[go: up one dir, main page]

JPS6140226A - Method for producing cycloolefin - Google Patents

Method for producing cycloolefin

Info

Publication number
JPS6140226A
JPS6140226A JP16273884A JP16273884A JPS6140226A JP S6140226 A JPS6140226 A JP S6140226A JP 16273884 A JP16273884 A JP 16273884A JP 16273884 A JP16273884 A JP 16273884A JP S6140226 A JPS6140226 A JP S6140226A
Authority
JP
Japan
Prior art keywords
catalyst
reaction
ruthenium
supported
additive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16273884A
Other languages
Japanese (ja)
Other versions
JPH0259809B2 (en
Inventor
Hiroshi Ichihashi
宏 市橋
Hiroshi Yoshioka
宏 吉岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP16273884A priority Critical patent/JPS6140226A/en
Priority to EP85108530A priority patent/EP0170915B1/en
Priority to DE8585108530T priority patent/DE3569233D1/en
Priority to US06/753,861 priority patent/US4575572A/en
Publication of JPS6140226A publication Critical patent/JPS6140226A/en
Publication of JPH0259809B2 publication Critical patent/JPH0259809B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To improve the yield easily without corrosion of apparatuses in partially hydrogenating an aromatic hydrocarbon in the presence of a supported rutheniumcatalyst and water to give the titled compound which is an intermediate raw material for medicines, etc., by using specific compounds as a catalyst carrier and additive. CONSTITUTION:An aromatic hydrocarbon is partially hydrogenated in the presence of a supported catalyst containing barium sulfate as a carrier and ruthenium supported thereon as a catalyst and at least one or more metal sulfates selected from the group consisting of lithium, cobalt, iron and zinc as an additive added thereto at 0-250 deg.C, preferably 100-200 deg.C to give the corresponding cycloolefin. The ratio of the supported ruthenium in the above-mentioned catalyst is 0.01-20wt%, preferably 0.1-10wt%. The concentration of the metal sulfate which is an additive used is preferably within 1:5-1:250 atomic ratio range of the metal species to the ruthenium in the catalyst to be used for the reaction.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は芳香族炭化水素化合物の部分水素化によって、
対応するシクロオレフィンを製造する方法に関するもの
である。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention provides the following methods:
The present invention relates to a method for producing a corresponding cycloolefin.

(従来の技術) シクロオレフィンは、リジン、カプロラクタム、アジピ
〉′酸、医薬、農薬、染料などの重要な中間原料として
、有用な化合物である。
(Prior Art) Cycloolefins are useful compounds as important intermediate raw materials for lysine, caprolactam, adipic acid, pharmaceuticals, agricultural chemicals, dyes, and the like.

シクロオレフィンの製造方法としては、従来よりシクロ
ヘキサノール類の脱水反応、ハロゲン化シクロヘキサン
類の脱ハロゲン化水素反応、シクロヘキシルアレン類の
クランキング反応およびシクロヘキサン類の脱水素反応
または酸化脱水素反応など多くの方法が知られている。
Conventionally, there are many methods for producing cycloolefins, such as dehydration reaction of cyclohexanols, dehydrohalogenation reaction of halogenated cyclohexanes, cranking reaction of cyclohexylarenes, and dehydrogenation or oxidative dehydrogenation reaction of cyclohexanes. method is known.

芳香族炭化水素化合物の部分水素化反応によるシクロオ
レフィンの製造は、生成するシクロオレフィンが原料の
芳香族炭化水素化合物よりも通常は容易に還元されるた
め、実施するのが困難であるのは周知である。
It is well known that the production of cycloolefins by partial hydrogenation of aromatic hydrocarbon compounds is difficult to carry out because the resulting cycloolefins are usually reduced more easily than the raw aromatic hydrocarbon compounds. It is.

しかしながら、いずれの方法も出発原料は芳香族炭化水
素化合物であることから、芳香族炭化水素化合物の部分
水素化反応により、シクロオレフィンを収率よく得るこ
とができれば、最も簡略化された反応工程でよく工業的
観点からも好ましい。
However, since the starting material for both methods is an aromatic hydrocarbon compound, if cycloolefins can be obtained in good yield through the partial hydrogenation reaction of aromatic hydrocarbon compounds, it is possible to obtain cycloolefins using the simplest reaction process. It is also preferred from an industrial standpoint.

