JPS6161081B2 - - Google Patents
Info
- Publication number
- JPS6161081B2 JPS6161081B2 JP53135439A JP13543978A JPS6161081B2 JP S6161081 B2 JPS6161081 B2 JP S6161081B2 JP 53135439 A JP53135439 A JP 53135439A JP 13543978 A JP13543978 A JP 13543978A JP S6161081 B2 JPS6161081 B2 JP S6161081B2
- Authority
- JP
- Japan
- Prior art keywords
- refractive index
- glass
- glass substrate
- optical
- high refractive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired
Links
- 230000003287 optical effect Effects 0.000 claims description 43
- 239000011521 glass Substances 0.000 claims description 35
- 239000000758 substrate Substances 0.000 claims description 18
- 238000004519 manufacturing process Methods 0.000 claims description 16
- 238000000034 method Methods 0.000 claims description 15
- 238000010894 electron beam technology Methods 0.000 claims description 14
- WKMKTIVRRLOHAJ-UHFFFAOYSA-N oxygen(2-);thallium(1+) Chemical compound [O-2].[Tl+].[Tl+] WKMKTIVRRLOHAJ-UHFFFAOYSA-N 0.000 claims description 13
- 229910003438 thallium oxide Inorganic materials 0.000 claims description 13
- 239000000463 material Substances 0.000 claims description 5
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical group [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 4
- 239000005388 borosilicate glass Substances 0.000 claims description 3
- 230000001678 irradiating effect Effects 0.000 claims description 3
- 238000000206 photolithography Methods 0.000 description 6
- 238000004544 sputter deposition Methods 0.000 description 5
- 229920002120 photoresistant polymer Polymers 0.000 description 4
- 239000013307 optical fiber Substances 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000006121 base glass Substances 0.000 description 2
- 230000005540 biological transmission Effects 0.000 description 2
- 230000010365 information processing Effects 0.000 description 2
- 229910001392 phosphorus oxide Inorganic materials 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- VSAISIQCTGDGPU-UHFFFAOYSA-N tetraphosphorus hexaoxide Chemical compound O1P(O2)OP3OP1OP2O3 VSAISIQCTGDGPU-UHFFFAOYSA-N 0.000 description 2
- KOPBYBDAPCDYFK-UHFFFAOYSA-N caesium oxide Chemical compound [O-2].[Cs+].[Cs+] KOPBYBDAPCDYFK-UHFFFAOYSA-N 0.000 description 1
- 229910001942 caesium oxide Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 239000005368 silicate glass Substances 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
Landscapes
- Optical Integrated Circuits (AREA)
- Surface Treatment Of Glass (AREA)
Description
【発明の詳細な説明】
この発明は光通信もしくは光情報処理で用いら
れる平面光導波路の製造方法に関するものであ
る。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a planar optical waveguide used in optical communication or optical information processing.
平面光導波路は光通信の分野では半導体光源、
光変調器、光検知器、光学フイルター、光フアイ
バを複合して得られる光集積回路を用いた中継
器、送信器等を実現する上で欠かせない素子であ
る。特に光フアイバの低損失化と光半導体素子の
長寿命化は光フアイバ通信の実用化促進に大きな
影響を与え、光集積回路特に平面光導波路の必要
性は高まりつつある。又、光情報処理分野で考え
られている光集積回路も、各種高速光スイツチの
発明、二安定光素子の発明等により、実用化に関
して検討されるようになつて来た。これらの用途
で用いられる平面光導波路として要求される条件
には色々あるが、特に伝送損失が小さいこと、及
び製造プロセスが簡略で製造が容易であることが
重要である。 Planar optical waveguides are used as semiconductor light sources in the field of optical communication.
