[go: up one dir, main page]

JPH0313907A - Production of substrate type optical waveguide - Google Patents

Production of substrate type optical waveguide

Info

Publication number
JPH0313907A
JPH0313907A JP1149885A JP14988589A JPH0313907A JP H0313907 A JPH0313907 A JP H0313907A JP 1149885 A JP1149885 A JP 1149885A JP 14988589 A JP14988589 A JP 14988589A JP H0313907 A JPH0313907 A JP H0313907A
Authority
JP
Japan
Prior art keywords
optical waveguide
layer
metal
substrate
sio2 layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1149885A
Other languages
Japanese (ja)
Inventor
Tatsuya Sakano
坂野 達也
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP1149885A priority Critical patent/JPH0313907A/en
Publication of JPH0313907A publication Critical patent/JPH0313907A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Integrated Circuits (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To lower the propagation loss of the optical waveguide by thermally oxidizing an Si substrate to form an SiO2 layer and forming a metal to increase the refractive index of the SiO2 layer on the SiO2 layer to a prescribed shape and then thermally diffusing this metal in an oxidation atmosphere. CONSTITUTION:The Si substrate 11 is thermally oxidized for 35 hours at 1,100 deg.C by using a hydrogen combustion method or the like to form the SiO2 layer 17 having 4mum film thickness. Ti is deposited at 200Angstrom thickness by sputtering, etc., as the metal 6 to increase the refractive index of the SiO2 layer 17 on the SiO2 layer 17. This metal 6 is patterned to a stripe shape by photolithography and the SiO2 layer 18 is deposited by sputtering therein. These layers are subjected again to the thermal oxidation and thermal diffusion for 72 hours at 1,100 deg.C by using the hydrogen combustion method, etc., to simultaneously form an SiO2 clad layer 19 and the optical waveguide 20. The generation of roughening by etching on the side faces of the optical waveguide is obviated in this way and, therefore, the propagation loss is lowered.

Description

【発明の詳細な説明】 U産業上の利用分野コ この発明は、光通信および光情報処理の分野に係り、光
合分波器、光合分岐器等に用いて好適な基板型光導波路
の製造方法に関する。
[Detailed Description of the Invention] U Industrial Field of Application This invention relates to the fields of optical communications and optical information processing, and is a method for manufacturing a substrate-type optical waveguide suitable for use in optical multiplexers/demultiplexers, optical multiplexers/branchers, etc. Regarding.

「従来の技術J 従来、基板型光導波路には、 ■イオン交換によって形成するガラス光導波路。"Conventional technology J Conventionally, substrate-type optical waveguides include ■Glass optical waveguide formed by ion exchange.

■Ti拡散またはプロトン交換で光導波路を形成するL
iNbO5光導波路。
■L forming optical waveguide by Ti diffusion or proton exchange
iNbO5 optical waveguide.

■溶融石英またはSi基板上にCV D (Chemi
c−al Vapor Deposition)法で形
成するS io 、−T iO7光導波路。
■CVD (Chemistry) on fused silica or Si substrate
c-al Vapor Deposition) method.

■ Si基板上にスパッタ法で形成する5iOtT i
 O!光導波路。
■ 5iOtTi formed by sputtering on a Si substrate
O! optical waveguide.

などがある。and so on.

上述した■のガラス光導波路では、第2図に示すように
溶融石英(SiOt)などのガラス基板1に電界イオン
交換などによってNa”などのイオン2を拡散させ、本
来ガラス基板1がもっているイオン3をイオン2(Na
”)で置き換えることにより屈折率を制御し光導波路4
を形成する。
In the above-mentioned glass optical waveguide (2), as shown in Fig. 2, ions 2 such as Na'' are diffused into a glass substrate 1 made of fused silica (SiOt) by electric field ion exchange, etc., and the ions originally contained in the glass substrate 1 are 3 to ion 2 (Na
), the refractive index is controlled by replacing the optical waveguide 4 with
form.