芳香族化合物の部分水素化反応によるシクロオレフィン
の製造方法として以下のごとき方法が公知である。
The following methods are known as methods for producing cycloolefins by partial hydrogenation of aromatic compounds.

(1)水およびアルカリ剤ならびに少なくとも1種の第
■族元索の還元されたカチオンからなる触媒の存在下、
部分水素化する方法。
(1) in the presence of a catalyst consisting of water and an alkaline agent and at least one reduced cation of a group II element;
How to partially hydrogenate.

(特公昭56−22850 ) (2)  ルテニウムグリコキシドおよびケイ酸エチル
を加水分解した後、400℃で水素還元して調製したル
テニウム−シリカ触媒および水の存在下、部分水素化す
る方法。(日本化学会、第47春季年会、4DO2)(
3)  シリカまたはアルミナ等金属酸化物に、主にル
テニウムを担持させた触媒、水および硫酸コバルトの存
在下、部分水素化する方法。(特開昭57−13092
6 )(4)  ルテニウムおよびロジウムの少なくと
も1種を主成分とする固体触媒を陽イオンの塩を含む水
溶液で予め処理した触媒および水の存在下、部分水素化
する方法。(特開昭51−98243 ) (1)の方法は シクロヘキセン収率は比較的良好であ
るものの、反応系が極めて複雑であるだけでなく、反応
生成物の分離および塩素イオンによる反応装置の腐食等
の問題があり、工業的には必ずしも満足なものとは言え
ない。
(Japanese Patent Publication No. 56-22850) (2) A method in which ruthenium glycoxide and ethyl silicate are hydrolyzed and then partially hydrogenated in the presence of water and a ruthenium-silica catalyst prepared by hydrogen reduction at 400°C. (Chemical Society of Japan, 47th Spring Annual Meeting, 4DO2) (
3) A method of partially hydrogenating a metal oxide such as silica or alumina in the presence of a catalyst mainly supporting ruthenium, water and cobalt sulfate. (Unexamined Japanese Patent Publication No. 57-13092
6)(4) A method of partially hydrogenating a solid catalyst containing at least one of ruthenium and rhodium as a main component in the presence of water and a catalyst previously treated with an aqueous solution containing a cationic salt. (Unexamined Japanese Patent Publication No. 51-98243) Although the method (1) has a relatively good yield of cyclohexene, it not only requires an extremely complicated reaction system, but also requires separation of the reaction products and corrosion of the reaction equipment due to chlorine ions. There are problems, and it cannot be said that it is necessarily satisfactory from an industrial perspective.

(2)の方法は 複雑な触媒調製工程を要し、触媒性能
の再現性の点で問題があること、また+3) 、 +4
+の方法は 選択率および収率の飛躍的な向上が望まれ
ることなど工業的に実用化することは困難であった。
Method (2) requires a complicated catalyst preparation process and has problems in terms of reproducibility of catalyst performance, and +3), +4
It was difficult to put the + method into practical use industrially, as a dramatic improvement in selectivity and yield was desired.

(発明が解決しようとする問題点) 本発明の目的は、これら従来技術の欠点を改良し、工業
的に有利なシクロオレフィンの製造方法を提供すること
にある。かかる目的を達成するため、本発明者等は鋭意
検討を進め芳香族炭化水素を部分水素化して対応するシ
クロオレフィンを製造するに適した新規な触媒を発明し
、本発明に至つた。
(Problems to be Solved by the Invention) An object of the present invention is to improve the drawbacks of these conventional techniques and to provide an industrially advantageous method for producing cycloolefins. In order to achieve this object, the present inventors conducted extensive studies and invented a new catalyst suitable for partially hydrogenating aromatic hydrocarbons to produce corresponding cycloolefins, resulting in the present invention.

