manufacturing method and high density MOS power device manufactured by this method
JP2008543031A (en) * 2005-05-24 2008-11-27 アーベーベー・シュバイツ・アーゲー Cathode cell design
WO2014027520A1 (en) * 2012-08-13 2014-02-20 住友電気工業株式会社 Silicon carbide semiconductor device
KR20160091882A (en) * 2013-09-20 2016-08-03 모노리스 세미컨덕터 아이엔씨. High voltage mosfet devices and methods of making the devices
JP2016534581A (en) * 2013-09-20 2016-11-04 モノリス セミコンダクター インコーポレイテッド High voltage MOSFET device and method of manufacturing the device
US10361302B2 (en) 2013-09-20 2019-07-23 Monolith Semiconductor Inc. High voltage MOSFET devices and methods of making the devices
US10692999B2 (en) 2013-09-20 2020-06-23 Monolith Semiconductor Inc. High voltage MOSFET devices and methods of making the devices
KR20210063491A (en) * 2013-09-20 2021-06-01 모노리스 세미컨덕터 아이엔씨. High voltage mosfet devices and methods of making the devices
JP2021108380A (en) * 2013-09-20 2021-07-29 モノリス セミコンダクター インコーポレイテッド High-voltage mosfet device and manufacturing method thereof

Also Published As

Publication number Publication date
JP2585505B2 (en) 1997-02-26

Similar Documents

Publication Publication Date Title
US5780887A (en) Conductivity modulated MOSFET
US4656493A (en) Bidirectional, high-speed power MOSFET devices with deep level recombination centers in base region
JP3602751B2 (en) High voltage semiconductor device
JPS6182477A (en) Conductivity modulation type MOSFET
JPH0467343B2 (en)
KR100326222B1 (en) Semiconductor device
JPS6115370A (en) Semiconductor device
JPS60254658A (en) Conductivity modulation type MOSFET
JPS62176168A (en) Vertical MOS transistor
JPS63224260A (en) Conductivity modulation type MOSFET
JPH0513387B2 (en)
JPS62150769A (en) semiconductor equipment
JPH10321859A (en) Power semiconductor device containing discontinuous emitter area for preventing parasitic thyristor latch up
JPS61164263A (en) Conductivity modulation type MOSFET
JPS61222260A (en) Conductivity modulation type MOSFET
JPH0612823B2 (en) Bidirectional power high speed MOSFET device
JPH06112494A (en) Insulated gate bipolar transistor
JPH042169A (en) Horizontal type conductivity modulation semiconductor device
JPS62283669A (en) Conductivity modulation type MOSFET
JPS6373670A (en) Conductivity modulation type MOSFET
JP2724204B2 (en) Conduction modulation type MOSFET
JP2645219B2 (en) Conduction modulation type MOSFET
JP2768362B2 (en) MOS type semiconductor device
JPS63164473A (en) Semiconductor device
EP1209752A1 (en) Semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term