It is an essential element in realizing repeaters, transmitters, etc. using optical integrated circuits obtained by combining optical modulators, photodetectors, optical filters, and optical fibers. In particular, the reduction in loss of optical fibers and the extension of the lifespan of optical semiconductor devices have a great influence on the promotion of practical use of optical fiber communications, and the need for optical integrated circuits, especially planar optical waveguides, is increasing. Further, optical integrated circuits, which have been considered in the field of optical information processing, are now being considered for practical use due to the invention of various high-speed optical switches, bistable optical devices, and the like. Although there are various requirements for a planar optical waveguide used in these applications, it is especially important that the transmission loss be small and that the manufacturing process be simple and easy to manufacture.
従来、平面光導波路の製造方法としては多種提
案されているが、比較的低損失な平面光導波路が
得られる製造方法はスパツタリング法とフオトリ
ソグラフイー法を組み合せた方法である。 Conventionally, various methods for manufacturing planar optical waveguides have been proposed, but the method for manufacturing planar optical waveguides with relatively low loss is a method that combines a sputtering method and a photolithography method.
従来第1図に示す平面光導波路の一形態である
光分岐回路はスパツタリング法とフオトリソグラ
フイー法を組み合せて以下に述べるように製造さ
れる。第一の製造プロセスにおいて充分に表面を
研磨したガラス基盤11の上に前記ガラス基盤よ
り屈折率の高いガラス層をスパツタリング法で形
成する。しかる後に第二のプロセスであるフオト
リソグラフイー法によつて前記スパツタリング層
を一部除去し、光分岐回路が作られる。ここで用
いられるフオトリソグラフイー法とは、フオトレ
ジストを前記二層構造のガラス表面に塗布し、次
に光分岐回路のパターンを露光し、感光した部分
のフオトレジストを除去し、さらにフオトレジス
トが除去された部分の高屈折率層ガラス部をエツ
チングにより取り除き、次に残存するフオトレジ
スト膜を除去し、パターン化された平面光導波路
を作成する工程を言う。ところが前述したフオト
リソグラフイー法で製作された平面導波路は第1
図に示すように導波路12の横方向の境界13が
凸凹になりやすく、そのため低損失平面光導波路
が得られず、またフオトリソグラフイー法は前述
したように製造プロセスが非常に複雑であり製造
が容易でなかつた。 Conventionally, an optical branching circuit, which is one form of a planar optical waveguide shown in FIG. 1, is manufactured by combining sputtering and photolithography as described below. A glass layer having a higher refractive index than the glass substrate is formed by sputtering on the glass substrate 11 whose surface has been sufficiently polished in the first manufacturing process. Thereafter, a portion of the sputtering layer is removed by a second process, photolithography, to create an optical branch circuit. The photolithography method used here is to apply photoresist to the glass surface of the two-layer structure, then expose the pattern of the optical branch circuit, remove the photoresist in the exposed area, and then remove the photoresist. This refers to the process of removing the removed portion of the high refractive index glass layer by etching, and then removing the remaining photoresist film to create a patterned planar optical waveguide. However, the planar waveguide manufactured by the photolithography method mentioned above is
As shown in the figure, the lateral boundary 13 of the waveguide 12 tends to be uneven, making it difficult to obtain a low-loss planar optical waveguide, and as mentioned above, the photolithography method requires a very complicated manufacturing process. It wasn't easy.
したがつて、本発明の目的は、簡易な製造プロ
セスで低損失の平面光導波路が得られる平面光導
波路の製造方法を提供することにある。 Therefore, an object of the present invention is to provide a method for manufacturing a planar optical waveguide, which allows a planar optical waveguide with low loss to be obtained through a simple manufacturing process.