(問題点を解決する為の手段) すなわち本発明は担体にルテニウムを担持した触媒、水
および添加剤の存在下に芳香族炭化水素を部分水素化し
て対応するシクロオレフィンを製造する方法において触
媒担体として硫酸バリウムを用いること、および添加剤
としてリチウム、コバルト、ニッケルおよび亜鉛から選
ばれる少なくと−も1種以上の金属硫酸塩を用いること
を特徴とするシクロオレフィンの製造方法である。
(Means for Solving the Problems) That is, the present invention provides a method for producing a corresponding cycloolefin by partially hydrogenating an aromatic hydrocarbon in the presence of a catalyst having ruthenium supported on a carrier, water and an additive. This is a method for producing a cycloolefin, characterized in that barium sulfate is used as the additive, and at least one metal sulfate selected from lithium, cobalt, nickel and zinc is used as the additive.

以下、本発明の方法を更に詳細に説明する。The method of the present invention will be explained in more detail below.

本発明の対象とする芳香族炭化水素は、ベンゼン、トル
エン、キシレンおよび低級アルキルベンゼンである芳香
族炭化水素の純度は特に高純度である必要はなく、シク
ロパラフィン、低級パラフィン系炭化水素などを含有し
ても差し障りはない。
The aromatic hydrocarbons targeted by the present invention are benzene, toluene, xylene, and lower alkylbenzene, and the purity of the aromatic hydrocarbons does not need to be particularly high. However, there is no problem.

本発明において使用される触媒は、硫酸バリウムを担体
として用い、ルテニウムを担持した触媒である。触媒の
調製は、一般的に用いられる通常の担持金属触媒の調製
法に従って行なわれる。すなわち、触媒活性成分液に硫
酸バリウムを浸漬後、攪拌しながら溶媒を蒸発させ活性
成分を固定化する蒸発乾固法、硫酸バリウムを乾燥状態
に保ちながら触媒活性成分液を噴霧するスプレー法、あ
るいは触媒活性成分液に硫酸バリウムを浸漬後、ろ過す
る方法等、公知の含浸担持法が好適に用いられる。
The catalyst used in the present invention is a catalyst in which ruthenium is supported using barium sulfate as a carrier. The catalyst is prepared according to a commonly used method for preparing supported metal catalysts. That is, the evaporation-drying method involves immersing barium sulfate in a catalytic active ingredient liquid and then evaporating the solvent while stirring to fix the active ingredient; the spraying method involves spraying a catalytic active ingredient liquid while keeping the barium sulfate in a dry state; Known impregnating and supporting methods, such as a method in which barium sulfate is immersed in a catalyst active component liquid and then filtered, are preferably used.

触媒活性成分として用いられるルテニウムの原料として
は、ルテニウムの710ゲン化物、硝酸塩、水酸化物ま
tこは酸化物、さらにルテニウムカルボニル、ルテニウ
ムアンミンi!、 体なとの錯体化合物やルテニウムア
ルコキシドなどが使用される。
Raw materials for ruthenium used as a catalytic active component include ruthenium genides, nitrates, hydroxides and oxides, as well as ruthenium carbonyl and ruthenium ammine i! , complex compounds with metals, ruthenium alkoxide, etc. are used.

触媒調製時の活性成分の溶媒としては、水またはアルコ
ール、アセトン、テトラヒドロフランなどの有機溶媒が
使用される。
As a solvent for the active component during catalyst preparation, water or an organic solvent such as alcohol, acetone, or tetrahydrofuran is used.

上記方法で調製した触媒は、さらにルテニウムを還元す
ることにより活性化して使用する。還元剤としては水素
、−酸化炭素、アルコール蒸気、ヒドラジン、水素化ホ
ウ素ナトリウム、その他公知の還元剤が使用できる。
The catalyst prepared by the above method is activated by further reducing ruthenium before use. As the reducing agent, hydrogen, carbon oxide, alcohol vapor, hydrazine, sodium borohydride, and other known reducing agents can be used.

水素を用いる場合は還元温度150〜450℃、好まし
くは180〜300℃の範囲が選ばれる。
When hydrogen is used, the reduction temperature is selected to be in the range of 150 to 450°C, preferably 180 to 300°C.

