[go: up one dir, main page]

JPS62176168A - Vertical MOS transistor - Google Patents

Vertical MOS transistor

Info

Publication number
JPS62176168A
JPS62176168A JP61018530A JP1853086A JPS62176168A JP S62176168 A JPS62176168 A JP S62176168A JP 61018530 A JP61018530 A JP 61018530A JP 1853086 A JP1853086 A JP 1853086A JP S62176168 A JPS62176168 A JP S62176168A
Authority
JP
Japan
Prior art keywords
layer
conductivity type
concentration
type
type semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61018530A
Other languages
Japanese (ja)
Inventor
Yukio Tsuzuki
幸夫 都築
Masami Yamaoka
山岡 正美
Toyoki Ito
伊藤 豊喜
Kazuhiko Kondo
和彦 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP61018530A priority Critical patent/JPS62176168A/en
Publication of JPS62176168A publication Critical patent/JPS62176168A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/13Semiconductor regions connected to electrodes carrying current to be rectified, amplified or switched, e.g. source or drain regions
    • H10D62/149Source or drain regions of field-effect devices
    • H10D62/151Source or drain regions of field-effect devices of IGFETs 
    • H10D62/156Drain regions of DMOS transistors
    • H10D62/157Impurity concentrations or distributions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/01Manufacture or treatment
    • H10D30/021Manufacture or treatment of FETs having insulated gates [IGFET]
    • H10D30/028Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs
    • H10D30/0291Manufacture or treatment of FETs having insulated gates [IGFET] of double-diffused metal oxide semiconductor [DMOS] FETs of vertical DMOS [VDMOS] FETs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/64Double-diffused metal-oxide semiconductor [DMOS] FETs
    • H10D30/66Vertical DMOS [VDMOS] FETs
    • H10D30/665Vertical DMOS [VDMOS] FETs having edge termination structures
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/101Integrated devices comprising main components and built-in components, e.g. IGBT having built-in freewheel diode
    • H10D84/141VDMOS having built-in components
    • H10D84/148VDMOS having built-in components the built-in components being breakdown diodes, e.g. Zener diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/102Constructional design considerations for preventing surface leakage or controlling electric field concentration
    • H10D62/103Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
    • H10D62/105Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE] 
    • H10D62/108Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices by having particular doping profiles, shapes or arrangements of PN junctions; by having supplementary regions, e.g. junction termination extension [JTE]  having localised breakdown regions, e.g. built-in avalanching regions 
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D62/00Semiconductor bodies, or regions thereof, of devices having potential barriers
    • H10D62/10Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
    • H10D62/17Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
    • H10D62/393Body regions of DMOS transistors or IGBTs 

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To prevent punch through between a source and drain, to obtain an arbitrary avalanche breakdown voltage and to provide a low ON-resistance vertical MOS transistor, by uniformly flowing a breakdown current through the bottom part of a second-conductivity type diffused layer when a high reverse voltage such as a surge voltage is applied. CONSTITUTION:A drain region has a conventional three-layer structure. A P-type diffused layer 5 is formed in an N<-> type low concentration layer 4. The bottom part T of the layer 5 reaches an N-type medium concentration layer 3. The acceptor impurity concentration of the layer can be variously adjusted in a range, which is higher than the impurity concentration of a P-type well region 6. Then, the region 6, which has the acceptor impurity concentration determined by the desired threshold voltage value of a vertical MOS transistor, is formed in the layers 5 and 4. An N<+> type source region 7, which has donor impurity concentration, is formed in the layer 5 and the region 6. Then a gate oxide film 8 is formed at a part on each of the layers 4 and 5 and the regions 6 and 7. A gate electrode layer 9 and an interlayer insulating film 10 are sequentially formed thereon. A source electrode 11 is formed on the entire surface. The withstanding voltage of the P-N junction at each place in such a vertical MOS transistor becomes the minimum at the bottom part T of the layer 5. Breakdown starts at this part, and its current flows uniformly through the bottom part T.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は縦型MOSトランジスタに関し、特にブレーク
ダウンによる素子破壊を防止する為の改良を施した縦型
MO3)ランジスタに関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a vertical MOS transistor, and more particularly to a vertical MO3) transistor that has been improved to prevent element destruction due to breakdown.

〔従来の技術〕[Conventional technology]

近年、電力用MOSトランジスタの出現によって、第2
図に示す如く、電力負荷Bのスイッチング素子としてM
OSトランジスタAが利用されるようになり、例えば車
両においても、各種車載型ごご 力負前のスイッチングに適用することが提罵(でいる。
In recent years, with the advent of power MOS transistors, the second
As shown in the figure, M is used as a switching element for power load B.
The OS transistor A has come into use, and it is recommended that it be applied to switching in front of various in-vehicle devices, for example, in vehicles.