次に、■のTi拡散によるL iN bo 3光導波路
では、L i N bo 、基板5にTi(チタン)な
どの金属6をストライプ状にパターニングした後(第3
図(a)、(b)参照)、この金属6を熱拡散して高屈
折率の光導波路7を形成する(第3図(c)参照)。ま
た、プロトン交換によるLiNb0.光導波路では、L
 iN bo s基板5の上に金属膜のレジスト8によ
ってス、ドライブ状のネガパターンを作成する(第4図
(a)参照)。そして、このLiNbO3基板5を安息
香酸(C,H,Cool)溶液9の中に浸漬し、Li0
とH6との交換を起こしてLiNbO5基板5の中にH
xL l +−xN bo 3なる高屈折率の光導波路
10を形成する(第4図(b)参照)。
Next, in the L iN bo 3 optical waveguide by Ti diffusion (2), after patterning a metal 6 such as Ti (titanium) on the L i N bo substrate 5 in a stripe shape (the third
The metal 6 is thermally diffused to form an optical waveguide 7 with a high refractive index (see FIG. 3(c)). Moreover, LiNb0. In the optical waveguide, L
A drive-shaped negative pattern is created on the iNbos substrate 5 using a metal film resist 8 (see FIG. 4(a)). Then, this LiNbO3 substrate 5 is immersed in a benzoic acid (C, H, Cool) solution 9, and Li0
and H6 in the LiNbO5 substrate 5.
An optical waveguide 10 having a high refractive index of xL l +-xN bo 3 is formed (see FIG. 4(b)).

次に、■、■のCVD法またはスパッタ法によるSiO
2−Tilt光導波路では、溶融石英またはSi基板1
1の上にCVD法またはスパッタ法によってSiOx下
部クラッド層12 、 S io t−T io を光
導波路層13およびSiOx上部クラッド層14を順次
形成しく第5図(a )、(b )参照)、この上にレ
ジスト!5によってストライプ状のポジパターンを作成
する(第5図(c)参照)。そして、光導波路層13の
3次元化のためにRYE (反応性イオンエツチング)
によって両端をエツチングして光導波路13aを形成し
た後(第5図(d)参照)、レジスト15を除去する(
第5図(e)参照)。
Next, SiO
In the 2-Tilt optical waveguide, the fused silica or Si substrate 1
A SiOx lower cladding layer 12, a SiOt-Tio optical waveguide layer 13, and a SiOx upper cladding layer 14 are sequentially formed on 1 by CVD or sputtering (see FIGS. 5(a) and 5(b)). Resist on this! 5 to create a striped positive pattern (see FIG. 5(c)). Then, RYE (reactive ion etching) was performed to make the optical waveguide layer 13 three-dimensional.
After etching both ends to form the optical waveguide 13a (see FIG. 5(d)), the resist 15 is removed (
(See Figure 5(e)).

「発明が解決しようとする課題」 ところで、上述した■のガラス光導波路および■のL 
i N bOs光導波路では、基板としてStを用いて
いないため、光ファイバを接続するガイド溝を基板上に
設けることが困難であり、また、受光素子などの電子デ
バイスを同一基板に集積することが困難である・という
問題を生じる。さらに、■のTi拡散型の光導波路では
、得られる光導波路の縦・横比が大きくなるた屹、縦・
横比が1:Iの光ファイバが接続された場合の接続損失
が大きくなるという問題を生じる。
"Problems to be Solved by the Invention" By the way, the above-mentioned glass optical waveguide (■) and L (■)
Since the iN bOs optical waveguide does not use St as a substrate, it is difficult to provide a guide groove on the substrate for connecting optical fibers, and it is also difficult to integrate electronic devices such as photodetectors on the same substrate. The problem arises that it is difficult. Furthermore, in the case of the Ti-diffused optical waveguide described in (2), the length-to-width ratio of the resulting optical waveguide increases;
A problem arises in that splice loss increases when optical fibers with a lateral ratio of 1:I are spliced.