水素還元温度が150℃以下では活性成分の還元率は低
下し、また400℃以上では担持ルテニウムの凝集によ
る金属表面積の低下および触媒表面の変性が起こり、シ
クロオレフィン生成の活性、選択性が低下する原因とな
る。
When the hydrogen reduction temperature is below 150°C, the reduction rate of the active ingredient decreases, and when it is above 400°C, the metal surface area decreases due to aggregation of supported ruthenium and the catalyst surface is modified, resulting in a decrease in the activity and selectivity of cycloolefin production. Cause.

なおルテニウム担持率は0.01〜20重量%、好まし
くは0.1〜10重量%の範囲から選ばれる。
The ruthenium loading rate is selected from the range of 0.01 to 20% by weight, preferably 0.1 to 10% by weight.

本発明において使用される添加剤はリチウム、コバルト
、鉄および亜鉛からなる群より選ばれた少なくとも1種
以上の金属硫酸塩である。該金属硫酸塩濃度は反応に供
する触媒中のルテニウムに対する金属種の原子比で1:
1〜1ン500、好ましくは1:5〜1 : 250の
範囲で使用される。
The additive used in the present invention is at least one metal sulfate selected from the group consisting of lithium, cobalt, iron, and zinc. The metal sulfate concentration is the atomic ratio of the metal species to ruthenium in the catalyst used for the reaction, which is 1:
It is used in a range of 1:500 to 1:500, preferably 1:5 to 1:250.

本発明方法においては、水を反応系内へ添加する。触媒
は水中に懸濁するため、有機層中の反応生成物と触媒と
の分離が容易になるばかりでなく、水はシクロオレフィ
ンへの選択率を高める上で著しい効果がある。水の添加
量は芳香族炭化水素に対する容量比上通常0.01〜1
0倍、好ましくは0.1〜5倍の範囲から選択される。
In the method of the present invention, water is added into the reaction system. Since the catalyst is suspended in water, not only is the reaction product in the organic layer easily separated from the catalyst, but water has a significant effect on increasing the selectivity to cycloolefins. The amount of water added is usually 0.01 to 1 in terms of volume ratio to aromatic hydrocarbons.
It is selected from the range of 0 times, preferably 0.1 to 5 times.

反応時の水素圧力は通常0.1〜20 MPa好ましく
は0.5〜10 MPaの範囲から選択される。29M
Pa  以上の高圧は工業的見地から不経済であり、ま
た0、1MPa 以下では反応速度が低下し設備上不経
済でもある。
The hydrogen pressure during the reaction is usually selected from the range of 0.1 to 20 MPa, preferably 0.5 to 10 MPa. 29M
A high pressure of more than 0.1 MPa is uneconomical from an industrial standpoint, and a pressure of less than 0.1 MPa reduces the reaction rate and is uneconomical in terms of equipment.

反応温度は通常50〜250℃、好ましくは100〜2
00℃の範囲から選択される。250℃以上ではシクロ
オレフィンの選択率が低下し、一方50℃以下の温度で
は反応速度が遅く、不利となる。
The reaction temperature is usually 50-250°C, preferably 100-250°C.
The temperature is selected from the range of 00°C. At temperatures above 250°C, the selectivity of cycloolefins decreases, while at temperatures below 50°C, the reaction rate is slow, which is disadvantageous.

本発明の反応形式は、1槽または2槽以上の反応槽を用
いて、回分式に行なうこともできるし、連続的に行なう
ことも可能であり、特に限定されるものではない。
The reaction format of the present invention is not particularly limited, and can be carried out batchwise or continuously using one or more reaction tanks.

(発明の効果) 本発明方法によればシクロオレフィンが高収率で得られ
、しかも反応操作が簡単であり、装置の腐食も起こりに
くく、工業的に有利にシクロオレフィンを製造すること
が可能となる。
(Effects of the Invention) According to the method of the present invention, cycloolefins can be obtained in high yield, the reaction operation is simple, corrosion of equipment is less likely to occur, and cycloolefins can be produced industrially advantageously. Become.

本発明をさらに明確に説明するため、以下に実施例なら
びに比較例を記すが、本発明はこれらの実施例によって
のみ限定されるものではない。
In order to explain the present invention more clearly, Examples and Comparative Examples are described below, but the present invention is not limited only by these Examples.

