[go: up one dir, main page]

JPS6151281B2 - - Google Patents

Info

Publication number
JPS6151281B2
JPS6151281B2 JP57011245A JP1124582A JPS6151281B2 JP S6151281 B2 JPS6151281 B2 JP S6151281B2 JP 57011245 A JP57011245 A JP 57011245A JP 1124582 A JP1124582 A JP 1124582A JP S6151281 B2 JPS6151281 B2 JP S6151281B2
Authority
JP
Japan
Prior art keywords
deposited film
weight
sintered body
tio
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57011245A
Other languages
Japanese (ja)
Other versions
JPS58130275A (en
Inventor
Hidetaka Takayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nippon Kogaku KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kogaku KK filed Critical Nippon Kogaku KK
Priority to JP57011245A priority Critical patent/JPS58130275A/en
Publication of JPS58130275A publication Critical patent/JPS58130275A/en
Publication of JPS6151281B2 publication Critical patent/JPS6151281B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 本発明は電子ビーム加熱によつて真空蒸着する
際に蒸発源として使用される新規な焼結体、特に
反射防止膜、保護膜として使用される蒸着膜を得
るための蒸発源物質に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention is a novel sintered body used as an evaporation source in vacuum deposition by electron beam heating, particularly for obtaining a deposited film used as an antireflection film or a protective film. Regarding evaporation source substances.

最近、真空蒸着の際、蒸発源物質を加熱するの
に電子ビーム加熱が採用されている。これは、従
来の抵抗加熱では、高融点の物質例えばTiO2
溶解し難く、そのため蒸着が難しいことによる。
Recently, electron beam heating has been employed to heat the source material during vacuum deposition. This is because conventional resistance heating does not easily dissolve high melting point substances such as TiO 2 and therefore makes it difficult to deposit them.

ところで反射防止膜や保護膜として多用されて
いるものの中で低屈折率物質として代表的なもの
はSiO2で、他方高屈折率物質として代表的なも
のはTiO2であり、これらを混合すれば混合比に
応じて両者の中間の所望の屈折率を有する蒸膜率
を作ることができる。
By the way, among the materials that are often used as anti-reflection films and protective films, SiO 2 is a typical low refractive index material, while TiO 2 is a typical high refractive index material, and if these are mixed, Depending on the mixing ratio, a vapor deposition rate having a desired refractive index between the two can be created.

しかしながら、SiO2とTiO2粉末混合物を電子
ビーム加熱により蒸発させると、蒸発源物質が小
さな塊となつて飛びはねる現象がみられ、そのた
め蒸着膜中に小さな塊(当業者はこれをブツとい
う)が生じ、商品価値のない蒸着膜が得られる。
However, when a SiO 2 and TiO 2 powder mixture is evaporated by electron beam heating, a phenomenon is observed in which the evaporation source material becomes small lumps and scatters, resulting in small lumps (referred to as "bubbles" by those skilled in the art) in the deposited film. occurs, resulting in a deposited film with no commercial value.

そこで本発明者が研究した結果、金属モリブテ
ン粉末の添加がその“飛びはね”現象の抑制に著
効があることを見い出した。
As a result of research conducted by the present inventor, it has been found that the addition of metal molybdenum powder is extremely effective in suppressing the "splatter" phenomenon.

しかしながら、SiO2、TiO2及び金属モリデン
(Mo)の粉末混合物を蒸発源として電子ビーム加
熱により真空蒸着すると、蒸着膜が不均質にな
り、そのため安定した光学定数(屈折率・吸収係
数)を得ることが難しく、実用化は無理であるこ
とが判つた。
However, when a powder mixture of SiO 2 , TiO 2 , and metal molydene (Mo) is vacuum-deposited by electron beam heating using a powder mixture as an evaporation source, the deposited film becomes non-uniform, which makes it difficult to obtain stable optical constants (refractive index and absorption coefficient). It turned out to be difficult and impossible to put into practical use.