また、■、■のSi基板上にCVD法、スパッタ法によ
り作成されるSin、−Tilt光導波路では、3次元
化のために数ミクロンに渡るSiOxクラッド層および
SiOx  Ti1t光導波路層のエツチングを行う必
要がある。このエツチングの結果、光導波路の側面に荒
゛れが生じ光損失が大きくなり、また、エツチングとし
てRIEを用いた場合には、エツチングに多大な時間を
要し量産性に劣るという問題を生じる。
In addition, for the Sin and -Tilt optical waveguides created on the Si substrates shown in (1) and (2) by CVD and sputtering, the SiOx cladding layer and the SiOx Ti1t optical waveguide layer are etched over several microns in order to make them three-dimensional. There is a need. As a result of this etching, the side surfaces of the optical waveguide are roughened, resulting in increased optical loss, and when RIE is used as the etching, there arises the problem that etching takes a long time and is poor in mass productivity.

この発明は、上述の問題点に鑑みてなされたもので、光
ファイバとの接続損失を低減することができ、また、量
産性に優れており、かつ、低損失の光導波路が作成でき
る基板型光導波路の製造方法を提供することができる。
This invention was made in view of the above-mentioned problems, and is a substrate type that can reduce connection loss with optical fibers, is excellent in mass production, and can create a low-loss optical waveguide. A method for manufacturing an optical waveguide can be provided.

「課題を解決するための手段」 このような問題点を解決するために、請求項1記載の発
明ではSi基板を熱酸化することによりS iO2層を
形成し、前記SiOx層の上に当該5iO9層の屈折率
を高める金属を所定の形状に形成し、この上にSiOx
層を堆積させた後に、酸化雰囲気中で前記金属を熱拡散
することによってSiO,クラッド層および高屈折率の
光導波路を同時に形成することを特徴とする 請求項2記載の発明では、上記請求項1の発明の金属と
して金属酸化物を用いることを特徴とする。
"Means for Solving the Problem" In order to solve such problems, in the invention according to claim 1, a SiO2 layer is formed by thermally oxidizing a Si substrate, and the 5iO9 layer is formed on the SiOx layer. A metal that increases the refractive index of the layer is formed into a predetermined shape, and SiOx
The invention according to claim 2, characterized in that after depositing the layer, SiO, a cladding layer, and a high refractive index optical waveguide are simultaneously formed by thermally diffusing the metal in an oxidizing atmosphere. The invention is characterized in that a metal oxide is used as the metal.

「作用」 まず、Si基板11を熱酸化することによりSiOx層
を形成し、前記SiOx層の上に当該SiO2層の屈折
率を高める金属または金属酸化物を所定の形状に形成し
、さらに、この上にSi0g層を堆積させる。そして、
酸化雰囲気中で前記金属または前記金属酸化物を熱拡散
することにより、SiO!クラッド層および高屈折率の
光導波路を同時に形成する。
"Operation" First, a SiOx layer is formed by thermally oxidizing the Si substrate 11, and a metal or metal oxide that increases the refractive index of the SiO2 layer is formed in a predetermined shape on the SiOx layer. Deposit a Si0g layer on top. and,
By thermally diffusing the metal or metal oxide in an oxidizing atmosphere, SiO! A cladding layer and a high refractive index optical waveguide are formed simultaneously.

「実施例」 次に図面を参照してこの発明の実施例について説明する
"Embodiments" Next, embodiments of the present invention will be described with reference to the drawings.