この発明によれば、ガラス基盤上に、前記ガラ
ス基盤より屈折率が高くかつ前記ガラス基盤より
揮発性の高いガラス材料を含むガラス層を形成
し、しかる後に前記ガラス基盤とは垂直にかつ高
屈折率のガラス層に対面する方向から集束された
電子ビームを局部的に照射し、高屈折率のガラス
層に含まれる前記揮発性の高いガラス材料を揮発
せしめることにより低屈折率部を形成し、電子ビ
ーム照射によつて形成された低屈折率部によつて
はさまれた高屈折率部を光導波路とすることを特
徴とする平面光導波路の製造方法が得られる。 According to this invention, a glass layer containing a glass material having a higher refractive index and higher volatility than the glass substrate is formed on the glass substrate, and then perpendicular to the glass substrate and having a high refractive index. Forming a low refractive index portion by locally irradiating a focused electron beam from a direction facing the high refractive index glass layer to volatilize the highly volatile glass material contained in the high refractive index glass layer; A method for manufacturing a planar optical waveguide is obtained, characterized in that a high refractive index portion sandwiched between low refractive index portions formed by electron beam irradiation is used as an optical waveguide.
次に図面を用いて本発明の一実施例を説明しよ
う。第2図は表面の屈折率を高めるために表面に
酸化タリウムが拡散されたソーダボロシリケート
をのガラス基盤を示し、21は酸化タリウムが拡
散された高屈折率層を示し、22は低屈折率層を
示している。このような2層構造を有するガラス
基盤の製造方法は日本セルフオツク(株)出願の特許
“光伝送体”(特公昭47−10455)に詳細に記され
ているのでここでは省略する。 Next, one embodiment of the present invention will be described using the drawings. Figure 2 shows a glass substrate made of soda borosilicate with thallium oxide diffused on the surface to increase the refractive index of the surface, 21 shows a high refractive index layer in which thallium oxide is diffused, and 22 shows a low refractive index layer. It shows the layers. A method for manufacturing a glass substrate having such a two-layer structure is described in detail in the patent "Optical Transmission Body" (Japanese Patent Publication No. 47-10455) filed by Nippon Self-Ock Co., Ltd., and will not be described here.
第3図は表面の屈折率を高めるために酸化タリ
ウムが拡散されたソーダボロシリケートガラス基
盤に対し、電子ビームを前記ガラス基盤とは垂直
に電子ビームを照射することによる平面光導波路
の製造方法を示す。第3図で31は集束された電
子ビームであり、32は酸化タリウムが拡散させ
られた高屈折率層、33は酸化タリウムがほとん
ど含まれない低屈折率層である。 Figure 3 shows a method for manufacturing a planar optical waveguide by irradiating an electron beam perpendicularly to the glass substrate onto a soda borosilicate glass substrate in which thallium oxide is diffused to increase the refractive index of the surface. show. In FIG. 3, 31 is a focused electron beam, 32 is a high refractive index layer in which thallium oxide is diffused, and 33 is a low refractive index layer containing almost no thallium oxide.
前記2層構造のガラス基盤に電子ビーム31を
照射すると、照射された部分は、電子ビームによ
り酸化タリウムの分子結合が切断される。分子結
合が切断されると、酸化タリウムは小さいエネル
ギによつてガラスから容易に離脱する。酸化タリ
ウムの分子結合は、酸化硅素、等の他のガラス成
分に比べて弱いため、酸化タリウムが最もよく揮
発する。すると、酸化タリウムが揮発した部分は
屈折率が下がる。電子ビームの照射する位置を第
3図の照射部34に沿つて移動すると、低屈折率
溝で囲まれた高屈折率部35が得られる。ここで
は光分岐回路が得られるように電子ビームの照射
する位置を移動したので、高屈折率部35は光分
岐回路の光導波部となる。 When the two-layered glass substrate is irradiated with an electron beam 31, the molecular bonds of thallium oxide are broken in the irradiated portion by the electron beam. When the molecular bonds are broken, thallium oxide easily detaches from the glass with a small amount of energy. The molecular bonds of thallium oxide are weaker than those of other glass components such as silicon oxide, so thallium oxide volatilizes best. Then, the refractive index of the part where thallium oxide has volatilized decreases. By moving the irradiation position of the electron beam along the irradiation section 34 in FIG. 3, a high refractive index section 35 surrounded by low refractive index grooves is obtained. Here, since the position where the electron beam is irradiated was moved so as to obtain an optical branch circuit, the high refractive index section 35 becomes an optical waveguide section of the optical branch circuit.