本発明者は、更に研究を進めた結果、それらの
粉末混合物をプレス成形した後、真空焼結したも
のは、均質な蒸着膜を与え、蒸着膜の光学定数が
安定することを見い出し、本発明を成すに至つ
た。
As a result of further research, the present inventor found that press-molding the powder mixture and then sintering it in vacuum gives a homogeneous deposited film and stabilizes the optical constants of the deposited film. We have achieved this goal.

従つて、本発明はSiO2、TiO2及び金属Moから
なる電子ビーム加熱真空蒸着用焼結体を提供す
る。
Therefore, the present invention provides a sintered body for electron beam heating vacuum evaporation consisting of SiO 2 , TiO 2 and metal Mo.

本発明の焼結体に於いて、SiO2は20〜90重量
%、TiO2は10〜80重量%(粉末混合物を固める
為には10重量%以上必要であり、蒸着膜が均質で
あり、安定した光学定数を得る為には80重量%以
下であるを必要とする)、金属Moは0.5〜50重量
%(1重量%以上にすると褐色に着色した蒸着膜
が得られる)を占めるが適当である。
In the sintered body of the present invention, SiO 2 is 20 to 90% by weight, TiO 2 is 10 to 80% by weight (more than 10% by weight is required to solidify the powder mixture, and the deposited film is homogeneous. In order to obtain stable optical constants, it is necessary to have a content of 80% by weight or less), and the metal Mo accounts for 0.5 to 50% by weight (if it is more than 1% by weight, a brown colored vapor deposited film is obtained), but it is appropriate. It is.

この焼結体を製造するためには、各成分粉末を
プレス圧1〜20t/cm2で所望の形状例えば直方体
(25×25×15mm)にプレス成形した後、800〜1500
℃、10-1〜10-5Torrの雰囲気中で真空焼結する。
In order to manufacture this sintered body, each component powder is press-molded into a desired shape, for example, a rectangular parallelepiped (25 x 25 x 15 mm) at a press pressure of 1 to 20 t/ cm2 , and then
℃, vacuum sintering in an atmosphere of 10 -1 to 10 -5 Torr.

こうして得られる本発明の焼結体は、電子ビー
ム加熱による真空蒸着に使用されるが、ブツのな
い無色又は褐色の透明で安定した光学定数を有す
る均質な蒸着膜を与える。
The thus obtained sintered body of the present invention is used for vacuum deposition by electron beam heating, and provides a homogeneous deposited film that is clear, colorless or brown, and has stable optical constants.

次いで、実施例により本発明を具体例に説明す
る。
Next, the present invention will be specifically explained with reference to Examples.

実施例 1 SiO2、TiO2金属Moの重量%比47.6:47.6:4.8
からなる粉末混合物を5t/cm2のプレス圧でプレス
成形した後、1250℃、10-3Torrで6時間真空焼
結することにより、25×25×15mmの焼結体を得
た。
Example 1 Weight % ratio of SiO 2 and TiO 2 metal Mo 47.6:47.6:4.8
A sintered body of 25 x 25 x 15 mm was obtained by press-molding the powder mixture consisting of the following at a press pressure of 5 t/cm 2 and vacuum sintering at 1250°C and 10 -3 Torr for 6 hours.

この焼結体を蒸着源として 真空度:5×10-5Torr 基板温度:200℃ 蒸着速度:厚さ1/4λ/30秒 の条件にてガラス板上に蒸着すると、ブツのない
平滑で透明な蒸着膜(光学的膜厚1/4λ:λ=
500nm)が得られた。
Using this sintered body as a deposition source, the vacuum level: 5×10 -5 Torr, substrate temperature: 200℃, deposition rate: thickness 1/4λ/30 seconds is deposited on a glass plate, and the result is smooth and transparent without any blemishes. Deposited film (optical film thickness 1/4λ: λ=
500 nm) was obtained.

この蒸着膜は屈折率1.64で褐色に着色してお
り、500nmの光の透過吸収率は3%であつた。
This vapor-deposited film was colored brown with a refractive index of 1.64, and the transmission/absorption rate of light at 500 nm was 3%.