この種のMOSトランジスタにおいては、比較的高圧・
大電流のスイッチングを行う必要性から、素子の耐圧に
ついて充分な配慮が必要である。例えば、電力負荷Bが
モータやソレノイド等の誘導性の負荷である場合には、
負荷電流を遮断した際に高電圧のサージが発生する。こ
のサージ電圧等の高電圧がソース/ドレイン間に逆方向
に印加されて、ブレークダウンが起こった場合にも素子
が破壊されないような構造にする必要がある。
In this type of MOS transistor, relatively high voltage
Due to the necessity of switching large currents, sufficient consideration must be given to the withstand voltage of the elements. For example, if power load B is an inductive load such as a motor or solenoid,
A high voltage surge occurs when the load current is interrupted. It is necessary to create a structure in which the element will not be destroyed even if a high voltage such as this surge voltage is applied in the opposite direction between the source and drain and breakdown occurs.

そこで従来では、第4図の縦型MOSトランジスタ断面
図に示すように、ドレイン電極1に接合されたN゛゛高
濃度基底N2と、このN゛型型温濃度基底層2上面に積
層され、かつN゛型型温濃度基底層2りも低い不純物濃
度のN型中濃度層3と、このN型中濃度層3の上面に積
層され、かつN型中濃度層3より低い不純物濃度のN−
型低濃度層4とから成るドレイン領域を三層構造とする
Therefore, conventionally, as shown in the cross-sectional view of a vertical MOS transistor in FIG. An N type medium concentration layer 3 having an impurity concentration lower than that of the N type temperature concentration base layer 2, and an N type medium concentration layer 3 laminated on the upper surface of this N type medium concentration layer 3 and having an impurity concentration lower than that of the N type medium concentration layer 3.
The drain region consisting of the type low concentration layer 4 has a three-layer structure.

そして、N−型低濃度層4中にP型ウェル領域6が形成
されており、かつその底部がN型中濃度層3に達して接
合されている。次に、P型ウェル領域6中にソース電極
11に電気接続するN゛゛ソース領域7が形成される。
A P-type well region 6 is formed in the N-type low concentration layer 4, and its bottom reaches the N-type medium concentration layer 3 and is bonded thereto. Next, an N' source region 7 electrically connected to the source electrode 11 is formed in the P-type well region 6.

次に、N°型ソース領域7とN−型低濃度層4の双方に
またがった状態でゲート酸化膜8を介してゲート電極層
9を形成し、その後、眉間絶縁膜10及びソース電極1
1を順次形成することにより構成される縦型MOSトラ
ンジスタが示されている。
Next, a gate electrode layer 9 is formed via the gate oxide film 8 in a state spanning both the N° type source region 7 and the N− type low concentration layer 4, and then the glabella insulating film 10 and the source electrode 1 are formed.
A vertical MOS transistor constructed by sequentially forming MOS transistors 1 and 1 is shown.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら、上記の構造の縦型MOSトランジスタに
よると、第4図において、P型ウェル領域6の底部がN
型中濃度層3に達している為に、この部分CでのPN接
合の耐圧が低下するので、たとえブレークダウンが生じ
ても、ブレークダウンはこの部分Cで起こり、ブレーク
ダウン電流が素子内において集中せず、比較的広い面積
の部分Cを均一に流すことが出来るが、実際に、例えば
車両用等に用いる場合には以下の問題点が存在している
However, according to the vertical MOS transistor having the above structure, in FIG.
Because it reaches the concentration layer 3 in the mold, the withstand voltage of the PN junction at this part C decreases, so even if breakdown occurs, the breakdown will occur at this part C, and the breakdown current will flow inside the element. Although it is possible to uniformly flow the flow over a relatively wide area C without concentrating, the following problems exist when actually used for vehicles, for example.

通常、縦型MO3)ランジスタのしきい値電圧は2〜4
Vで設計されており、この時のP型ウェル領域6のアク
セプタ不純物濃度はl X I Q ”am−3程度に
する必要がある。また、車両用として一般的な耐圧80
Vの縦型MOSトランジスタを考えると、この時のN型
中濃度層3のドナー不純物濃度はI X 10 l6a
n−”程度となる。ここで、空乏層Eは不純物濃度の低
い側に広がり易いという性質があるが、前記のP型ウェ
ル領域6及びN型中濃度層3の不純物濃度が比較的接近
している為に、ソース/ドレイン間に逆方向電圧を加え
た場合、空乏層Eは多少N型中濃度層3側に大きな幅を
もって広がるものの、はぼ均等に広がってしまい、アバ
ランシェ降伏電圧以下の電圧値で、空乏層Eが遂にはN
゛゛ソース領域7に達してしまい、達した部分から集中
的にパンチスルーが起こってしまう。
Typically, the threshold voltage of a vertical MO3) transistor is 2 to 4.
The acceptor impurity concentration of the P-type well region 6 at this time needs to be about lXIQ''am-3.
Considering a V vertical MOS transistor, the donor impurity concentration of the N-type medium concentration layer 3 at this time is I x 10 l6a
The depletion layer E tends to spread toward the lower impurity concentration side, but if the impurity concentrations of the P-type well region 6 and the N-type medium concentration layer 3 are relatively close to each other, Therefore, when a reverse voltage is applied between the source and the drain, the depletion layer E spreads somewhat toward the N-type medium concentration layer 3 side, but it spreads almost uniformly, and the depletion layer E becomes below the avalanche breakdown voltage. At the voltage value, the depletion layer E finally becomes N
゛゛The source region 7 is reached, and punch-through occurs intensively from the reached portion.