第1図は、この発明の一実施例による基板型光導波路の
製造方法を示す工程図である。まず、第1図(a)に示
すように、S、i基板11を水素燃焼法などを用いて1
100℃で35時間熱酸化することにより、膜厚4μm
のSin、層17を形成する。次に、Sign層17層
上7スパッタリング等によってこのSiOx層17を高
屈折率にする金属6としてTiを膜厚200人堆積させ
る(第1図(b)参照)。そして、この金属6をホトリ
ソグラフィによって幅6μmのストライブ状にパタニン
グし、この上に膜厚2μmの5iOy層18をスパッタ
リングによって堆積させる(第1図(C)参照)。これ
を再び水素燃焼法などを用いて1100℃で7時間熱酸
化および熱拡散を行い、SiO,クラッド層19および
高屈折率の光導波路20を同時に形成した(第1図(d
)参照)。
FIG. 1 is a process diagram showing a method for manufacturing a substrate type optical waveguide according to an embodiment of the present invention. First, as shown in FIG. 1(a), the S, i substrate 11 is heated using a hydrogen combustion method.
By thermal oxidation at 100℃ for 35 hours, the film thickness was reduced to 4μm.
Form a layer 17 of Sin. Next, by sputtering or the like on the Sign layer 17, Ti is deposited to a thickness of 200 as a metal 6 that makes the SiOx layer 17 have a high refractive index (see FIG. 1(b)). Then, this metal 6 is patterned into stripes having a width of 6 μm by photolithography, and a 5iOy layer 18 having a thickness of 2 μm is deposited thereon by sputtering (see FIG. 1(C)). This was thermally oxidized and thermally diffused again at 1100°C for 7 hours using a hydrogen combustion method, etc., to form SiO, a cladding layer 19, and a high refractive index optical waveguide 20 at the same time (Fig. 1(d)
)reference).

このような製造方法によって得られた光導波路20は幅
約8μm、厚さ約4μmであった。また、5iOzクラ
ッド層19を高屈折率にする金属(Ti)2の原子は、
オージェ電子分光分析の結果、光導波路20の深さ方向
にガウス分布しており、基板表面にも存在していた。ま
た、この光導波路20の伝搬損失は0.3dB/cmで
あった。
The optical waveguide 20 obtained by such a manufacturing method had a width of about 8 μm and a thickness of about 4 μm. Furthermore, the metal (Ti) 2 atoms that make the 5iOz cladding layer 19 have a high refractive index are
As a result of Auger electron spectroscopy, it was found that there was a Gaussian distribution in the depth direction of the optical waveguide 20, and that it was also present on the substrate surface. Further, the propagation loss of this optical waveguide 20 was 0.3 dB/cm.

なお、上述の高屈折率の光導波路20を形成する金属6
としては、Ti以外のNi、Cuなどの遷移金属、ある
いはT io t、G eo t、B to 3.A 
lto 、3などの金属酸化物を用いてらよい。
Note that the metal 6 forming the above-mentioned high refractive index optical waveguide 20
Examples include transition metals other than Ti such as Ni and Cu, or Tiot, Geot, and Bto3. A
Metal oxides such as lto, 3 and the like may be used.

「発明の効果」 以上説明したように、この発明によれば5iOtクラッ
ド層は熱酸化による良質な5ins膜であるため光導波
路の伝搬損失を低減することができ、エツチングを行わ
ずに、熱拡散により5iOzクラッド層と光導波路とを
形成するため量産性に優れており、かつ、光導波路の側
面にエツチングによる荒れが生じないので伝搬損失を低
減することができる。さらに、この発明による光導波路
の屈折率はL iN bo s光導波路に比較して低く
、光ファイバの屈折率に近くなるため光ファイバとの接
続損失を低減することができ、また、熱拡散プロセスに
おいて、拡散源である金属が上下の5iOz層に拡散す
ることによって、光導波路の縦・横比が小さくなるため
、光ファイバとの接続損失を低減することができる利点
が得られる。
"Effects of the Invention" As explained above, according to the present invention, the 5iOt cladding layer is a high-quality 5ins film formed by thermal oxidation, so it is possible to reduce the propagation loss of the optical waveguide. Since the 5iOz cladding layer and the optical waveguide are formed using this method, it is excellent in mass production, and since the side surfaces of the optical waveguide are not roughened due to etching, propagation loss can be reduced. Furthermore, the refractive index of the optical waveguide according to the present invention is lower than that of the L iN bos optical waveguide and is close to the refractive index of the optical fiber, so that connection loss with the optical fiber can be reduced, and the thermal diffusion process In this case, since the metal serving as the diffusion source is diffused into the upper and lower 5iOz layers, the aspect ratio of the optical waveguide becomes smaller, so that an advantage is obtained that connection loss with the optical fiber can be reduced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施例による基板型光導波路の
製造方法を示す工程図、第2図および第3図は各々、ガ
ラス光導波路およびL r N bo 3光導波路の製
造方法を示す工程図、第4図はプロトン交換法によるL
iNbO3光導波路の製造方法を示す工程図、第5図は
CVD法またはスパッタ法によるS iOt−T r 
Oを光導波路の製造方法を示す工程図である。 第1図 6・・・・・・金属、11・・・・・・Si基板、l 
7,18・・・・・・Sin、層、19・・・・・・5
insクラッド層、20・・・・光導波路。
FIG. 1 is a process diagram showing a method for manufacturing a substrate type optical waveguide according to an embodiment of the present invention, and FIGS. 2 and 3 show methods for manufacturing a glass optical waveguide and an L r N bo 3 optical waveguide, respectively. The process diagram, Figure 4, is L by the proton exchange method.
A process diagram showing the method for manufacturing an iNbO3 optical waveguide, FIG.
FIG. 2 is a process diagram showing a method for manufacturing an optical waveguide. Fig. 1 6...Metal, 11...Si substrate, l
7, 18...Sin, layer, 19...5
ins cladding layer, 20... optical waveguide.

