[go: up one dir, main page]

JPS6136578B2 - - Google Patents

Info

Publication number
JPS6136578B2
JPS6136578B2 JP57136229A JP13622982A JPS6136578B2 JP S6136578 B2 JPS6136578 B2 JP S6136578B2 JP 57136229 A JP57136229 A JP 57136229A JP 13622982 A JP13622982 A JP 13622982A JP S6136578 B2 JPS6136578 B2 JP S6136578B2
Authority
JP
Japan
Prior art keywords
less
strength
cracking
toughness
extrudability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57136229A
Other languages
Japanese (ja)
Other versions
JPS5928555A (en
Inventor
Hideo Yoshida
Teruo Uno
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Light Metal Industries Ltd
Original Assignee
Sumitomo Light Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Light Metal Industries Ltd filed Critical Sumitomo Light Metal Industries Ltd
Priority to JP13622982A priority Critical patent/JPS5928555A/en
Publication of JPS5928555A publication Critical patent/JPS5928555A/en
Publication of JPS6136578B2 publication Critical patent/JPS6136578B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Extrusion Of Metal (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、押出性が良好で強度と靭性にすぐれ
た高力アルミニウム合金の改良に関する。 従来、60Kg/mm2の引張強さを得られる高力アル
ミニウム合金としては、7075合金あるいは7050合
金、7010合金などが知られているが、これらの合
金はCu、Mg量が多く、押出性が悪い。また、Al
−Cu−Mg系の第2組化合物を晶出したすいため
に靭性が低い。このため、これらの合金を用い
て、例えばオートバイリムの如く、押出材で絞り
加工を必要とするようなものを加工する場合に、
スポーク取付部として絞り加工するときには、材
料に亀裂が発生したり、絞り加工時には亀裂は観
察されなくても、荷重試験(リム形状のまま直径
方向に圧縮荷重を加え、破壊変形するときの強度
を調べる試験)後に、絞り加工部で亀裂を発生し
て割れ易くなる。すなわち、前記合金は破壊靭性
が低い点が指摘できる。 本発明は、前記従来の高力合金の問題点を解決
し、押出性が良好で強度と靭性にすぐれたものを
得ることを目的とするもので、その発明の要旨
は、Zn4.6%〜7.1%未満、Mg1.2%〜2.1%未満、
Cu1.3%〜1.7%未満、Mn0.11%〜0.50%、Zr0.06
%〜0.20%、Ti0.01%〜0.15%を含み、かつ
Cr0.05%〜0.30%、V0.05%〜0.20%のいずれか
1種または2種を含み、残部はAlと不可避的不
純物からなることを特徴とする押出性が良好で強
度と靭性にすぐれた高力アルミニウム合金であ
る。 本発明において、Znは強度向上に役立つが、
4.6%未満では引張強さが、50Kg/mm2以下しか得ら
れず、7.1%以上では、引張強さは70Kg/mm2以上得
られるが、応力腐食割れ感受性が高く実用上使用
できない。 Mgは押出性に関係し、強度を高めるが、1.2%
未満では押出性は良好であるが高い強度が得られ
ず、又2.1%以上では押出性が悪く、生産性を阻
害する。 Cuは、1.3%未満では高い強度が得られず、肉
厚方向の応力腐食割れ性の点で問題がある。又、
1.7%以上ではMgの量によつて生成量は変るが、
第2相を晶出しやすく靭性を悪くする。 〓〓〓〓
Mnは、0.50%を越えると焼入性を阻害し、Mn
系化合物を晶出しやすくなり、0.11%未満では組
織は織維状にならず、耐応力腐食割れ性に効果が
ない。 Zrは、0.20%を越えるとZr系化合物を晶出し、
0.05%未満では組織は繊維状にならず、耐応力腐
食割れ性に効果がない。 Tiは、0.15%を越えるとTi系化合物を晶出しや
すく、0.01%未満では鋳造組織微細化の効果がな
い。 CrとVはいずれも再結晶粒を微細化するもの
で、いずれか1種または2種を含むが、Crの場
合、0.30%を越えるとCr系化合物を晶出し、0.05
%未満では耐応力腐食割れ性に効果がない。ま
た、Vは0.20%を越えると、V系化合物を晶出し
やすく、0.05%未満では組織の微細化に効果がな
い。 不純物はできるだけ少ない方が靭性を阻害しな
いために好ましい。特にFeは0.15%以下、Siは
0.12%以下が好ましい。 つぎに具体的な実施例について述べる。 表1に示した組成の合金材料を用意した。各合
金とも残部はAlと不可避的不純物である。
The present invention relates to an improved high-strength aluminum alloy that has good extrudability and excellent strength and toughness. Conventionally, 7075 alloy, 7050 alloy, and 7010 alloy are known as high-strength aluminum alloys that can obtain a tensile strength of 60 Kg/mm 2 , but these alloys have large amounts of Cu and Mg and have poor extrudability. bad. Also, Al
The toughness is low because the second group of -Cu-Mg compounds are crystallized. Therefore, when using these alloys to process extruded materials that require drawing, such as motorcycle rims,
When drawing for spoke mounting parts, cracks may occur in the material, and even if no cracks are observed during drawing, load tests (compressive loads are applied in the diametrical direction while the rim shape is in place, and the strength at the time of fracture deformation) After the test), cracks occur in the drawing area, making it more likely to break. That is, it can be pointed out that the above alloy has low fracture toughness. The purpose of the present invention is to solve the problems of the conventional high-strength alloys and to obtain one with good extrudability and excellent strength and toughness. less than 7.1%, Mg1.2% to less than 2.1%,
Cu1.3%~less than 1.7%, Mn0.11%~0.50%, Zr0.06
Contains %~0.20%, Ti0.01%~0.15%, and
Contains one or both of 0.05% to 0.30% Cr and 0.05% to 0.20% V, with the remainder consisting of Al and inevitable impurities.It has good extrudability and excellent strength and toughness. Made of high strength aluminum alloy. In the present invention, Zn helps improve strength, but
If it is less than 4.6%, a tensile strength of only 50 Kg/mm 2 or less can be obtained, and if it is 7.1% or more, a tensile strength of 70 Kg/mm 2 or more can be obtained, but the stress corrosion cracking susceptibility is high and it cannot be used practically. Mg is related to extrudability and increases strength, but 1.2%
If it is less than 2.1%, extrudability is good but high strength cannot be obtained, and if it is more than 2.1%, extrudability is poor and productivity is inhibited. If Cu is less than 1.3%, high strength cannot be obtained, and there is a problem in terms of stress corrosion cracking in the thickness direction. or,
At 1.7% or more, the amount produced varies depending on the amount of Mg, but
The second phase tends to crystallize and deteriorates toughness. 〓〓〓〓
When Mn exceeds 0.50%, hardenability is inhibited, and Mn
If it is less than 0.11%, the structure will not become fibrous, and there will be no effect on stress corrosion cracking resistance. When Zr exceeds 0.20%, Zr-based compounds are crystallized,
If it is less than 0.05%, the structure will not become fibrous and there will be no effect on stress corrosion cracking resistance. When Ti exceeds 0.15%, Ti-based compounds tend to crystallize, and when it is less than 0.01%, it has no effect on refining the casting structure. Both Cr and V refine recrystallized grains, and contain one or both of them, but in the case of Cr, if it exceeds 0.30%, Cr-based compounds will crystallize, and 0.05%
If it is less than %, there is no effect on stress corrosion cracking resistance. Further, when V exceeds 0.20%, V-based compounds tend to crystallize, and when it is less than 0.05%, it is not effective in refining the structure. It is preferable that the amount of impurities be as small as possible so as not to impair toughness. In particular, Fe is 0.15% or less, and Si is
It is preferably 0.12% or less. Next, specific examples will be described. Alloy materials having the compositions shown in Table 1 were prepared. The remainder of each alloy is Al and unavoidable impurities.