そこで、本発明は上記の問題点に鑑みて創案されたもの
で、しきい値電圧から決まるP型ウェル領域6の不純物
濃度等の設計に係わることなく、ソース/ドレイン間の
パンチスルーを防ぎ、かつ任意のアバランシェ降伏電圧
が得られ、さらに低ON抵抗の縦型MOSl−ランジス
タを提供することを目的としている。
Therefore, the present invention was devised in view of the above-mentioned problems, and it prevents punch-through between the source and drain without being concerned with the design of the impurity concentration of the P-type well region 6, which is determined based on the threshold voltage. Another object of the present invention is to provide a vertical MOS l-transistor that can obtain an arbitrary avalanche breakdown voltage and has a low ON resistance.

〔問題点を解決するための手段〕[Means for solving problems]

上記の目的を達成する為に本発明はソースまたはドレイ
ンとなる一対の主電極の一方に電気接続する高濃度第1
導電型基底層と、その高濃度第1導電型基底層上に積層
された少なくとも一層から成る中濃度第1導電型半導体
層と、その中濃度第1導電型半導体層上に積層された低
濃度第1導電型半導体層と、その低濃度第1導電型半導
体層中に形成される第2導電型半導体ウェル領域と、そ
の第2導電型半導体ウェル領域及び前記低濃度第1導電
型半導体層中に形成され、かつその底部が前記中濃度第
1導電型半導体層に達しているか、または、その底部が
前記第2導電型半導体ウェル領域の底部より前記中濃度
第1導電型半導体層側に接近しており、さらにその不純
物濃度が前記第2厚電型半導体ウェル領域の不純物濃度
より高濃度である第2導電型拡散層と、前記第2導電型
半専体ウェル領域中に形成され、かつ一対の主電極の他
方へと電気接続する高濃度第1導電型半導体領域と、少
なくともその高濃度第1導電型半導体領域と前記低濃度
第1導電型半導体層との間の前記第2導電型半導体ウェ
ル領域上に、絶縁膜を介して形成されたゲート電極層と
から構成される。
In order to achieve the above object, the present invention provides a highly doped first electrode electrically connected to one of a pair of main electrodes serving as a source or a drain.
A conductivity type base layer, a medium concentration first conductivity type semiconductor layer consisting of at least one layer laminated on the high concentration first conductivity type base layer, and a low concentration semiconductor layer laminated on the medium concentration first conductivity type semiconductor layer. a first conductivity type semiconductor layer, a second conductivity type semiconductor well region formed in the low concentration first conductivity type semiconductor layer, and a second conductivity type semiconductor well region and the second conductivity type semiconductor well region formed in the low concentration first conductivity type semiconductor layer; and the bottom reaches the medium concentration first conductivity type semiconductor layer, or the bottom thereof is closer to the medium concentration first conductivity type semiconductor layer side than the bottom of the second conductivity type semiconductor well region. a second conductivity type diffusion layer having an impurity concentration higher than that of the second thick conductivity type semiconductor well region; a high concentration first conductivity type semiconductor region electrically connected to the other of the pair of main electrodes; and a second conductivity type semiconductor region between at least the high concentration first conductivity type semiconductor region and the low concentration first conductivity type semiconductor layer. The gate electrode layer is formed on the semiconductor well region with an insulating film interposed therebetween.

〔作用〕[Effect]

そして本発明は前記の手段により、サージ等の高圧の逆
方向電圧がソース/ドレイン間に印加されてブレークダ
ウンが生じた際には、そのブレークダウン電流は第2導
電型拡散層の底部に均一に流れる。また、第2導電型拡
散層と、低濃度第1導電型半導体層または中濃度第1導
電型半導体層との間に生じる空乏層は、第2導電型拡散
層の不純物濃度が比較的高いので第2導電型拡散層側に
広がりにくくなる。
According to the above-described means, when a breakdown occurs due to a high reverse voltage such as a surge being applied between the source and drain, the breakdown current is uniformly distributed at the bottom of the second conductivity type diffusion layer. flows to Further, the depletion layer generated between the second conductivity type diffusion layer and the low concentration first conductivity type semiconductor layer or the medium concentration first conductivity type semiconductor layer is because the impurity concentration of the second conductivity type diffusion layer is relatively high. It becomes difficult to spread toward the second conductivity type diffusion layer side.