Claims (2)

【特許請求の範囲】[Claims] (1)Si基板を熱酸化することによりSiO_2層を
形成し、前記SiO_2層の上に当該SiO_2層の屈
折率を高める金属を所定の形状に形成し、この上にSi
O_2層を堆積させた後に、酸化雰囲気中で前記金属を
熱拡散することによってSiO_2クラッド層および高
屈折率の光導波路を同時に形成することを特徴とする基
板型光導波路の製造方法。
(1) A SiO_2 layer is formed by thermally oxidizing the Si substrate, a metal that increases the refractive index of the SiO_2 layer is formed in a predetermined shape on the SiO_2 layer, and a SiO_2 layer is formed on the SiO_2 layer.
A method for manufacturing a substrate type optical waveguide, characterized in that after depositing an O_2 layer, a SiO_2 cladding layer and a high refractive index optical waveguide are simultaneously formed by thermally diffusing the metal in an oxidizing atmosphere.
(2)前記金属として金属酸化物を用いる請求項1記載
の基板型光導波路の製造方法。
(2) The method for manufacturing a substrate-type optical waveguide according to claim 1, wherein a metal oxide is used as the metal.
JP1149885A 1989-06-13 1989-06-13 Production of substrate type optical waveguide Pending JPH0313907A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1149885A JPH0313907A (en) 1989-06-13 1989-06-13 Production of substrate type optical waveguide

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1149885A JPH0313907A (en) 1989-06-13 1989-06-13 Production of substrate type optical waveguide

Publications (1)

Publication Number Publication Date
JPH0313907A true JPH0313907A (en) 1991-01-22

Family

ID=15484766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1149885A Pending JPH0313907A (en) 1989-06-13 1989-06-13 Production of substrate type optical waveguide

Country Status (1)

