[go: up one dir, main page]

JPS59148002A - Zirconium oxide composition for vapor deposition and sputtering and production of optical thin film using said composition - Google Patents

Zirconium oxide composition for vapor deposition and sputtering and production of optical thin film using said composition

Info

Publication number
JPS59148002A
JPS59148002A JP58022031A JP2203183A JPS59148002A JP S59148002 A JPS59148002 A JP S59148002A JP 58022031 A JP58022031 A JP 58022031A JP 2203183 A JP2203183 A JP 2203183A JP S59148002 A JPS59148002 A JP S59148002A
Authority
JP
Japan
Prior art keywords
zirconium oxide
film
oxide
sputtering
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58022031A
Other languages
Japanese (ja)
Other versions
JPS6151282B2 (en
Inventor
Shizuko Katsube
勝部 倭子
Takayuki Katsube
勝部 能之
Kazuo Hirasawa
平沢 一男
Takeshi Shibata
健 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIN NIPPON KINZOKU KAGAKU KK
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
SHIN NIPPON KINZOKU KAGAKU KK
Agency of Industrial Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIN NIPPON KINZOKU KAGAKU KK, Agency of Industrial Science and Technology filed Critical SHIN NIPPON KINZOKU KAGAKU KK
Priority to JP58022031A priority Critical patent/JPS59148002A/en
Publication of JPS59148002A publication Critical patent/JPS59148002A/en
Publication of JPS6151282B2 publication Critical patent/JPS6151282B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Surface Treatment Of Glass (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

PURPOSE:To suppress optical heterogeneity and to improve hardness by using a compsn. consisting of zorconium oxide as well as yttrium oxide and titanium oxide for an evaporating source or sputtering source. CONSTITUTION:A compsn. consisting of zirconium oxide, 0.5-50wt% yttrium oxide by the weight of said zirconium and 0.5-160wt% titanium oxide is used for an evaporating source or sputtering source and a thin film is formed on the surface of a base body by vacuum evaporation or sputtering.

Description

【発明の詳細な説明】 本発明は蒸着およびスパッタ用酸化ジルコニウム組成物
およびそれを用いる光学用薄膜の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a zirconium oxide composition for vapor deposition and sputtering, and a method for producing optical thin films using the same.

従来、酸化ジルコニウムは多層反射防止膜などの光学多
層膜の主要な膜構成用物質として用いられてきた。
Conventionally, zirconium oxide has been used as a main film constituent material for optical multilayer films such as multilayer antireflection films.

すなわち、ガラスなど、n=1.4〜1.8程度の屈折
率を有する基板の多層反射防止用膜としては、2.0前
後の屈折率を有する高屈折率の膜が必要であり、かかる
膜を蒸着まだはスパッタにより製造するだめの出発材料
としては、酸化ジルコニウムが唯一の好適な物質であっ
た。
That is, as a multilayer antireflection film for a substrate such as glass having a refractive index of about n=1.4 to 1.8, a high refractive index film having a refractive index of around 2.0 is required. Zirconium oxide has been the only suitable starting material for producing films by vapor deposition or sputtering.

しかしながら、酸化ジルコニウムの蒸着膜は、その膜厚
方向の屈折率が、基板側から表面側に近づくにつれて漸
次減少するという光学的不均質性を現わし、この現象が
多層反射防止膜において、その効果を阻害するという大
きな欠点があった。
However, the deposited film of zirconium oxide exhibits optical inhomogeneity in that the refractive index in the film thickness direction gradually decreases from the substrate side to the surface side, and this phenomenon affects the effectiveness of multilayer antireflection coatings. It had the major drawback of hindering the

かかる光学的不均質性の発生は、膜が埋くなるにつれて
結晶化が進み、表面近くで結晶粒が大きくなると同時に
膜密度が粗となって、膜の基板近くよりも表面近くのn
が低下するためであると考えられている。
Such optical inhomogeneity occurs because crystallization progresses as the film fills up, crystal grains grow larger near the surface, and at the same time, the film density becomes coarser, resulting in n of the film near the surface than near the substrate.
This is thought to be due to a decrease in

そこでこれを改善することを目的として、出発拐料中に
酸化ジルコニウムよりも高屈折率の物質を若干混入し、
両者の蒸気圧差などを利用して蒸着が進むにつれて高屈
折率椙料の混入量を多くすること、あるいは酸化ジルコ
ニウム蒸着膜の結晶性を低下させることが考えられた。
Therefore, in order to improve this, we mixed a small amount of a substance with a higher refractive index than zirconium oxide into the starting material.
It has been considered to increase the amount of high refractive index material mixed in as the vapor deposition progresses by utilizing the vapor pressure difference between the two, or to reduce the crystallinity of the zirconium oxide deposited film.