【表】 上記各合金材料を直径8インチ、長さ500mmの
ビレツトとなし、400〜500℃で24時間ソーキング
した後、厚さ6mm、巾120mmの押出形材を形成し
た。その際の押出性(押出速度)とともに、さら
に460×2Hrの溶体化処理後水焼入れし、さらに
150℃で焼戻した材料の機械的性質、シヤー割れ
試験、O材処時理の絞り加工による割れ試験、お
よびオートバイリムの形状に加工した材料での荷
重試験による割れ試験を行なつた。これらの試験
結果を表2に示す。 ここにシヤー割れ試験は、押出形材の押出方向
に沿つてシヤー切断し、その後クロム酸煮沸し
て、切断面での割れ発生の有無を調べる試験方法
で、シヤー切断による残留応力による応力腐食割
れを判定する簡便な試験方法である。複数個の試
験について割れが発生しなかつた場合を○、割れ
たり割れなかつたり半々の場合を△、ほとんど割
れたものを×で示している。 〓〓〓〓
絞り加工による割れ試験は、絞り加工は直径16
mmφの球をプレスに取り付け、これを形材に押し
あて絞り加工するもので、約4〜9mm高さまで張
り出しても割れが発生しない場合を○、割れたり
割れなかつたり半々の場合を△、ほとんど割れた
場合を×で示している。 荷重による割れ試験は、形材を円形に曲げ両端
を溶接してオートバイリムの形状にした材料につ
いて、その直径方向に荷重をかけて変形させ、変
形するときに割れを発生して破断するかを調べる
方法で、複数個の試験を行つても破断が発生しな
い場合を○、ほとんど破断したものを×で示して
いる。
[Table] Each of the above alloy materials was formed into a billet with a diameter of 8 inches and a length of 500 mm, and after soaking at 400 to 500°C for 24 hours, an extruded shape with a thickness of 6 mm and a width of 120 mm was formed. In addition to the extrudability (extrusion speed) at that time, it is further water quenched after solution treatment for 460 x 2 hours, and then
The mechanical properties of the material tempered at 150°C were tested by shear cracking, cracking by drawing during treatment of O material, and cracking by load testing of material processed into the shape of a motorcycle rim. The results of these tests are shown in Table 2. The shear cracking test is a test method in which an extruded shape is shear cut along the extrusion direction, and then boiled in chromic acid to check for cracks on the cut surface. This is a simple test method to determine. A case where no cracking occurred in multiple tests is indicated by ○, a case where the number of cracks was 50/50 is △, and a case where almost no cracking occurred is indicated by ×. 〓〓〓〓
In the crack test by drawing, the diameter of drawing is 16
A ball of mmφ is attached to a press, and the ball is pressed against a shaped material and drawn. ○ indicates that no cracks occur even if the ball is extended to a height of approximately 4 to 9 mm, and △ indicates that there is no cracking or no cracking, or 50/50 indicates almost no cracks. Cases of cracking are indicated by ×. In the load-induced cracking test, a material is bent into a circle and welded at both ends to form the shape of a motorcycle rim. A load is applied in the diametrical direction to deform the material, and the test is performed to determine whether cracks occur and break when deformed. In the investigation method, cases in which no breakage occurred even after multiple tests are shown as ○, and cases in which almost all breakage occurred are shown as ×.