Country Link
JP (1) JPH0313907A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6090636A (en) * 1998-02-26 2000-07-18 Micron Technology, Inc. Integrated circuits using optical waveguide interconnects formed through a semiconductor wafer and methods for forming same
US6150188A (en) * 1998-02-26 2000-11-21 Micron Technology Inc. Integrated circuits using optical fiber interconnects formed through a semiconductor wafer and methods for forming same
US6198168B1 (en) 1998-01-20 2001-03-06 Micron Technologies, Inc. Integrated circuits using high aspect ratio vias through a semiconductor wafer and method for forming same
US7016589B2 (en) * 2000-05-19 2006-03-21 Optinetrics, Inc. Thermally-assisted photo-lithographic process using sol-gel derived glass and products made thereby
US7039289B1 (en) 2000-05-19 2006-05-02 Optinetrics, Inc. Integrated optic devices and processes for the fabrication of integrated optic devices
JP2008131596A (en) * 2006-11-24 2008-06-05 Fujitsu Ltd Mobile terminal device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6198168B1 (en) 1998-01-20 2001-03-06 Micron Technologies, Inc. Integrated circuits using high aspect ratio vias through a semiconductor wafer and method for forming same
US6709978B2 (en) 1998-01-20 2004-03-23 Micron Technology, Inc. Method for forming integrated circuits using high aspect ratio vias through a semiconductor wafer
US6777715B1 (en) 1998-02-26 2004-08-17 Micron Technology, Inc. Integrated circuits using optical waveguide interconnects formed through a semiconductor wafer and methods for forming same
US6526191B1 (en) 1998-02-26 2003-02-25 Micron Technology, Inc. Integrated circuits using optical fiber interconnects formed through a semiconductor wafer and methods for forming same
US6150188A (en) * 1998-02-26 2000-11-21 Micron Technology Inc. Integrated circuits using optical fiber interconnects formed through a semiconductor wafer and methods for forming same
US6723577B1 (en) 1998-02-26 2004-04-20 Micron Technology, Inc. Method of forming an optical fiber interconnect through a semiconductor wafer
US6090636A (en) * 1998-02-26 2000-07-18 Micron Technology, Inc. Integrated circuits using optical waveguide interconnects formed through a semiconductor wafer and methods for forming same
US6995443B2 (en) 1998-02-26 2006-02-07 Micron Technology, Inc. Integrated circuits using optical fiber interconnects formed through a semiconductor wafer
US6995441B2 (en) * 1998-02-26 2006-02-07 Micron Technology, Inc. Integrated circuits using optical waveguide interconnects formed through a semiconductor wafer and methods for forming same
US7164156B2 (en) 1998-02-26 2007-01-16 Micron Technology, Inc. Electronic systems using optical waveguide interconnects formed throught a semiconductor wafer
US7547954B2 (en) 1998-02-26 2009-06-16 Micron Technology, Inc. Electronic systems using optical waveguide interconnects formed through a semiconductor wafer
US7016589B2 (en) * 2000-05-19 2006-03-21 Optinetrics, Inc. Thermally-assisted photo-lithographic process using sol-gel derived glass and products made thereby
US7039289B1 (en) 2000-05-19 2006-05-02 Optinetrics, Inc. Integrated optic devices and processes for the fabrication of integrated optic devices
JP2008131596A (en) * 2006-11-24 2008-06-05 Fujitsu Ltd Mobile terminal device

Similar Documents

Publication Publication Date Title
US6769274B2 (en) Method of manufacturing a planar waveguide using ion exchange method
JP2721030B2 (en) Manufacturing method of integrated optical waveguide
JPH0313907A (en) Production of substrate type optical waveguide
CN1175291C (en) Fabrication method of ridge optical waveguide device based on ion exchange
JP3343846B2 (en) Manufacturing method of optical waveguide
JP2893093B2 (en) Fabrication method of optical waveguide with fiber guide
CA2295052A1 (en) Method of fabricating an optical component and optical component made thereby
JPH0310205A (en) Production of substrate type optical waveguide
JP2000019337A (en) Optical waveguide and method of manufacturing the same
JPS6053904A (en) Ridge type light guide
JPS6343105A (en) Single mode optical waveguide
JP3220003B2 (en) Polarization separation element
CN114942534B (en) Ion exchange modulatable optical splitter based on SiON waveguide and its preparation process
JPH07270634A (en) Manufacture of optical waveguide and optical waveguide substrate
JPS59137346A (en) Manufacture of glass waveguide
JPH05307125A (en) Optical waveguide manufacturing method
JPH0462644B2 (en)
CN1603869A (en) A method of manufacturing a ridge-shaped circular waveguide device
JP2001235646A (en) Fine pattern forming method, manufacturing method of optical element, optical element and optical transmission device
JP2570822B2 (en) Manufacturing method of optical waveguide
JP2590807B2 (en) Manufacturing method of optical waveguide
JPS63250611A (en) Method of manufacturing optical waveguide
JPH06331844A (en) Quartz optical waveguide and its production
JPH0310206A (en) Optical waveguide of linbo3 and production thereof
JP2002236231A (en) Method for manufacturing resin waveguide