上記実施例では光分岐回路が得られるように電
子ビームの照射位置を移動したが、電子ビームの
照射位置の移動は任意に可能であるので、光分岐
回路に限定されず、異なるパターンをもつた光回
路にも適用できることは明らかである。 In the above embodiment, the electron beam irradiation position was moved to obtain an optical branch circuit, but since the electron beam irradiation position can be moved arbitrarily, it is not limited to optical branch circuits, and can be used to create optical branch circuits with different patterns. It is clear that it can also be applied to optical circuits.
上記実施例では基盤ガラスとしてソーダボロシ
リケートガラスを用い、揮発する成分として酸化
タリウムが用いられたが、揮発する成分として酸
化セシウム、酸化リンでも良い。上記実施例で
は、基盤ガラス上の高屈折率層はイオンの拡散に
より形成されたが、ガラス基盤上にスパツタリン
グ又は化学蒸着法等で酸化ゲルマラウム、酸化リ
ン、等の混合された石英ガラス膜を付着した2層
構造物を用いても良い。 In the above embodiment, soda borosilicate glass was used as the base glass and thallium oxide was used as the volatile component, but cesium oxide or phosphorus oxide may be used as the volatile component. In the above example, the high refractive index layer on the base glass was formed by ion diffusion, but a quartz glass film containing a mixture of germalium oxide, phosphorus oxide, etc. was deposited on the glass base by sputtering or chemical vapor deposition. A two-layer structure may also be used.
最後に本発明が有する利点を挙げると、低損失
な平面光ガイドが簡易な製造プロセスで得られる
ことである。 Finally, the advantage of the present invention is that a low-loss planar light guide can be obtained through a simple manufacturing process.
第1図は従来の製造方法によつて作られた平面
光導波路の斜視図、第2図は本発明で用いられる
2層構造のガラス基盤の斜視図、第3図は本発明
による平面光導波路の製造方法を説明する斜視
図。
11はガラス基盤、12は導波路部、13は導
波路の横方向境界、14は入射光、15は出射
光、21は酸化タリウムが拡散された高屈折率
層、22は低屈折率ソーダボロシリケートのガラ
ス基盤、31は電子ビーム、32は高屈折率層、
33は低屈折率層、34は電子ビームによつて低
屈折率化された部分となる照射部、35は光導波
部である。
FIG. 1 is a perspective view of a planar optical waveguide made by a conventional manufacturing method, FIG. 2 is a perspective view of a two-layer glass substrate used in the present invention, and FIG. 3 is a planar optical waveguide according to the present invention. FIG. 11 is a glass substrate, 12 is a waveguide section, 13 is a lateral boundary of the waveguide, 14 is an incident light, 15 is an output light, 21 is a high refractive index layer in which thallium oxide is diffused, and 22 is a low refractive index soda boro. A silicate glass substrate, 31 an electron beam, 32 a high refractive index layer,
33 is a low refractive index layer, 34 is an irradiation section which is a portion whose refractive index is lowered by the electron beam, and 35 is an optical waveguide section.