【表】 上記表2に示した結果から明らかなとおり、本
発明合金は押出性が良好で、強度と靭性にすぐれ
た材料であり、例えばオートバイリム等の製作に
利用して、加工が容易で、しかもすぐれた性能の
製品を製造することができる。 〓〓〓〓
[Table] As is clear from the results shown in Table 2 above, the alloy of the present invention has good extrudability, is a material with excellent strength and toughness, and can be easily processed, for example, by using it for manufacturing motorcycle rims. Moreover, it is possible to manufacture products with excellent performance. 〓〓〓〓

Claims (1)

【特許請求の範囲】[Claims] 1 Zn4.6%〜7.1%未満、Mg1.2%〜2.1%未満、
Cu1.3%〜1.7%未満、Mn0.11%〜0.50%、Zr0.55
%〜0.20%、Ti0.01%〜0.15%を含み、かつ、
Cr0.05%〜0.30%、V0.05%〜0.20%のいずれか
1種または2種を含み残部はAlと不可避的不純
物からなることを特徴とする押出性が良好で強度
と靭性にすぐれた高力アルミニウム合金。
1 Zn4.6% to less than 7.1%, Mg1.2% to less than 2.1%,
Cu1.3%~less than 1.7%, Mn0.11%~0.50%, Zr0.55
%~0.20%, Ti0.01%~0.15%, and
Contains one or both of 0.05% to 0.30% Cr and 0.05% to 0.20% V, with the remainder consisting of Al and inevitable impurities. Good extrudability and excellent strength and toughness. High strength aluminum alloy.
JP13622982A 1982-08-06 1982-08-06 High tensile aluminum alloy good in extrudability and excellent in strength and toughness Granted JPS5928555A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13622982A JPS5928555A (en) 1982-08-06 1982-08-06 High tensile aluminum alloy good in extrudability and excellent in strength and toughness

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13622982A JPS5928555A (en) 1982-08-06 1982-08-06 High tensile aluminum alloy good in extrudability and excellent in strength and toughness

Publications (2)

Publication Number Publication Date
JPS5928555A JPS5928555A (en) 1984-02-15
JPS6136578B2 true JPS6136578B2 (en) 1986-08-19

Family

ID=15170300

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13622982A Granted JPS5928555A (en) 1982-08-06 1982-08-06 High tensile aluminum alloy good in extrudability and excellent in strength and toughness

Country Status (1)

Country Link
JP (1) JPS5928555A (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61238937A (en) * 1985-04-12 1986-10-24 Showa Alum Corp High-strength aluminum alloy for welding construction material excelling in extrudability and stress corrosion cracking resistance
JP2575365B2 (en) * 1986-10-09 1997-01-22 昭和アルミニウム 株式会社 Aluminum alloy for rims such as motorcycles
IL156386A0 (en) 2000-12-21 2004-01-04 Alcoa Inc Aluminum alloy products and artificial aging method
US20050034794A1 (en) * 2003-04-10 2005-02-17 Rinze Benedictus High strength Al-Zn alloy and method for producing such an alloy product
ES2393366B2 (en) * 2003-04-10 2013-07-01 Aleris Aluminum Koblenz Gmbh AN ALLOY OF Al-Zn-Mg-Cu.
US8840737B2 (en) 2007-05-14 2014-09-23 Alcoa Inc. Aluminum alloy products having improved property combinations and method for artificially aging same
US8206517B1 (en) 2009-01-20 2012-06-26 Alcoa Inc. Aluminum alloys having improved ballistics and armor protection performance
JP6765970B2 (en) 2014-04-30 2020-10-07 アルコア ユーエスエイ コーポレイション Improved 7XX cast aluminum alloy and its manufacturing method
US20170121795A1 (en) * 2015-04-23 2017-05-04 Alcoa Inc. Wrought 7xxx aluminum alloys, and methods for making the same
CN107385294A (en) * 2017-08-01 2017-11-24 天津百恩威新材料科技有限公司 A kind of aluminum alloy for automobile wheel hub and its spray deposition processing
CN112853138B (en) * 2021-01-06 2022-05-03 中色(天津)特种材料有限公司 Novel vulcanizer profile for mine and preparation method thereof
JP7265092B2 (en) * 2021-07-30 2023-04-25 Maアルミニウム株式会社 High-strength, high-elongation aluminum alloy extrusions
CN114262829B (en) * 2022-01-04 2022-07-15 辽宁忠旺集团有限公司 7-series aluminum alloy anti-collision cross beam profile for automobile and production process
CN115233008A (en) * 2022-08-30 2022-10-25 西南铝业(集团)有限责任公司 Ingot casting component control method and application

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161747A (en) * 1982-03-19 1983-09-26 Kobe Steel Ltd High strength aluminum alloy with superior stress corrosion cracking resistance at flash butt weld zone

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58161747A (en) * 1982-03-19 1983-09-26 Kobe Steel Ltd High strength aluminum alloy with superior stress corrosion cracking resistance at flash butt weld zone

Also Published As

Publication number Publication date
JPS5928555A (en) 1984-02-15

Similar Documents

Publication Publication Date Title
JP3594272B2 (en) High strength aluminum alloy for welding with excellent stress corrosion cracking resistance
JPS6136578B2 (en)
US3726723A (en) Hot-rolled low alloy steels
JPS6132380B2 (en)
JPH08295977A (en) High strength aluminum alloy extruded material excellent in fatigue strength and motorcycle front fork outer tube material
JP5463677B2 (en) DR steel sheet for high workability 3-piece can and manufacturing method thereof
CN110117759B (en) Manufacturing process of austenitic stainless steel for roll forming high-strength steel structural member
JPS6237706B2 (en)
JP3726893B2 (en) Method for producing an aluminum alloy plate used for a lid for a positive pressure can excellent in rivet formability, score workability and blow-up resistance
JPH05117826A (en) Manufacture of high strength aluminum alloy-made rim
JP3618807B2 (en) Aluminum alloy hollow shape having excellent bending workability and method for producing the shape
JPH1136041A (en) Production of steel and high strength member excellent in cold-forgability and delayed fracture characteristic
US1956251A (en) Copper alloys
JPH0344126B2 (en)
IE41631B1 (en) Aluminium alloys
JPH06235049A (en) High strength nonmagnetic stainless steel and its production
JPH06235048A (en) High strength nonmagnetic stainless steel and its production
JP2858069B2 (en) Stress corrosion cracking resistant high strength aluminum alloy sheet and method for producing the same
JPS594494B2 (en) Medium-strength aluminum alloy with excellent extrudability
JPS5932538B2 (en) Medium strength AI alloy for extrusion with excellent toughness and press hardenability
JPH10204588A (en) Ferritic stainless steel sheet excellent in workability and roping properties and method for producing the same
JPH046214A (en) Manufacturing method of high-strength austenitic stainless steel with excellent seawater resistance
JPH01225738A (en) Heat treatment-type aluminum alloy rolled plate for forming and its manufacture
JPH0791614B2 (en) Aluminum alloy cylinder
JP3835707B2 (en) Method for producing Al-Mg alloy plate for forming