そして混入物質について種々検討の結果、総体的効果と
して、酸化チタンの混入が酸化ジルコニウム蒸着膜の光
学的不均質性の減少にかなり良い結果を与えることが認
められ、既に一部において実用化されている。
As a result of various studies on contaminants, it was found that the overall effect of incorporating titanium oxide is to reduce the optical heterogeneity of zirconium oxide deposited films, and it has already been put into practical use in some areas. There is.

しかしながら、酸化チタンの添加によって、一方では種
々の欠点が現われることが明らかになった。
However, it has become clear that the addition of titanium oxide causes various drawbacks.

すなわち、酸化ジルコニウム膜の屈折率が酸化チタン未
添加のそれよりも犬さくなってしまうこと、および酸化
チタン添加酸化ジルコニウム膜の強度が、酸化チタン未
添加のそれよりも低下することなどである。
That is, the refractive index of the zirconium oxide film becomes lower than that without the addition of titanium oxide, and the strength of the zirconium oxide film added with titanium oxide is lower than that without the addition of titanium oxide.

そこで本発明はかかる従来の欠点を解消すべくなされた
ものであり、酸化ジルコニウムに酸化イツトリウムと酸
化チタンを同時に混入することにより従来の酸化ジルコ
ニウム膜に表われる光学的不均質性を抑制し、かつ従来
の酸化ジルコニウム膜よりも更に高硬度とすることがで
き、極めて優れた特性の多層反射防止膜用の高屈折率光
学膜を得ることができるなどの特長を有するものである
Therefore, the present invention has been made to eliminate such conventional drawbacks, and by simultaneously mixing yttrium oxide and titanium oxide into zirconium oxide, optical non-uniformity appearing in conventional zirconium oxide films can be suppressed, and It has the advantage that it can have even higher hardness than conventional zirconium oxide films, and can provide a high refractive index optical film for a multilayer antireflection film with extremely excellent properties.

すなわち本発明の蒸着およびスパッタ用酸化ジルコニウ
ム組成物は、酸化ジルコニウムと、この0.5〜50重
量%の酸化イツトリウムおよび0.5〜160重量%の
酸化チタンとからなることを特徴とするものである。
That is, the zirconium oxide composition for vapor deposition and sputtering of the present invention is characterized by comprising zirconium oxide, 0.5 to 50% by weight of yttrium oxide, and 0.5 to 160% by weight of titanium oxide. be.

寸だ本発明の光学用薄膜の製造方法は、酸化ジルコニウ
ムと、この0.5〜50重量%の酸化イツトリウムおよ
び0.5〜160重i%の酸化チタンからなる組成物を
蒸発源またはスパッタ源に用い、真空蒸発またはスパッ
タにより基体の表面に薄膜を形成させることを特徴とす
るものである。
In the method for producing an optical thin film of the present invention, a composition consisting of zirconium oxide, 0.5 to 50% by weight of yttrium oxide, and 0.5 to 160% by weight of titanium oxide is used as an evaporation source or a sputtering source. It is characterized by forming a thin film on the surface of the substrate by vacuum evaporation or sputtering.

本発明の蒸着およびスパッタ用酸化ジルコニウム組成物
において、酸化イツトリウムは膜の結晶形を安定させ、
かつ酸化チタンを添加したことによる膜の屈折率の増加
を減少させるなどの効果があり、その混入量は酸化ジル
コニウムの0.5〜50重量%である。
In the zirconium oxide composition for vapor deposition and sputtering of the present invention, yttrium oxide stabilizes the crystalline form of the film;
It also has the effect of reducing the increase in the refractive index of the film due to the addition of titanium oxide, and the amount of titanium oxide mixed is 0.5 to 50% by weight of zirconium oxide.

混入量が0.5重量%に満たないと、得られる膜の結晶
の安定化と屈折率低下の効果をほとんどあられさなくな
り、また50重量%を越えると、得られる膜の屈折率低
下が多すぎ、かえって化学的不安定性を招く恐れを生ず
るので好ましくない。
If the amount is less than 0.5% by weight, the effect of stabilizing the crystals and reducing the refractive index of the resulting film will be almost negligible, and if it exceeds 50% by weight, the refractive index of the resulting film will be significantly reduced. Too much is not preferable because it may even lead to chemical instability.

酸化チタンは蒸着膜の屈折率を高くするなどの効果があ
り、その′混入量は酸化ジルコニウムの0.5〜160
重量%である。
Titanium oxide has the effect of increasing the refractive index of the deposited film, and its amount is 0.5 to 160% that of zirconium oxide.
Weight%.

この混入量が0.5重量に満たないと、得られる膜が不
均質を大きくあられすようになり、また16060重量
%えると可視光域での吸収が犬きくなる傾向があるので
好ましくない。
If the amount is less than 0.5% by weight, the resulting film will be largely non-uniform, and if it is added by 16060% by weight, the absorption in the visible light range will tend to be poor, which is not preferable.

なお、酸化ジルコニウムに酸化イツトリウムを含有させ
ただけでは、光学的゛不均質性は若干改善されるものの
、改善効果が不十分で、かつ形成された膜の強度も酸化
イソ) l)ラム無添加の場合よりも逆に小さくなり、
まだ膜の屈折率も酸化イツトリウム無添加の酸化ジルコ
ニウム膜よりも低下する。
Note that if zirconium oxide only contains yttrium oxide, the optical heterogeneity is slightly improved, but the improvement effect is insufficient and the strength of the formed film is also lower than that of yttrium oxide. On the contrary, it becomes smaller than in the case of
However, the refractive index of the film is also lower than that of a zirconium oxide film without addition of yttrium oxide.

本発明の酸化ジルコニウム組成物は、上述した所定量の
酸化ジルコニウム、酸化イツトリウムおよび酸化チタン
を、通常では焼結して用いられる。
The zirconium oxide composition of the present invention is usually used by sintering the above-mentioned predetermined amounts of zirconium oxide, yttrium oxide, and titanium oxide.

次に本発明の光学用薄膜の製造方法においては、上述し
た酸化ジルコニウム組成物を蒸発源またはスパッタ源に
用い、真空蒸発寸たはスパッタにより基体の表面に薄膜
を形成させることにより行なわれる。ここで基体は、そ
の形状が特に限定されるものではなく、たとえばガラス
板、レンズなどをあげることができる。
Next, in the method for producing an optical thin film of the present invention, the above-described zirconium oxide composition is used as an evaporation source or a sputtering source, and a thin film is formed on the surface of a substrate by vacuum evaporation or sputtering. Here, the shape of the base body is not particularly limited, and examples thereof include a glass plate, a lens, and the like.

この製造方法により得られた光学用薄膜は酸化ジルコニ
ウムと、この0.5〜50重量%の酸化イツトリウムと
、0.5〜160重量%の酸化ナタンを含有するので、
従来の酸化ジルコニウム単独膜のように基板側から表面
側に近づくにつれて屈折率が減少するというような光学
的不均質性を生ずることがない。また、酸、イヒチタン
のみを添加した酸化ジルコニウム膜にあられれる屈折率
の増加を低減することができる。
The optical thin film obtained by this manufacturing method contains zirconium oxide, 0.5 to 50% by weight of yttrium oxide, and 0.5 to 160% by weight of nathane oxide.
Unlike conventional zirconium oxide films, optical non-uniformity such as a decrease in refractive index from the substrate side to the surface side does not occur. Furthermore, it is possible to reduce the increase in refractive index that occurs in a zirconium oxide film to which only acid and hichitanium are added.

更に、基板に対する膜の付着力および膜の硬度を、酸化
ジルコニウム単独の膜、酸化チタンのみを添加した酸化
ジルコニウム膜、および酸化イツトリウムのみを添加し
た酸化ジルコニウム膜に比較してより高めることができ
る。
Furthermore, the adhesion of the film to the substrate and the hardness of the film can be further increased compared to a film made of zirconium oxide alone, a zirconium oxide film to which only titanium oxide is added, and a zirconium oxide film to which only yttrium oxide is added.

加えて、本発明の酸化ジルコニウム組成物は、酸化イツ
トリウム混入量を0.5〜50重量%の範囲内で、およ
び酸化チタン混入量を0.5〜160重ft%の範囲内
で調節することによって、得られる光学用薄膜の屈折率
を変化させることができる。
In addition, in the zirconium oxide composition of the present invention, the amount of yttrium oxide mixed is adjusted within the range of 0.5 to 50% by weight, and the amount of titanium oxide mixed is adjusted within the range of 0.5 to 160% by weight. Accordingly, the refractive index of the obtained optical thin film can be changed.

そこで、多層反射防止膜の製作において、基板となるガ
ラスの屈折率が、たとえば1,5〜1,8に変化するに
対応して酸化ジルコニウム膜の屈折率が所望の最適値に
なるように調節することができる。
Therefore, when manufacturing a multilayer anti-reflection film, the refractive index of the zirconium oxide film is adjusted to the desired optimum value in response to the change in the refractive index of the glass substrate, for example from 1.5 to 1.8. can do.

したがって本発明の酸化ジルコニウム組成物によれば、
極めて優れた特性の多層反射防止膜用の高屈折率光学用
薄膜を得ることができる。
Therefore, according to the zirconium oxide composition of the present invention,
A high refractive index optical thin film for a multilayer antireflection film with extremely excellent properties can be obtained.

以下、本発明を実施例にもとづき詳述する。Hereinafter, the present invention will be explained in detail based on examples.

実施例1 酸化ジルコニウム粉末に、酸化イツトリウム粉末と酸化
チタン粉末を重量比で夫々8チ添加し、十分混合した後
に、約300Kf/dの圧力でプレス成形し、次いで約
1300°C′で2時間焼成して直径18mm、厚さ7
韻の円板状のペレットを得た。
Example 1 Yttrium oxide powder and titanium oxide powder were added to zirconium oxide powder at a weight ratio of 8 g each, mixed thoroughly, and then press-molded at a pressure of about 300 Kf/d, and then heated at about 1300° C' for 2 hours. Fired to a diameter of 18 mm and a thickness of 7 mm.
A disc-shaped pellet of rhyme was obtained.

このペレットを2 kWの電磁偏向型電子ビーム蒸発源
のルツボ中に入れて、真空度1.5 X 10−’’f
orrまで排気した後、蒸発源直」=25cTLにおき
、350°Cに加熱したガラス基板(ガラスの屈折率n
=151)面上に電子ビーム加熱によって1211m/
wtmの蒸着速度で蒸着させ、光学的膜厚nd(n=屈
折率、d−膜厚)がλ/4およびλ/2(λ−52On
+n )となるまで蒸着を続けた。
This pellet was placed in a crucible of a 2 kW electromagnetic deflection type electron beam evaporation source, and the vacuum level was 1.5 x 10-''f.
After evacuating to orr, a glass substrate (glass refractive index n
= 151) by electron beam heating on the surface
wtm deposition rate, and the optical film thickness nd (n = refractive index, d - film thickness) was λ/4 and λ/2 (λ-52On
Vapor deposition was continued until it reached +n).

ガラス基板面上に蒸着された蒸着膜は、その屈折率を分
光反射率曲線の極大値から求めると、可視域の中心付近
(波長520 nm )でnは2.09となり、吸収も
不均質性も認められなかった。
When the refractive index of the vapor deposited film deposited on the glass substrate surface is determined from the maximum value of the spectral reflectance curve, n is 2.09 near the center of the visible region (wavelength 520 nm), and the absorption is also non-uniform. was also not recognized.

また基板に対する付着力および膜の硬度も、酸化ジルコ
ニウム単独膜、酸化チタン添加酸化ジルコニウム膜、お
よび酸化イツトリウム添加酸化ジルコニウム膜よりも太
きがった。
The adhesion to the substrate and the hardness of the film were also greater than those of the zirconium oxide film alone, the titanium oxide-added zirconium oxide film, and the yttrium oxide-added zirconium oxide film.

実施例2 酸化ジルコニウム粉末に酸化イツトリウム粉末と酸化チ
タン粉末を重量比で夫々、18%と30チ添加し、実施
例1と同様な方法でペレットを得た。
Example 2 Yttrium oxide powder and titanium oxide powder were added to zirconium oxide powder in a weight ratio of 18% and 30%, respectively, and pellets were obtained in the same manner as in Example 1.

このペレットを用いて実施例1と同様にして蒸着を行な
ったところ、同様に付着力と膜強度の大きい、かつ吸収
も屈折率の不均質性もない良好な膜が得られた。
When this pellet was used for vapor deposition in the same manner as in Example 1, a good film was obtained which similarly had high adhesion and film strength, and had no absorption or non-uniformity in refractive index.

一方、この膜の屈折率は2.19で、酸化イツトリウム
よりも酸化チタンの添加量が多いので実施例1の)M折
率よりも大き力・った。
On the other hand, the refractive index of this film was 2.19, which was larger than the M refractive index of Example 1 because the amount of titanium oxide added was greater than that of yttrium oxide.