〔実施例〕〔Example〕

以下、本発明を図面に示す実施例により詳述する。第1
図に本発明の一実施例の断面図を示す。
Hereinafter, the present invention will be explained in detail with reference to embodiments shown in the drawings. 1st
The figure shows a sectional view of an embodiment of the present invention.

図において、ドレイン領域は従来のものと同様に三層構
造となっており、ドレイン電極1に接合されたN゛型型
温濃度基底層2、このN°型型温濃度基底層2上面に積
層され、かつN゛型型温濃度基底層2りも低いドナー不
純物濃度のN型中濃度層3と、このN型中濃度層3の上
面に積層され、かつN型中濃度層3よりも低いドナー不
純物濃度のN−型低濃度層4とから成る。そして、N−
型低濃度層4中にP型拡散層5が形成されており、かつ
その底部TはN型中濃度層3に達している。
In the figure, the drain region has a three-layer structure similar to the conventional one, with an N゛ type temperature concentration base layer 2 connected to the drain electrode 1, and a layer laminated on the top surface of this N° type temperature concentration base layer 2. an N-type intermediate concentration layer 3 having a donor impurity concentration lower than that of the N-type temperature basal layer 2; and an N-type low concentration layer 4 having a donor impurity concentration. And N-
A P-type diffusion layer 5 is formed in the low-concentration layer 4 , and its bottom T reaches the medium-concentration N-type layer 3 .

尚、このP型拡散層5のアクセプタ不純物濃度は後述す
るP型ウェル領域6の不純物濃度より高い濃度の範囲で
種々調節可能である。次に、P型拡散層5及びN−型低
濃度層4中に、縦型MOSトランジスタの所望のしきい
値電圧から決まるアクセプタ不純物濃度を有するP型ウ
ェル領域6を、その表面がP型拡散層5の表面を覆うよ
うに形成する。次に、P型拡散層5及びP型ウェル領域
6中にソース電極11に電気接続し、かつ高濃度のドナ
ー不純物濃度を存するN゛゛ソース領域7を形成する。
Incidentally, the acceptor impurity concentration of this P type diffusion layer 5 can be variously adjusted within a range higher than the impurity concentration of a P type well region 6, which will be described later. Next, a P-type well region 6 having an acceptor impurity concentration determined based on the desired threshold voltage of the vertical MOS transistor is formed in the P-type diffusion layer 5 and the N-type low concentration layer 4, the surface of which is P-type diffused. It is formed to cover the surface of layer 5. Next, an N source region 7 electrically connected to the source electrode 11 and having a high donor impurity concentration is formed in the P type diffusion layer 5 and the P type well region 6.

次に、N−型低濃度層4上と、P型拡散層5上及びP型
ウェル領域6上及びN+型ソース領域7上の一部にゲー
ト酸化膜8を形成し、その上部にゲート電極層9及び層
間絶縁膜10を順次形成する。そして、全体の表面上に
ソース電極11を形成する。尚、層間絶縁膜10及びソ
ース電極11は、ゲート電極層9の引き出し部分を除く
部分に形成されており、ソース電極11はN゛゛ソース
領域7及びその間のP型拡散層5、P型ウェル領域6に
電気接続している。
Next, a gate oxide film 8 is formed on the N- type low concentration layer 4, the P-type diffusion layer 5, the P-type well region 6, and a part of the N+-type source region 7, and a gate electrode is formed on the top of the gate oxide film 8. Layer 9 and interlayer insulating film 10 are sequentially formed. Then, a source electrode 11 is formed on the entire surface. The interlayer insulating film 10 and the source electrode 11 are formed on the gate electrode layer 9 except for the lead-out portion, and the source electrode 11 is formed in the N' source region 7, the P-type diffusion layer 5 therebetween, and the P-type well region. Electrically connected to 6.

上記の如(構成された縦型MOSトランジスタにおいて
は、サージ等の高圧の逆方向電圧がソース/ドレイン間
に印加された場合、縦型MO’Sトランジスタ内の各所
のPN接合の耐圧において、P型拡散層5の底部Tにお
けるPN接合の耐圧が最も小さくなるので、ブレークダ
ウンはこの底部Tから起こり、ブレークダウン電流は底
部Tを均一に流れるので、ブレークダウン電流が局部的
に集中して流れ、素子を破壊するのを防ぐことができる
。ここで、底部Tにおける耐圧が最も小さいというのは
N型中濃度層3の不純物濃度が、N−型低濃度層4の不
純物濃度よりも濃いために、先に述べた空乏層の性質か
ら、高圧の逆方向電圧によって発生した空乏層は、N型
中濃度層3中では余り広がらず、他の部分よりも薄くな
り、この空乏層の薄い部分、すなわち前記の底部Tに電
界が集中するからである。
In a vertical MOS transistor configured as described above, when a high reverse voltage such as a surge is applied between the source and drain, P Since the breakdown voltage of the PN junction at the bottom T of the type diffusion layer 5 is the lowest, breakdown occurs from this bottom T, and the breakdown current flows uniformly through the bottom T, so the breakdown current flows locally concentrated. , it is possible to prevent the device from being destroyed.Here, the reason why the breakdown voltage at the bottom T is the lowest is because the impurity concentration in the N-type medium concentration layer 3 is higher than the impurity concentration in the N-type low concentration layer 4. In addition, due to the properties of the depletion layer mentioned earlier, the depletion layer generated by the high reverse voltage does not spread much in the N-type medium concentration layer 3, and becomes thinner than other parts. That is, the electric field is concentrated at the bottom T.