Claims (1)
が高くかつ前記ガラス基盤より揮発性の高いガラ
ス材料を含むガラス層を形成し、しかる後に前記
高屈折率のガラス層に垂直方向から集束された電
子ビームを局部的に照射し、高屈折率のガラス層
に含まれる前記揮発性の高いガラス材料を揮発せ
しめることにより低屈折率部を形成し、電子ビー
ム照射によつて形成された低屈折率部によつては
さまれた高屈折率部を光導波路とすることを特徴
とする平面光導波路の製造方法。 2 ガラス基盤がソーダボロシリケートガラスで
あり、前記ガラス基盤に酸化タリウムをイオン交
換して高屈折率ガラス層としたことを特徴とする
特許請求の範囲第1項記載の平面光導波路の製造
方法。[Scope of Claims] 1. A glass layer containing a glass material having a higher refractive index and higher volatility than the glass substrate is formed on a glass substrate, and then a glass layer containing a glass material having a higher refractive index and higher volatility than the glass substrate is formed perpendicular to the glass layer having a high refractive index. A low refractive index portion is formed by locally irradiating a focused electron beam from a direction to volatilize the highly volatile glass material contained in the high refractive index glass layer, and forming the low refractive index portion by electron beam irradiation. 1. A method for manufacturing a planar optical waveguide, characterized in that a high refractive index portion sandwiched between low refractive index portions is used as an optical waveguide. 2. The method of manufacturing a planar optical waveguide according to claim 1, wherein the glass substrate is soda borosilicate glass, and the glass substrate is ion-exchanged with thallium oxide to form a high refractive index glass layer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13543978A JPS5562407A (en) | 1978-11-02 | 1978-11-02 | Production of plane optical guide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP13543978A JPS5562407A (en) | 1978-11-02 | 1978-11-02 | Production of plane optical guide |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5562407A JPS5562407A (en) | 1980-05-10 |
JPS6161081B2 true JPS6161081B2 (en) | 1986-12-24 |
Family
ID=15151737
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP13543978A Granted JPS5562407A (en) | 1978-11-02 | 1978-11-02 | Production of plane optical guide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5562407A (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4673642B2 (en) * | 2005-03-02 | 2011-04-20 | 学校法人トヨタ学園 | Optical waveguide forming method |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54161350A (en) * | 1978-06-10 | 1979-12-20 | Nippon Telegr & Teleph Corp <Ntt> | Production of thin film optical element |
-
1978
- 1978-11-02 JP JP13543978A patent/JPS5562407A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54161350A (en) * | 1978-06-10 | 1979-12-20 | Nippon Telegr & Teleph Corp <Ntt> | Production of thin film optical element |
Also Published As
Publication number | Publication date |
---|---|
JPS5562407A (en) | 1980-05-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4375312A (en) | Graded index waveguide structure and process for forming same | |
US3880630A (en) | Method for forming optical waveguides | |
FI86226B (en) | FOERFARANDE FOER FRAMSTAELLNING AV LJUSVAOGSLEDARE MEDELST JONBYTESTEKNIK PAO ETT GLASSUBSTRAT. | |
US4933262A (en) | Method of making integrated optical component | |
JP2988916B2 (en) | Fabrication method of optical waveguide | |
KR100288742B1 (en) | Fabrication method for optical waveguide | |
US4711514A (en) | Product of and process for forming tapered waveguides | |
JP3159433B2 (en) | Method for manufacturing low-loss optical active device | |
JPH0527132A (en) | Production of waveguide type optical parts | |
JPS6161081B2 (en) | ||
JP3857910B2 (en) | Manufacturing method of optical waveguide element | |
JP2603924B2 (en) | Method of manufacturing waveguide type branch path | |
JPS61204604A (en) | Manufacture of lightwave guide construction | |
US6826344B2 (en) | Optical element and method of fabrication thereof | |
JPH0341406A (en) | Production of optical waveguide | |
JPH0313907A (en) | Production of substrate type optical waveguide | |
JPS592008A (en) | Production of embedding type quartz optical waveguide | |
JPH05313032A (en) | Manufacture of optical waveguide | |
JPS6039201B2 (en) | Method for manufacturing integrated optical coupling device | |
JPS59171907A (en) | Production of optical guide | |
JP3692752B2 (en) | Manufacturing method of planar waveguide type optical circuit | |
KR100464552B1 (en) | Manufacturing method of planar waveguide devices by use of uv laser beam on photonic films with enhanced photosensitivity | |
JP2000121858A (en) | Method of forming planar waveguide optical circuit | |
JPH0687623A (en) | Method for manufacturing glass waveguide | |
JPS5997102A (en) | Optical waveguide device and its manufacturing method |