実施例 2 実施例1と同様に、SiO2:41.7重量%、
TiO2:41.7重量%、金属Mo16.6重量%からなる
焼結体を作り、蒸着を行なつたところ、ブツのな
い平滑で褐色の蒸着膜(光学的膜厚1/4λ:λ=
500nm)が得られた。この蒸着膜は屈折率1.83
で、500nmの光の透過吸収率は10%であつた。
Example 2 Similar to Example 1, SiO 2 :41.7% by weight,
When a sintered body consisting of TiO 2 :41.7% by weight and metal Mo16.6% by weight was made and vapor-deposited, a smooth brown vapor-deposited film with no bumps (optical film thickness 1/4λ: λ=
500 nm) was obtained. This vapor deposited film has a refractive index of 1.83.
The transmission/absorption rate of light at 500 nm was 10%.

Claims (1)

【特許請求の範囲】[Claims] 1 二酸化ケイ素、二酸化チタン及び金属モリブ
デンからなる電子ビーム加熱真空蒸着用焼結体。
1 A sintered body for electron beam heating and vacuum deposition consisting of silicon dioxide, titanium dioxide, and metal molybdenum.
JP57011245A 1982-01-27 1982-01-27 Sintered body for vacuum deposition Granted JPS58130275A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57011245A JPS58130275A (en) 1982-01-27 1982-01-27 Sintered body for vacuum deposition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57011245A JPS58130275A (en) 1982-01-27 1982-01-27 Sintered body for vacuum deposition

Publications (2)

Publication Number Publication Date
JPS58130275A JPS58130275A (en) 1983-08-03
JPS6151281B2 true JPS6151281B2 (en) 1986-11-08

Family

ID=11772550

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57011245A Granted JPS58130275A (en) 1982-01-27 1982-01-27 Sintered body for vacuum deposition

Country Status (1)

Country Link
JP (1) JPS58130275A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63192857A (en) * 1987-02-05 1988-08-10 Sumitomo Electric Ind Ltd Method for producing superconducting thin films

Also Published As

Publication number Publication date
JPS58130275A (en) 1983-08-03

Similar Documents

Publication Publication Date Title
Randhawa et al. SnO2 films prepared by activated reactive evaporation
JP2900759B2 (en) Silicon oxide deposition material and deposition film
US3934961A (en) Three layer anti-reflection film
JP3836163B2 (en) Method for forming high refractive index film
US2964427A (en) Ultra-violet filter
US5776847A (en) Stabilized vapour-deposition materials based on titanium oxide
HUT67512A (en) Mixed oxides for makingh optical coatings of medium refractive index by means of vaporating
JP4670097B2 (en) Target and method for producing high refractive index film using the target
WO1997047564A1 (en) Light-absorbing antireflective body and process for the production thereof
JPS6151281B2 (en)
US3837884A (en) Method of producing blue colored transparent layers
JPH07196365A (en) Sintered ito, ito clear conductive layer and formation thereof
JPH07331412A (en) Optical parts for infrared ray and their production
JP4208981B2 (en) Light-absorbing antireflection body and method for producing the same
JPS6128027B2 (en)
JPS59148002A (en) Zirconium oxide composition for vapor deposition and sputtering and production of optical thin film using said composition
JPH08277462A (en) Optical coating film of medium refractive index
JP4298067B2 (en) Method for forming optical thin film
JP3160309B2 (en) Thin film formation method
Stjerna et al. Optical and electrical properties of SnOx thin films made by reactive RF magnetron sputtering
US6793781B2 (en) Cathode targets of silicon and transition metal
JPH0158267B2 (en)
Clapham The production and properties of thin films of lead monoxide
JP3472169B2 (en) Evaporation material for optical thin film with intermediate refractive index and optical thin film using the evaporation material
JP3723620B2 (en) Transparent intermediate refractive index material for vapor deposition