そして、底部Tにおける空乏層は、P型拡散層5の不純
物濃度が比較的高濃度であるので、P型拡散層5側に余
り広がらず、空乏層がN+型ソース領域7に達する事が
なくなるのでソース/ドレイン間のパンチスルーを防ぐ
ことができる。尚、P型拡散層5の不純物濃度はP型ウ
ェル領域6の不純物濃度より高濃度である範囲で任意に
調整可能であり、パンチスルーを生じないように、また
、所望の耐圧が得られる様に設計される。
Since the impurity concentration of the P-type diffusion layer 5 is relatively high, the depletion layer at the bottom T does not spread much toward the P-type diffusion layer 5 side, and the depletion layer does not reach the N+ type source region 7. Therefore, punch-through between the source and drain can be prevented. The impurity concentration of the P-type diffusion layer 5 can be arbitrarily adjusted within a range that is higher than the impurity concentration of the P-type well region 6, so as to prevent punch-through and to obtain a desired breakdown voltage. Designed to.

さらに、ドレイン領域が三層構造であり、不純物濃度の
低い領域を比較的狭くすることができるので、電流は流
れ易くなり、縦型MO3)ランジスタの動作時の抵抗、
すなわちON抵抗の値を小さくする事ができ、縦型MO
3)ランジスタのスイッチング性を向上する事ができる
Furthermore, since the drain region has a three-layer structure and the region with low impurity concentration can be made relatively narrow, current flows easily and the resistance during operation of the vertical MO3) transistor increases.
In other words, the value of ON resistance can be reduced, and vertical MO
3) The switching performance of transistors can be improved.

尚、本発明は上記の実施例に限定されず、以下の如く種
々変形可能である。
It should be noted that the present invention is not limited to the above embodiments, and can be modified in various ways as described below.

(1)上記実施例ではP型拡散層5の底部TがN型中濃
度層3に達しているが、達していなくてもよく、所望の
7バランシエ降伏電圧が得られ、パンチスルーが生じな
いように充分に接近しておればよい。ここで、底部Tが
N型中濃度層3に達していないと、空乏層はP型拡散層
5とN−型低濃度N4との間に生じるが、空乏層の幅が
広がった際に空乏層はN型中濃度層3に達して、上記実
施例と同様に空乏層の幅が底部Tの部分で狭くなるので
同様の効果が得られる。
(1) In the above embodiment, the bottom T of the P-type diffusion layer 5 reaches the N-type medium concentration layer 3, but it does not have to reach the N-type intermediate concentration layer 3, and the desired 7-balancier breakdown voltage can be obtained and punch-through will not occur. It is sufficient if they are close enough to each other. Here, if the bottom T does not reach the N-type medium concentration layer 3, a depletion layer is generated between the P-type diffusion layer 5 and the N-type low concentration N4, but when the width of the depletion layer widens, the depletion layer The layer reaches the N-type medium concentration layer 3, and the width of the depletion layer becomes narrow at the bottom T, similar to the above embodiment, so that the same effect can be obtained.

(2)第3図の他の実施例の断面図に示すように、P型
ウェル領域6間のN−低濃度N4内にN−型低濃度層4
と同導電型を有するN゛型型数散層12形成してもよい
。N“型拡散層12を形成する事により、縦型MO3)
ランジスタの動作時に流れる電流がN゛型型数散層12
主に通り、ON抵抗をさらに低下する事ができる。尚、
図中にはN゛WE゛散層12の底部がN型中濃度N3に
達していないものが示しであるが、N型中濃度層3に達
していてもよい。
(2) As shown in the cross-sectional view of another embodiment in FIG.
An N-type scattering layer 12 having the same conductivity type may be formed. By forming the N" type diffusion layer 12, vertical MO3)
When the transistor operates, the current flowing through the N-type scattering layer 12
It is possible to further reduce the ON resistance. still,
Although the bottom of the NWE diffused layer 12 does not reach the N-type medium concentration N3 in the figure, it may reach the N-type medium concentration layer 3.

(3)上記実施例ではN型チャネルの縦型MOSトラン
ジスタについて示しであるが、本発明はP型チャネルの
縦型MO3)ランジスタについても同様の効果が得られ
るものである。
(3) Although the above-mentioned embodiment shows an N-type channel vertical MOS transistor, the present invention can also provide similar effects to a P-type channel vertical MO3) transistor.