なお、実施例および比較例中に示される転化率、収率お
よび選択率は次式によって定義される。
In addition, the conversion rate, yield, and selectivity shown in an Example and a comparative example are defined by the following formula.

シy査H淀か(イb水累の転イ七コ司ト(実施例) 実施例1 容量500 Wのナス型フラスコにRuC1!3・3H
200,190gを投入し、水200 ct−を加え溶
解させた。次いで市販のBaSO43−6Fを加えた後
、ロータリーエバポレーターに装着した。攪拌下、室温
で1時間、60℃で1時間含浸させた後、減圧下に80
℃に加熱し、水を蒸発させた。
Example 1 RuC1!3.3H in an eggplant-shaped flask with a capacity of 500 W
200,190 g was added, and 200 ct- of water was added to dissolve it. Next, commercially available BaSO43-6F was added thereto, and then the mixture was placed in a rotary evaporator. After impregnation for 1 hour at room temperature and 1 hour at 60°C under stirring, 80°C under reduced pressure.
℃ and the water was evaporated.

得られた蒸発乾固物を内径5yxtnのパイレックスガ
ラス管に充填し、100 ml / minの割合で水
素を流しながら200℃まで昇温し、この温度で4時間
保つことによって触媒を活性化した。得られた触媒の組
成は2% mu/ Ba SO4である。
The obtained evaporated product was filled into a Pyrex glass tube with an inner diameter of 5 yxtn, heated to 200° C. while flowing hydrogen at a rate of 100 ml/min, and kept at this temperature for 4 hours to activate the catalyst. The composition of the catalyst obtained is 2% mu/Ba SO4.

あらかじめアルゴンで十分に置換した内容量100−の
ステンレススチール製オートクレーブにI、iso、 
、H2O0,5fを溶解した水15ccを仕込み、次い
で上記触媒100〜、ベンゼン15ωの順に投入した。
I, iso,
, 15 cc of water in which 0.5 f of H2O was dissolved were charged, and then 100 to 100 of the above catalyst and 15 ω of benzene were added in this order.

さらに水素ガスを導入して、反応圧力4.9 MPa温
度180℃で3時間攪拌下に反応を行なった。
Furthermore, hydrogen gas was introduced, and the reaction was carried out under stirring at a reaction pressure of 4.9 MPa and a temperature of 180° C. for 3 hours.

反応終了後、油層を取り出して、生成物をガスクロマト
グラフィーで分析したところ、ベンゼン転化率59.1
%、シクロヘキセン選択率23゜0チ、シクロヘキセン
収率13.6チであった。
After the reaction was completed, the oil layer was taken out and the product was analyzed by gas chromatography, and the benzene conversion rate was 59.1.
%, cyclohexene selectivity was 23.0%, and cyclohexene yield was 13.6%.

なおシクロヘキセン以外の反応生成物はシクロヘキサン
のみであった。
Note that the only reaction product other than cyclohexene was cyclohexane.

比較例1 実施例1の触媒を用い、金属硫酸塩を添加しないこと以
外はすべて実施例1と同様の操作を行なって、ベンゼン
の部分水素化反応を15分行なったところベンゼン転化
率69.7チ、シクロヘキセン選択率2.3%、シクロ
ヘキセン収率1゜6q6であった。
Comparative Example 1 A partial hydrogenation reaction of benzene was carried out for 15 minutes using the catalyst of Example 1 and performing the same operations as in Example 1 except that no metal sulfate was added. The benzene conversion rate was 69.7. H. The cyclohexene selectivity was 2.3%, and the cyclohexene yield was 1°6q6.

比較例2 実施例1の触媒を製造する過程で、 Ba S04の代わりにT型アルミナを用いること以外
はすべて実施例1と同様の操作を行なって、2%Ru 
/ r  AZ2q触媒を製造した。
Comparative Example 2 In the process of manufacturing the catalyst of Example 1, the same operations as in Example 1 were performed except that T-type alumina was used instead of Ba S04, and 2% Ru
/r AZ2q catalyst was produced.