そしてこの膜が多層反射防止膜用の高屈折率膜として良
好な特性を有していた。
This film had good properties as a high refractive index film for a multilayer antireflection film.

更に同一組成物を用いて、繰り返し蒸着を行なつitが
、得られた膜の光学的特性、付着力および強度などのR
%性はいづれも安定して卦り、優れた丙現性が得られた
Furthermore, by repeating vapor deposition using the same composition, it is possible to improve the optical properties, adhesion, strength, etc. of the resulting film.
The percent properties were all stable, and excellent appearance properties were obtained.

実施例3 酸化ジルコニウム粉末に酸化インドリウム粉末と酸化チ
タン粉末を重量比で夫々8%恋加し、十分混合した後に
ホットプレス機を用いて温度1700°C1圧力150
Kg/cftで直径17cm、厚さ1crnの円板体を
製造した。
Example 3 Indium oxide powder and titanium oxide powder were added to zirconium oxide powder at a weight ratio of 8% each, and after thorough mixing, the mixture was heated to a temperature of 1700°C and a pressure of 150°C using a hot press.
A disc body with a diameter of 17 cm and a thickness of 1 crn was manufactured at Kg/cft.

この円板体をターゲットとして高周波二極平板型スパッ
タ装置に取り付け、電極間間隔を8c1nとして、その
対向電極面においだガラス板に、5×10″″3TOr
rのArガス圧下f ター ’I’ ソ) jlt圧を
2 KV 、基板温度を300〜4oO′Cとし115
分間のプレスパツタを行ない、次いでツヤツタ−を開い
てndがλ4およびλhになる1でスパッタを行なった
This disc body was used as a target and attached to a high frequency two-pole flat plate type sputtering device, and the spacing between the electrodes was set to 8c1n, and a glass plate of 5×10''3 Torr was placed on the opposite electrode surface.
Under the Ar gas pressure of r, the pressure was set to 2 KV, and the substrate temperature was set to 300 to 4 oO'C.
Press sputtering was carried out for 1 minute, then the sputter was opened and sputtering was carried out at 1 with nd of λ4 and λh.

この結果、実施例1および2と同様に、優れか光学特性
七膜強1#を市する酸化ジルコニウム膜が得られた。
As a result, as in Examples 1 and 2, a zirconium oxide film having excellent optical properties of 1# was obtained.

工業技術院長の復代理人 qrr日本金属化学株式会社の代理人 弁理士  小  川  化  − 野  口  賢  照 愈下和彦Sub-agent of the Director of the Agency of Industrial Science and Technology qrr Agent of Nippon Metal Chemical Co., Ltd. Patent attorney small river - Ken Teru Noguchi Kazuhiko Yushita

Claims (1)

【特許請求の範囲】 1 酸化ジルコニウムと、このO15〜50重量係の酸
化イツトリウムおよび0.5〜160重量%の酸化チタ
ンとからなることを特徴とする蒸着オヨヒスパツタ用酸
化ジルコニウム組成物。 2、酸化ジルコニウムと、この0.5〜50重量%の酸
化イツトリウムおよび0.5〜160重量%の酸化チタ
ンとからなる組成物を蒸発源まだはスパッタ源に用い、
真空蒸発またはスパッタにより基体の表面に薄膜を形成
させることを特徴とする光学用薄膜の製造方法。
[Scope of Claims] 1. A zirconium oxide composition for vapor-deposited spruce, comprising zirconium oxide, yttrium oxide in an amount of 15 to 50% by weight of zirconium oxide, and 0.5 to 160% by weight of titanium oxide. 2. Using a composition consisting of zirconium oxide, 0.5 to 50% by weight of yttrium oxide and 0.5 to 160% by weight of titanium oxide as an evaporation source or a sputtering source,
A method for producing an optical thin film, which comprises forming a thin film on the surface of a substrate by vacuum evaporation or sputtering.
JP58022031A 1983-02-15 1983-02-15 Zirconium oxide composition for vapor deposition and sputtering and production of optical thin film using said composition Granted JPS59148002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58022031A JPS59148002A (en) 1983-02-15 1983-02-15 Zirconium oxide composition for vapor deposition and sputtering and production of optical thin film using said composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58022031A JPS59148002A (en) 1983-02-15 1983-02-15 Zirconium oxide composition for vapor deposition and sputtering and production of optical thin film using said composition

Publications (2)

Publication Number Publication Date
JPS59148002A true JPS59148002A (en) 1984-08-24
JPS6151282B2 JPS6151282B2 (en) 1986-11-08

Family

ID=12071603

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58022031A Granted JPS59148002A (en) 1983-02-15 1983-02-15 Zirconium oxide composition for vapor deposition and sputtering and production of optical thin film using said composition

Country Status (1)

Country Link
JP (1) JPS59148002A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0206780A2 (en) * 1985-06-20 1986-12-30 Tosoh Corporation Zirconia sintered body of improved light transmittance
EP0279102A2 (en) * 1986-11-24 1988-08-24 Corning Glass Works Transformation toughened zirconia-titania-yttria ceramic alloys
EP0390218A2 (en) * 1989-03-31 1990-10-03 Hoya Corporation Anti-reflection optical element
JPH02291502A (en) * 1989-04-28 1990-12-03 Hoya Corp Multilayered antireflection film
EP1205774A2 (en) * 2000-11-13 2002-05-15 Hoya Corporation Composition for vapor deposition, method for forming antireflection film using it, and optical element

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0206780A2 (en) * 1985-06-20 1986-12-30 Tosoh Corporation Zirconia sintered body of improved light transmittance
EP0206780A3 (en) * 1985-06-20 1988-05-11 Tosoh Corporation Zirconia sintered body of improved light transmittance
EP0279102A2 (en) * 1986-11-24 1988-08-24 Corning Glass Works Transformation toughened zirconia-titania-yttria ceramic alloys
EP0390218A2 (en) * 1989-03-31 1990-10-03 Hoya Corporation Anti-reflection optical element
JPH02291502A (en) * 1989-04-28 1990-12-03 Hoya Corp Multilayered antireflection film
EP1205774A2 (en) * 2000-11-13 2002-05-15 Hoya Corporation Composition for vapor deposition, method for forming antireflection film using it, and optical element
EP1205774A3 (en) * 2000-11-13 2004-06-09 Hoya Corporation Composition for vapor deposition, method for forming antireflection film using it, and optical element
US7106515B2 (en) 2000-11-13 2006-09-12 Hoya Corporation Composition for vapor deposition, method for forming an antireflection film, and optical element
EP1801621A3 (en) * 2000-11-13 2009-12-02 Hoya Corporation Composition for vapor deposition, method for forming antireflection film using it, and optical element

Also Published As

Publication number Publication date
JPS6151282B2 (en) 1986-11-08

Similar Documents

Publication Publication Date Title
JP4087447B2 (en) Sputtering target and manufacturing method thereof
US5641719A (en) Mixed oxide high index optical coating material and method
JP2900759B2 (en) Silicon oxide deposition material and deposition film
US6436542B1 (en) Multilayer structure and process for producing the same
DE69315504T2 (en) Anti-reflective layer and optical element with the same
US7440204B2 (en) ND filter of optical film laminate type with carbon film coating
CN106946471A (en) Surface is coated with chalcogenide glass of high anti-reflection diamond-film-like and preparation method thereof
US3695910A (en) Method of applying a multilayer antireflection coating to a substrate
JPS59148002A (en) Zirconium oxide composition for vapor deposition and sputtering and production of optical thin film using said composition
HUT67512A (en) Mixed oxides for makingh optical coatings of medium refractive index by means of vaporating
CN112813391B (en) Preparation method of ultra-wide waveband infrared long-wave pass cut-off light filtering film
JPH08277462A (en) Optical coating film of medium refractive index
US5825549A (en) Optical thin film for optical element
JP2021026163A (en) Optical member with antireflection film and method for manufacturing the same
JP2002226967A (en) Vapor deposition material for producing optical layer with high refractive index, and method for manufacturing the same
JPS6128027B2 (en)
JP2019066600A (en) Plastic lens and manufacturing method for the same
CN110257773B (en) Evaporation material for evaporating high-absorption film layer and preparation method thereof
JPH09263936A (en) Production of thin film and thin film
JPH04341707A (en) Transparent conductive film
JPS6151281B2 (en)
JP3472169B2 (en) Evaporation material for optical thin film with intermediate refractive index and optical thin film using the evaporation material
JP2815949B2 (en) Anti-reflective coating
JP2003073818A (en) Fluoride sputtering target and manufacturing method therefor
KR910008716B1 (en) Yttrium oxide composition for vapor deposition and manufacturing method of antireflection film