(4)上記実施例のドレイン領域は三層構造を示しであ
るが、N型中濃度層3を複数個の層に分け、ドレイン領
域を三層以上の複数層構造としてもよい。
(4) Although the drain region in the above embodiment has a three-layer structure, the N-type medium concentration layer 3 may be divided into a plurality of layers, and the drain region may have a multi-layer structure of three or more layers.

(5)上記実施例は縦型MOS)ランジスタの素子内部
のみを示したが、素子の耐圧を考える際には素子周辺部
も問題になり、素子周辺部については第5図の断面図に
示すように、周辺部FにはN−型低濃度層4内にP型ウ
ェル領域6を上記実施例における工程と同じ工程で形成
してもよいし、第6図の断面図に示すように、P型拡散
層5を上記実施例における工程と同じ工程で形成しても
よいで、第7図の断面図に示すように、P型拡散層5と
P型ウェル領域6を上記実施例と同様に形成してもよい
。尚、第5図乃至第7図中の符号は上記実施例と同一構
成部分には同一符号を付してその説明は省略する。ここ
で、第5図の実施例における素子周辺部Fの耐圧は素子
内部の耐圧より大きくなるのでブレークダウンは素子内
部のみで起こり、第6図及び第7図の実施例においては
、素子周辺部FのP型拡散層5の底部における耐圧が、
素子内部の耐圧と等しくなるので、ブレークダウンは素
子内部と素子周辺部Fで同時に起こり、より広い面積か
らブレークダウンが起こるので、素子の保護の面から考
えてより優れたものとなる。
(5) The above example shows only the inside of the element of a vertical MOS transistor, but when considering the withstand voltage of the element, the peripheral area of the element is also a problem, and the peripheral area of the element is shown in the cross-sectional view of Fig. 5. As shown in the sectional view of FIG. The P-type diffusion layer 5 may be formed in the same process as in the above embodiment, and as shown in the cross-sectional view of FIG. It may be formed into Note that the same reference numerals in FIGS. 5 to 7 refer to the same components as in the above embodiment, and the explanation thereof will be omitted. Here, in the embodiment shown in FIG. 5, the breakdown voltage of the peripheral part F of the element is larger than the breakdown voltage inside the element, so breakdown occurs only inside the element, and in the embodiment of FIGS. The breakdown voltage at the bottom of the P-type diffusion layer 5 of F is
Since the breakdown voltage is equal to the withstand voltage inside the element, breakdown occurs simultaneously inside the element and at the periphery F of the element, and breakdown occurs from a wider area, resulting in better protection of the element.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の構成による縦型MO3)ラ
ンジスタにおいては、縦型MOSトランジスタのしきい
値電圧から決まる素子の設計に係わることなく、ソース
/ドレイン間のパンチスルーを防ぐ事ができ、かつ任意
のアバランシェ降伏電圧が得られ、さらに低ON抵抗で
ある縦型MOSトランジスタを提供する事ができるとい
う優れた効果がある。
As described above, in the vertical MO3) transistor configured according to the present invention, punch-through between the source and drain can be prevented without being concerned with the element design determined by the threshold voltage of the vertical MOS transistor. , an arbitrary avalanche breakdown voltage can be obtained, and a vertical MOS transistor with low ON resistance can be provided, which is an excellent effect.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の縦型MOSトランジスタの一実施例の
構造を示す断面図、第2図はMOSトランジスタを用い
たスイ・ノチング回路図、第3図は本発明の縦型MO5
)ランジスタの他の実施例の構造を示す断面図、第4図
は従来の縦型MO3)ランジスタの構造を示す断面図、
第5図乃至第7図は本発明の縦型MO3のトランジスタ
の素子周辺部を示す断面図である。 1・・・ドレイン電極、2・・・N゛型型温濃度基底層
3・・・N型中濃度層、4・・・N−型低濃度層、5・
・・P型拡散層、6・・・P型ウェル領域、7・・・N
°型ソース領域、8・・・ゲート酸化膜、9・・・ゲー
ト電極層。
FIG. 1 is a cross-sectional view showing the structure of an embodiment of a vertical MOS transistor of the present invention, FIG. 2 is a switch-notching circuit diagram using a MOS transistor, and FIG. 3 is a vertical MOS transistor of the present invention.
) A cross-sectional view showing the structure of another embodiment of the transistor; FIG. 4 is a cross-sectional view showing the structure of a conventional vertical MO3 transistor;
5 to 7 are cross-sectional views showing the device periphery of the vertical MO3 transistor of the present invention. DESCRIPTION OF SYMBOLS 1... Drain electrode, 2... N-type warm concentration basal layer 3... N-type medium concentration layer, 4... N-type low concentration layer, 5...
...P type diffusion layer, 6...P type well region, 7...N
°-type source region, 8... gate oxide film, 9... gate electrode layer.