この触媒を用い、L i 5o4−H2Oを添加しない
こと以外はすべて実施例1と同様の操作を行なって、ベ
ンゼンの部分水素化反応を15分行なったところ、ベン
ゼン転化率84.8%、シクロヘキセン選択率0.8%
、シクロヘキセン収率0.7%であった。
Using this catalyst, a partial hydrogenation reaction of benzene was carried out for 15 minutes in the same manner as in Example 1 except that Li 5o4-H2O was not added. The benzene conversion rate was 84.8%, and the cyclohexene Selection rate 0.8%
, the cyclohexene yield was 0.7%.

比較例3 アルゴンで十分に置換した内容積ioo m/のステン
レススチール製オートクレーブにL x S04 、H
200−5j’を溶解した水15頭、比較例2で製造し
た触媒100■、ベンゼン150Hの順に投入した。さ
らに水素ガスを導入して反応圧力4.0 MPa  、
温度180℃で3時間攪拌下に反応を行なったところ、
ベンゼン&化率87.8 %、シクロヘキセン選tFU
K8.9%、シクロヘキセン収率a、(1であった。
Comparative Example 3 L x S04, H
15 heads of water in which 200-5j' was dissolved, 100 ml of the catalyst prepared in Comparative Example 2, and 150 H of benzene were added in this order. Furthermore, hydrogen gas was introduced to increase the reaction pressure to 4.0 MPa.
When the reaction was carried out at a temperature of 180°C with stirring for 3 hours,
Benzene & conversion rate 87.8%, cyclohexene selected tFU
K8.9%, cyclohexene yield a, (1).

実施例2 実施例1で製造した触媒を用い添加剤としてL i 5
04− H2Oに代え−(Fe50. 、5H,00,
5yを使用する以外はすべて実施例1と同様の方法でベ
ンゼンの部分水素化反応を3時間行なったところ、ベン
ゼン転化率60.6チ、シクロヘキセン選択率23゜9
チ、シクロヘキセン収率14.5%であった。
Example 2 Using the catalyst prepared in Example 1 and using L i 5 as an additive
04- Instead of H2O-(Fe50., 5H,00,
A partial hydrogenation reaction of benzene was carried out for 3 hours in the same manner as in Example 1 except that 5y was used, and the benzene conversion was 60.6% and the cyclohexene selectivity was 23.9%.
H. The yield of cyclohexene was 14.5%.

比較例4 比較例2で製造した触媒を用いること以外はすべて実施
例2と同様の方法で、ベンゼンの部分水素化反応を2時
間行なったところ、ヘンセン転化率6o。8チ、シクロ
ヘキセンR択率x3.s%、シクロヘキセン収率8.2
 %であった。
Comparative Example 4 A partial hydrogenation reaction of benzene was carried out for 2 hours in the same manner as in Example 2 except that the catalyst produced in Comparative Example 2 was used, and the Hensen conversion rate was 6o. 8chi, cyclohexene R selectivity x3. s%, cyclohexene yield 8.2
%Met.

実施例3 実施例1で製造した触媒を用い、添加剤としてCoS 
04・7H200,5fを使用する以外はすべて実施例
1と同様の方法でベンゼンの部分水素化反応を3時間行
なったとこ口、ヘンセン転化率69.3%、シクロヘキ
セン選択率41.9%、シクロヘキセン収率29.0%
であった。
Example 3 Using the catalyst produced in Example 1, CoS was added as an additive.
The partial hydrogenation reaction of benzene was carried out for 3 hours in the same manner as in Example 1 except that 04.7H200.5f was used. Yield 29.0%
Met.

比較例5 比較例2で製造した触媒を用いること以外はすべて実施
例3と同様の方法で、ベンゼンの部分水素化反応を3時
間行なったとコロ、ヘンセン転化率67゜9q6、シク
ロヘキセン選択率34.6%、シクロヘキセン収率23
゜5%であった。
Comparative Example 5 A partial hydrogenation reaction of benzene was carried out for 3 hours in the same manner as in Example 3 except that the catalyst prepared in Comparative Example 2 was used. 6%, cyclohexene yield 23
It was 5%.

実施例4 実施例1で製造した触媒を用い、添加剤としテZn50
4−7H200,5fを使用する以外ハすべて実施例1
と同様の方法でベンゼンの部分水素化反応を3時間行な
ったところ、ベンゼン転化率64.6%、シクロベキセ
ン選択率32.8%、シクロヘキセン収率21.2%で
あった。
Example 4 Using the catalyst produced in Example 1, Zn50 was added as an additive.
4-7H200, all Example 1 except for using 5f
When a partial hydrogenation reaction of benzene was carried out for 3 hours in the same manner as above, the benzene conversion rate was 64.6%, the cyclobexene selectivity was 32.8%, and the cyclohexene yield was 21.2%.

比較例6 比較例2で製造した触媒を用いること以外はすべて実施
例4と同様の方法で、ベンゼンの部分水素化反応を2時
間行なったところ、ベンゼン転化率so、ss、シクロ
ヘキセン選択率9゜8チ、シクロヘキセン収率5、.0
%であった。
Comparative Example 6 A partial hydrogenation reaction of benzene was carried out for 2 hours in the same manner as in Example 4 except that the catalyst produced in Comparative Example 2 was used. The benzene conversion rate so, ss and the cyclohexene selectivity were 9°. 8, cyclohexene yield 5,. 0
%Met.

実施例5〜8 実施例1の触媒を製造する過程で、 Ru CI!3・3H20の使用量を変えた他は、実施
例1と同様の操作を行なって触媒を製造した。あらかじ
めアルゴンで十分に置換しり内容1a100−のステン
レススチール製オートクレーブにCo S 04・7H
,01,Ofを溶解した水150Cを仕込み、次いで、
上記触媒100η、ベンゼン15cr−の順に投入した
Examples 5 to 8 In the process of manufacturing the catalyst of Example 1, Ru CI! A catalyst was produced in the same manner as in Example 1, except that the amount of 3.3H20 used was changed. Co S 04/7H in a stainless steel autoclave with a content of 1A100-1, which was thoroughly replaced with argon in advance.
Pour 150C of water in which ,01,Of was dissolved, and then
100 η of the above catalyst and 15 cr of benzene were charged in this order.

さらに水素ガスを導入して反応圧力4.0MPa、温度
180℃で3時間攪拌下に反応を行なった。
Further, hydrogen gas was introduced and the reaction was carried out at a reaction pressure of 4.0 MPa and a temperature of 180° C. for 3 hours with stirring.

反応終了後、油層を取り出して生成物をガスクロマトグ
ラフィーで分析し、第1表に示す結果を得た。
After the reaction was completed, the oil layer was taken out and the product was analyzed by gas chromatography, and the results shown in Table 1 were obtained.

比較例7〜13 実施例1の触媒を用い、実施例1の L * S O4・H2O0゜5gに代えて第2表の金
属硫酸塩を0.5f用いた以外はすべて実施例1と同様
に反応を行なった。
Comparative Examples 7 to 13 All the same as in Example 1 except that the catalyst of Example 1 was used and 0.5 f of the metal sulfate in Table 2 was used in place of 0.5 g of L*SO4.H2O in Example 1. The reaction was carried out.

結果を第2表に示す。The results are shown in Table 2.

Claims (1)

【特許請求の範囲】[Claims] 担体にルテニウムを担持した触媒、水および添加剤の存
在下に、芳香族炭化水素を部分水素化して対応するシク
ロオレフインを製造する方法において、触媒担体として
硫酸バリウムを用いること、および添加剤として、リチ
ウム、コバルト、鉄および亜鉛からなる群より選ばれた
少なくとも1種以上の金属硫酸塩を用いることを特徴と
するシクロオレフインの製造方法。
A method for producing a corresponding cycloolefin by partially hydrogenating an aromatic hydrocarbon in the presence of a catalyst having ruthenium supported on a carrier, water and an additive, using barium sulfate as a catalyst carrier, and as an additive, A method for producing a cycloolefin, the method comprising using at least one metal sulfate selected from the group consisting of lithium, cobalt, iron and zinc.
JP16273884A 1984-07-31 1984-07-31 Method for producing cycloolefin Granted JPS6140226A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP16273884A JPS6140226A (en) 1984-07-31 1984-07-31 Method for producing cycloolefin
EP85108530A EP0170915B1 (en) 1984-07-31 1985-07-09 A method for producing cycloolefins
DE8585108530T DE3569233D1 (en) 1984-07-31 1985-07-09 A method for producing cycloolefins
US06/753,861 US4575572A (en) 1984-07-31 1985-07-11 Method for producing cycloolefins