Claims (1)

【特許請求の範囲】 ソースまたはドレインとなる一対の主電極の一方に電気
接続する高濃度第1導電型基底層と;前記高濃度第1導
電型基底層上に積層され少なくとも一層から成る中濃度
第1導電型半導体層と;前記中濃度第1導電型半導体層
上に積層された低濃度第1導電型半導体層と; 前記低濃度第1導電型半導体層中に形成される第2導電
型半導体ウェル領域と; 前記第2導電型半導体ウェル領域及び前記低濃度第1導
電型半導体層中に形成され、かつその底部が前記中濃度
第1導電型半導体層に達しているか、または、その底部
が前記第2導電型半導体ウェル領域の底部より前記中濃
度第1導電型半導体層側に接近しており、さらにその不
純物濃度が前記第2導電型半導体ウェル領域の不純物濃
度より高濃度である第2導電型拡散層と; 前記第2導電型半導体ウェル領域中に形成され、かつ一
対の主電極の他方へと電気接続する高濃度第1導電型半
導体領域と 少なくとも前記高濃度第1導電型半導体領域と前記低濃
度第1導電型半導体層との間の前記第2導電型半導体ウ
ェル領域上に、絶縁膜を介して形成されたゲート電極層
を具備することを特徴とする縦型MOSトランジスタ。
[Scope of Claims] A heavily doped first conductivity type base layer electrically connected to one of a pair of main electrodes serving as a source or a drain; a medium doped base layer laminated on the high concentration first conductivity type base layer and comprising at least one layer; a first conductivity type semiconductor layer; a low concentration first conductivity type semiconductor layer stacked on the medium concentration first conductivity type semiconductor layer; a second conductivity type formed in the low concentration first conductivity type semiconductor layer; a semiconductor well region; formed in the second conductivity type semiconductor well region and the low concentration first conductivity type semiconductor layer, the bottom of which reaches the medium concentration first conductivity type semiconductor layer; is closer to the intermediate concentration first conductivity type semiconductor layer than the bottom of the second conductivity type semiconductor well region, and has an impurity concentration higher than that of the second conductivity type semiconductor well region. a second conductivity type diffusion layer; a high concentration first conductivity type semiconductor region formed in the second conductivity type semiconductor well region and electrically connected to the other of the pair of main electrodes; and at least the high concentration first conductivity type semiconductor; A vertical MOS transistor comprising a gate electrode layer formed on the second conductivity type semiconductor well region between the region and the low concentration first conductivity type semiconductor layer with an insulating film interposed therebetween.
JP61018530A 1986-01-30 1986-01-30 Vertical MOS transistor Pending JPS62176168A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61018530A JPS62176168A (en) 1986-01-30 1986-01-30 Vertical MOS transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61018530A JPS62176168A (en) 1986-01-30 1986-01-30 Vertical MOS transistor

Publications (1)

Publication Number Publication Date
JPS62176168A true JPS62176168A (en) 1987-08-01

Family

ID=11974182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61018530A Pending JPS62176168A (en) 1986-01-30 1986-01-30 Vertical MOS transistor

Country Status (1)

Country Link
JP (1) JPS62176168A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01117363A (en) * 1987-10-30 1989-05-10 Nec Corp Vertical insulated gate field effect transistor
US4866313A (en) * 1987-11-18 1989-09-12 Mitsubishi Denki Kabushiki Kaisha Cascode BiMOS driving circuit using IGBT
US5016066A (en) * 1988-04-01 1991-05-14 Nec Corporation Vertical power MOSFET having high withstand voltage and high switching speed
US5479037A (en) * 1992-08-04 1995-12-26 Siliconix Incorporated Low threshold voltage epitaxial DMOS technology
US5532179A (en) * 1992-07-24 1996-07-02 Siliconix Incorporated Method of making a field effect trench transistor having lightly doped epitaxial region on the surface portion thereof
US5558313A (en) * 1992-07-24 1996-09-24 Siliconix Inorporated Trench field effect transistor with reduced punch-through susceptibility and low RDSon
WO1996032749A1 (en) * 1995-04-11 1996-10-17 Rohm Co., Ltd. Semiconductor device having planar type high withstand voltage vertical devices, and production method thereof
US5578851A (en) * 1994-08-15 1996-11-26 Siliconix Incorporated Trenched DMOS transistor having thick field oxide in termination region
US5597765A (en) * 1995-01-10 1997-01-28 Siliconix Incorporated Method for making termination structure for power MOSFET
US5923979A (en) * 1997-09-03 1999-07-13 Siliconix Incorporated Planar DMOS transistor fabricated by a three mask process
US9614043B2 (en) 2012-02-09 2017-04-04 Vishay-Siliconix MOSFET termination trench
US9842911B2 (en) 2012-05-30 2017-12-12 Vishay-Siliconix Adaptive charge balanced edge termination
US9882044B2 (en) 2014-08-19 2018-01-30 Vishay-Siliconix Edge termination for super-junction MOSFETs
US9887259B2 (en) 2014-06-23 2018-02-06 Vishay-Siliconix Modulated super junction power MOSFET devices

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60196975A (en) * 1984-08-24 1985-10-05 Nissan Motor Co Ltd Vertical MOSFET

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60196975A (en) * 1984-08-24 1985-10-05 Nissan Motor Co Ltd Vertical MOSFET

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01117363A (en) * 1987-10-30 1989-05-10 Nec Corp Vertical insulated gate field effect transistor
US4866313A (en) * 1987-11-18 1989-09-12 Mitsubishi Denki Kabushiki Kaisha Cascode BiMOS driving circuit using IGBT
US5016066A (en) * 1988-04-01 1991-05-14 Nec Corporation Vertical power MOSFET having high withstand voltage and high switching speed
US5532179A (en) * 1992-07-24 1996-07-02 Siliconix Incorporated Method of making a field effect trench transistor having lightly doped epitaxial region on the surface portion thereof
US5558313A (en) * 1992-07-24 1996-09-24 Siliconix Inorporated Trench field effect transistor with reduced punch-through susceptibility and low RDSon
US5981344A (en) * 1992-07-24 1999-11-09 Siliconix Incorporated Trench field effect transistor with reduced punch-through susceptibility and low RDSon
US5910669A (en) * 1992-07-24 1999-06-08 Siliconix Incorporated Field effect Trench transistor having lightly doped epitaxial region on the surface portion thereof
US5479037A (en) * 1992-08-04 1995-12-26 Siliconix Incorporated Low threshold voltage epitaxial DMOS technology
US5770503A (en) * 1992-08-04 1998-06-23 Siliconix Incorporated Method of forming low threshold voltage vertical power transistor using epitaxial technology
US5639676A (en) * 1994-08-15 1997-06-17 Siliconix Incorporated Trenched DMOS transistor fabrication having thick termination region oxide
US5578851A (en) * 1994-08-15 1996-11-26 Siliconix Incorporated Trenched DMOS transistor having thick field oxide in termination region
US5614751A (en) * 1995-01-10 1997-03-25 Siliconix Incorporated Edge termination structure for power MOSFET
US5597765A (en) * 1995-01-10 1997-01-28 Siliconix Incorporated Method for making termination structure for power MOSFET
WO1996032749A1 (en) * 1995-04-11 1996-10-17 Rohm Co., Ltd. Semiconductor device having planar type high withstand voltage vertical devices, and production method thereof
US5923979A (en) * 1997-09-03 1999-07-13 Siliconix Incorporated Planar DMOS transistor fabricated by a three mask process
US9935193B2 (en) 2012-02-09 2018-04-03 Siliconix Technology C. V. MOSFET termination trench
US9614043B2 (en) 2012-02-09 2017-04-04 Vishay-Siliconix MOSFET termination trench
US9842911B2 (en) 2012-05-30 2017-12-12 Vishay-Siliconix Adaptive charge balanced edge termination
US10229988B2 (en) 2012-05-30 2019-03-12 Vishay-Siliconix Adaptive charge balanced edge termination
US9887259B2 (en) 2014-06-23 2018-02-06 Vishay-Siliconix Modulated super junction power MOSFET devices
US10283587B2 (en) 2014-06-23 2019-05-07 Vishay-Siliconix Modulated super junction power MOSFET devices
US9882044B2 (en) 2014-08-19 2018-01-30 Vishay-Siliconix Edge termination for super-junction MOSFETs
US10340377B2 (en) 2014-08-19 2019-07-02 Vishay-Siliconix Edge termination for super-junction MOSFETs

Similar Documents

Publication Publication Date Title
US6246092B1 (en) High breakdown voltage MOS semiconductor apparatus
JP3191747B2 (en) MOS type semiconductor device
JP2692350B2 (en) MOS type semiconductor device
US10347724B2 (en) Silicon carbide semiconductor device
JPH0324791B2 (en)
JPH051626B2 (en)
JPH02275675A (en) MOS type semiconductor device
JPS62176168A (en) Vertical MOS transistor
JP2003174169A (en) Semiconductor device
JP2000101085A (en) High voltage resistant edge structures for semiconductor modules
JPH04283968A (en) Insulating gate type bipolar transistor
JP2950025B2 (en) Insulated gate bipolar transistor
JP2937185B2 (en) High breakdown voltage MOS type semiconductor device
JPH04125972A (en) Mos semiconductor element and manufacture thereof
JPH0376592B2 (en)
JPH03156977A (en) Vertical mosfet
JPH04363068A (en) semiconductor equipment
JP3664129B2 (en) Semiconductor device
JP2629437B2 (en) Lateral insulated gate bipolar transistor
JP2988047B2 (en) Semiconductor device
JP2785792B2 (en) Power semiconductor device
JPH03104284A (en) Insulated gate bipolar transistor
JPH0818075A (en) Schottky barrier diode and semiconductor integrated circuit
JPH0810764B2 (en) Insulated gate type semiconductor device
JP2907504B2 (en) Semiconductor device