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16273884A JPS6140226A (en) 1984-07-31 1984-07-31 Method for producing cycloolefin

Publications (2)

Publication Number Publication Date
JPS6140226A true JPS6140226A (en) 1986-02-26
JPH0259809B2 JPH0259809B2 (en) 1990-12-13

Family

ID=15760320

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16273884A Granted JPS6140226A (en) 1984-07-31 1984-07-31 Method for producing cycloolefin

Country Status (1)

Country Link
JP (1) JPS6140226A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62201830A (en) * 1986-02-28 1987-09-05 Asahi Chem Ind Co Ltd Production of cycloolefin
JPS62205037A (en) * 1986-03-03 1987-09-09 Asahi Chem Ind Co Ltd Production of cycloolefin
US7919659B2 (en) 2004-07-09 2011-04-05 Asahi Kasei Chemicals Corporation Catalyst for cycloolefin production and process for production

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346939A (en) * 1976-10-08 1978-04-27 Toray Ind Inc Preparation of cycloolefins
JPS5365849A (en) * 1976-11-26 1978-06-12 Toray Ind Inc Preparation of cycloolefins
JPS57130926A (en) * 1981-02-06 1982-08-13 Toray Ind Inc Partial hydrogenating method of aromatic hydrocarbon

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5346939A (en) * 1976-10-08 1978-04-27 Toray Ind Inc Preparation of cycloolefins
JPS5365849A (en) * 1976-11-26 1978-06-12 Toray Ind Inc Preparation of cycloolefins
JPS57130926A (en) * 1981-02-06 1982-08-13 Toray Ind Inc Partial hydrogenating method of aromatic hydrocarbon

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62201830A (en) * 1986-02-28 1987-09-05 Asahi Chem Ind Co Ltd Production of cycloolefin
JPH0335298B2 (en) * 1986-02-28 1991-05-27 Asahi Chemical Ind
JPS62205037A (en) * 1986-03-03 1987-09-09 Asahi Chem Ind Co Ltd Production of cycloolefin
JPH0335299B2 (en) * 1986-03-03 1991-05-27 Asahi Chemical Ind
US7919659B2 (en) 2004-07-09 2011-04-05 Asahi Kasei Chemicals Corporation Catalyst for cycloolefin production and process for production

Also Published As

Publication number Publication date
JPH0259809B2 (en) 1990-12-13

Similar Documents

Publication Publication Date Title
KR930005254B1 (en) Method for producing cycloolefins
US4409395A (en) Process for the production of glycollic acid esters
KR0160308B1 (en) Method for producing a cyloolefin
JPS6111145A (en) Hydrogenation catalyst of diolefins
JPH03127750A (en) Method for hydrogenation of citral
EP0170915B1 (en) A method for producing cycloolefins
JPS624442A (en) Carrying catalyst, manufacture thereof and usage thereof formanufacturing hydroxyphenyl
JPS6021126B2 (en) Manufacturing method of cyclohexene
JPS6140226A (en) Method for producing cycloolefin
JP2002542210A (en) Method for hydrogenating unsubstituted or alkyl-substituted aromatic compounds using macropore-containing catalyst
US5248840A (en) Process for the preparation of hydrooxydiphenyls
US5639927A (en) Process of producing cycloolefin
RU2095136C1 (en) Nickel hydrogenation catalyst on carrier and method of preparing modified nickel hydrogenation catalyst on carrier
JPH0259810B2 (en)
JPH09118638A (en) Production of cycloolefin
JPH0259811B2 (en)
JPS60184031A (en) Production of cycloolefin
JP2925129B2 (en) Method for producing cycloolefin
JPH0453585B2 (en)
JPH11222447A (en) Production of cycloolefins by partial hydrogenation of aromatic compound
JPH08188542A (en) Production of cycloolefin
JPH08325172A (en) Production of cycloolefin
JPH092981A (en) Production of cycloolefin
JPH09208499A (en) Production of cycloolefin
JPS62142126A (en) Production of cycloolefin

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees