[go: up one dir, main page]

JP3594272B2 - High strength aluminum alloy for welding with excellent stress corrosion cracking resistance - Google Patents

High strength aluminum alloy for welding with excellent stress corrosion cracking resistance Download PDF

Info

Publication number
JP3594272B2
JP3594272B2 JP12457396A JP12457396A JP3594272B2 JP 3594272 B2 JP3594272 B2 JP 3594272B2 JP 12457396 A JP12457396 A JP 12457396A JP 12457396 A JP12457396 A JP 12457396A JP 3594272 B2 JP3594272 B2 JP 3594272B2
Authority
JP
Japan
Prior art keywords
weight
stress corrosion
welding
corrosion cracking
strength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP12457396A
Other languages
Japanese (ja)
Other versions
JPH09279284A (en
Inventor
富晴 沖田
康人 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Original Assignee
Furukawa Sky Aluminum Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp filed Critical Furukawa Sky Aluminum Corp
Priority to JP12457396A priority Critical patent/JP3594272B2/en
Publication of JPH09279284A publication Critical patent/JPH09279284A/en
Application granted granted Critical
Publication of JP3594272B2 publication Critical patent/JP3594272B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Arc Welding In General (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、圧延材、押出材、鍛造材として溶接構造材に用いられる高力アルミニウム合金に関し、さらに詳しくは、450N/mm以上の引張強さが得られ、しかも耐応力腐食割れ性に優れた溶接用Al−Zn−Mg系高力アルミニウム合金に関するものである。
【0002】
【従来の技術】
近年、建築、車両、船舶、航空機等においては、益々薄肉軽量化が進み、溶接可能でしかも、引張強さが450N/mm以上得られる高力アルミニウム合金の要求が高まって来ている。従来、これらの用途に対するアルミニウム合金としては、Al−Zn−Mg系合金やAl−Zn−Mg−Cu合金が考えられてきた。
【0003】
【発明が解決しようとする課題】
この種の高力アルミニウム合金は、Zn,Mg量を増加するに従って高強度になるが、それに伴って応力腐食割れ感受性や溶接割れ感受性が高くなる傾向があり、又、圧延、押出、鍛造等の熱間加工性も劣化してくる。
圧延、押出、鍛造等の成形が可能で、構造材に用いられる高力アルミニウム合金として代表的なものにA7075合金がある。該合金の引張強さは、450N/mm以上で、アルミニウム合金の中でも最高に属するが、溶接性が著しく劣り、接合はボルト締め、リベット等の機械的接合によらなければならない。又、該合金は、応力腐食割れ感受性が高いため、従来は本来最高強度が得られる熱処理であるT6処理では,応力腐食割れが起こる危険があるため、それよりさらに高い温度又は長い時間の焼き戻しを行い、組織を安定化させたT7処理で使用することが多い。
【0004】
7000系アルミニウム合金の中で、圧延、押出、鍛造等の成形が可能で、しかも溶接性、耐応力腐食割れ性に優れたアルミニウム合金としてはA7N01が良く知られている。又、押出性の良好なA7003も溶接性、耐応力腐食割れ性に優れたアルミニウム合金である。しかしながらこれらの合金では強度が450N/mm未満であり、更に強度を要する用途には適さなかった。上記のごとく従来の技術では、引張強さ450N/mm以上で、耐応力腐食割れ性、溶接性の全ての面で満足が得られ、しかも押出、圧延、鍛造等の成形性にも優れたアルミニウム合金を得ることは甚だ困難であった。
【0005】
本発明は、従来の技術では解決できなかった、引張強さ450N/mm以上で、耐応力腐食割れ性、溶接性の全ての面で満足が得られ、しかも、押出、圧延、鍛造等の成形性にも優れた材料を提供することを目的とするものである。
【0006】
【課題を解決するための手段】
本発明は上記の点に鑑み種々検討の結果、引張強さ450N/mm2 以上で、耐応力腐食割れ性、溶接性の全ての面で満足が得られ、しかも、押出、圧延、鍛造等の成形性にも優れた溶接用高力アルミニウム合金を開発したものである。即ち、本願請求項1の発明は、Zn 4〜8重量%、Mg 0.3〜3.0重量%、Sc 0.03〜3.0重量%、Ag 0.03〜1.0重量%を含有し、かつ、Ti 0.005〜0.2重量%、B 0.0001〜0.08重量%のうち少なくとも1種を含み、且つMn 0.01〜1.5重量%、Cr 0.01〜0.6重量%、V 0.01〜0.5重量%、Ni 0.05〜3.0重量%、Mo 0.01〜0.5重量%のうち少なくとも1種を含有し、残部アルミニウムおよび不可避不純物からなり、限界押出速度が1m/min以上、引張強さ450N/mm2 以上、応力腐食割れ試験結果割れ発生迄の日数が30日を越え、溶接割れ試験結果割れ長さが30mm未満であることを特徴とする耐応力腐食割れ性、溶接性、成形性に優れた溶接用高力アルミニウム合金でいる。
【0007】
また、本願請求項2の発明は、Zn 4〜8重量%、Mg 0.3〜3.0重量%、Sc 0.03〜3.0重量%、Ag 0.03〜1.0重量%を含有し、かつ、Ti 0.005〜0.2重量%、B 0.0001〜0.08重量%のうち少なくとも1種を含み、且つMn 0.01〜1.5重量%、Cr 0.01〜0.6重量%、V 0.01〜0.5重量%、Ni 0.05〜3.0重量%、Mo 0.01〜0.5重量%のうち少なくとも1種を含有し、更にCu 0.3〜3.5重量%、Zr 0.01〜0.25重量%、希土類元素(La、Ce、Pr、Nd、Smのうち1種または2種以上)0.03〜5.0重量%、のうち1種または2種以上を含有し、残部アルミニウムおよび不可避不純物からなり、限界押出速度が1m/min以上、引張強さ450N/mm2 以上、応力腐食割れ試験結果割れ発生迄の日数が30日を越え 溶接割れ試験結果割れ長さが30mm未満であることを特徴とする耐応力腐食割れ性、溶接性、成形性に優れた溶接用高力アルミニウム合金できる。
【0008】
【作用】
以下、本願発明の溶接用高力アルミニウム合金について、添加元素の役割とその含有量の限定理由を説明する。
Znは、本合金の強度向上に寄与し、450N/mm以上の引張強さを得るためには不可欠の元素である。Znが4重量%未満では十分な強度が得られず、8重量%を越えると耐応力腐食割れ性、溶接性、加工性が劣化する。従って、Znは4〜8重量%とするが、最も好ましい範囲は、5〜7.5重量%である。
【0009】
Mgは、Znと同様に本合金の強度向上に寄与し、450N/mm以上の引張強さを得るためには不可欠な元素である。Mgが0.3重量%未満では十分な強度が得られず、3.0重量%を越えると耐応力腐食割れ性、溶接性、加工性が劣化する。従って、Mgは0.3〜3.0重量%とするが、最も好ましい範囲は1.0〜2.8重量%である。
Scは、耐溶接割れ性や耐応力腐食割れ性を改善する効果があり、また、本合金の強度向上に寄与し、450N/mm以上の引張強さを得るためには不可欠な元素である。Scが0.03重量%未満ではその効果が少なく、3.0重量%を越えて含有させると強度、加工性を劣化させる危険がある。従って、Scは0.03〜3.0とするが、最も好ましい範囲は、0.1〜2.5重量%である。
【0010】
Ti、及びBは、組織を微細化し、溶接性を向上させる元素である。Tiは、0.005重量%未満ではその効果が少なく、0.2重量%を越えると巨大化合物が発生し、靱性、加工性が劣化する危険性がある。従って、Tiは、0.005〜0.2重量%とするが、最も好ましい範囲は、0.008〜0.1重量%である。
Bは、0.0001重量%未満では結晶粒微細化の効果が少なく、0.08重量%を越えて含有されると、靱性、加工性を劣化させる危険がある。従って、Bは、0.0001〜0.08重量%とする。
【0011】
Mn、Cr、V、Ni、Moは、それぞれ耐応力腐食割れ性を向上させるとともに強度の改善をはかる効果があり、1種または2種以上添加する。含有量が Mn:0.01重量%未満、Cr:0.01重量%未満、V:0.01重量%未満、Ni:0.05重量%未満、Mo:0.01重量%未満では上記効果が無い。また、それぞれMn:1.5重量%、Cr:0.6重量%、V:0.5重量%、Ni:3.0重量%、Mo:0.5重量%を越えて含有されると巨大晶出物が発生し、靱性、加工性を劣化させる等の危険がある。従って、Mnは0.01〜1.5重量%、Crは0.01〜0.6重量%、Vは0.01〜0.5重量%、Niは0.05〜3.0重量%、Moは0.01〜0.5重量%とするが、最も好ましい範囲は、Mn:0.1〜1.0重量%、Cr:0.05〜0.4重量%、V:0.05〜0.3重量%、Ni:0.1〜2.0重量%、Mo:0.03〜0.3重量%である。
【0012】
Agは、耐応力腐食割れ性および強度を向上させる効果がある。Agが0.03重量%未満ではその効果が少なく、1.0重量%を越えると加工性、溶接性が劣化する。従って、Agは0.03〜1.0重量%とするが、最も好ましい範囲は、0.05〜0.7重量%である。
Cuは、耐応力腐食割れ性および強度を向上させる効果がある。Cuが0.3重量%未満ではその効果が少なく、3.5重量%を越えると加工性、溶接性が劣化する。従って、Cuは0.3〜3.5重量%とするが、最も好ましい範囲は、0.5〜3.0重量%である。
【0013】
Zrは、溶接性および強度を向上させる効果があり、Sc、と一緒に添加することによって強度は更に増大する。Zrが0.03重量%未満ではその効果が少なく、0.25重量%を越えると強度、加工性が劣化する。従って、Zrは0.03〜0.25重量%とするが、最も好ましい範囲は、0.05〜0.2重量%である。
【0014】
希土類元素は溶接性および強度を向上させる効果があり、Sc、Zrと一緒に添加することによって硬化は更に増大する。希土類元素が0.03重量%未満ではその効果が少なく、5.0重量%を越えると強度、加工性が劣化する。従って、希土類元素は0.03〜5.0重量%とするが、最も好ましい範囲は、0.05〜3.0重量%である。
【0015】
尚、希土類元素としては、La、Ce、Pr、Nd、Sm等のうち1種または2種以上を用いることができ、これらのうちのいずれか1種の量、あるいは2種以上の合計量が0.03〜5.0重量%の範囲内であればよい。これらのうち2種類以上を含む合金としては、例えばCe、Laを主成分とするミッシュメタル(通常Ce45〜50重量%、La20〜40重量%、残部その他の希土類元素(Pr、Nd、Sm等)からなる)を用いることができる。上記希土類元素のうちのいずれか1種、或いはミッシュメタルは、いずれも同等の効果を示すが、希土類元素単体では高価であり、ミッシュメタルとして添加する方が経済的に有利である。
【0016】
【実施例】
次に本発明の一実施例について説明する。表1〜4に示す組成の合金(参考例No.1〜32、本発明合金No.33〜35、参考例No.36〜47、比較合金No.48〜76、および従来合金No.77〜79)を半連続水冷鋳造装置を用いて、押出用鋳塊(9インチ径)に鋳造した。この鋳塊を470℃で12時間均質化処理した後、430℃に加熱し、それぞれ厚さ5mm、幅100mmの平角材に押出した。押出加工するに際して、前記平角材が表面欠陥や割れ発生が無く押出し得る最高押出速度(限界押出速度)をもって、各合金の押出性の良否を◎、○、×の3段階で評価し、その結果を表5〜8に示した。評価基準は下記の通りである。
◎・・押出速度がA7003の限界押出速度(18m/min)を越える。
○・・押出速度がA7075の限界押出速度(1m/min)以上で、A7003の限界押出速度以下。
×・・押出速度がA7075の限界押出速度未満。
【0017】
各々の材料は押出後、460℃で1時間の溶体化処理後焼入し、120℃で24時間の焼戻し処理を行った。
このようにして製造した材料について、引張試験、応力腐食割れ試験、および溶接割れ試験を行い、その結果を表5〜8に併記した。なお,試験方法は下記に示す通りである。
(1)引張試験
(a)試験片 :JIS Z 2201の5号試験片
(b)試験方法 :アムスラー万能試験機を用いて、JIS Z 2241に基づき試験する。
(c)測定値 :引張強さを測定し、次の基準で判定する。
◎・・引張強さ500N/mm以上
○・・引張強さ450N/mm以上で500N/mm未満
×・・引張強さ450N/mm未満
【0018】
(2)応力腐食割れ試験
(a)試験片 :JIS H 8711の1号試験片
(b)試験方法 :JIS H 8711基づく。
応力負荷:1号試験片用ジグを用いて耐力の75%を負荷
試験液、浸漬:3.5%NaCl液、交互浸漬(周期:10分浸漬、50分乾燥)30日間。
(c)評価 :応力腐食割れ発生の有無観察。
×・・・30日以内に割れ発生。
○・・・30日を越え60日以内に割れ発生。
◎・・・60日を越えても割れ発生せず。
【0019】
(3)溶接割れ試験

Figure 0003594272
【0020】
【表1】
Figure 0003594272
【0021】
【表2】
Figure 0003594272
【0022】
【表3】
Figure 0003594272
【0023】
【表4】
Figure 0003594272
【0024】
【表5】
Figure 0003594272
【0025】
【表6】
Figure 0003594272
【0026】
【表7】
Figure 0003594272
【0027】
【表8】
Figure 0003594272
【0028】
表5〜6から明らかな様に、本発明合金No.32〜35はいずれも、押出加工性、強度、耐応力腐食割れ性、溶接性の全てにおいて優れている。一方、表7〜8から明らかな様に、比較合金No.48〜76、および従来合金No.77〜79は、上記特性の内のいずれかにおいて劣っている。
【0029】
【発明の効果】
以上のように本発明の溶接用高力アルミニウム合金は、高強度で、耐応力腐食割れ性に優れており、しかも溶接性、熱間加工性にも優れており、溶接構造材の薄肉軽量化の要請に好適に対応し得る等、工業上顕著な効果を奏する。
【図面の簡単な説明】
【図1】フィッシュボーン形割れ試験片の形状(溶接後)を示す平面説明図。
1・・・・フィッシュボーン形割れ試験片
1a・・・溶接ビード
1b・・・溶接割れ
1c・・・割れ長さ
1d・・・溶接方向
2・・・・切り込み[0001]
[Industrial applications]
The present invention relates to a high-strength aluminum alloy used for a welded structural material as a rolled material, an extruded material, and a forged material. More specifically, the present invention can provide a tensile strength of 450 N / mm 2 or more and is excellent in stress corrosion cracking resistance. Al-Zn-Mg based high strength aluminum alloy for welding.
[0002]
[Prior art]
In recent years, in buildings, vehicles, ships, aircrafts, and the like, thinner and lighter weights have been increasingly promoted, and there has been an increasing demand for high-strength aluminum alloys that can be welded and have a tensile strength of 450 N / mm 2 or more. Conventionally, Al-Zn-Mg-based alloys and Al-Zn-Mg-Cu alloys have been considered as aluminum alloys for these applications.
[0003]
[Problems to be solved by the invention]
This type of high-strength aluminum alloy has a higher strength as the amount of Zn and Mg increases, but tends to have higher stress corrosion cracking susceptibility and weld cracking susceptibility. Hot workability also deteriorates.
A7075 alloy is a typical example of a high-strength aluminum alloy that can be formed by rolling, extrusion, forging, or the like, and is used as a structural material. The tensile strength of the alloy is 450 N / mm 2 or more and belongs to the highest among aluminum alloys. However, the weldability is remarkably poor, and the joining must be performed by mechanical joining such as bolting and rivets. In addition, since the alloy has high sensitivity to stress corrosion cracking, there is a risk that stress corrosion cracking may occur in the T6 treatment, which is conventionally a heat treatment that originally obtains the highest strength, so that tempering at a higher temperature or for a longer time is performed. And often used in T7 treatment to stabilize the tissue.
[0004]
Among the 7000 series aluminum alloys, A7N01 is well known as an aluminum alloy that can be formed by rolling, extrusion, forging, etc., and is excellent in weldability and stress corrosion cracking resistance. A7003, which has good extrudability, is also an aluminum alloy excellent in weldability and stress corrosion cracking resistance. However, these alloys had a strength of less than 450 N / mm 2 and were not suitable for applications requiring further strength. As described above, according to the conventional technology, a tensile strength of 450 N / mm 2 or more satisfies all aspects of stress corrosion cracking resistance and weldability, and also has excellent moldability such as extrusion, rolling, and forging. Obtaining an aluminum alloy was extremely difficult.
[0005]
The present invention has a tensile strength of 450 N / mm 2 or more, which cannot be solved by conventional techniques, and is satisfactory in all aspects of stress corrosion cracking resistance and weldability. It is an object of the present invention to provide a material having excellent moldability.
[0006]
[Means for Solving the Problems]
In view of the above points, the present invention has been subjected to various studies, and as a result, it has a tensile strength of 450 N / mm2 or more, and is satisfactory in all aspects of stress corrosion cracking resistance and weldability. We have developed a high-strength aluminum alloy for welding that has excellent weldability. That is, the invention of claim 1 of the present application includes 4 to 8% by weight of Zn, 0.3 to 3.0% by weight of Mg, 0.03 to 3.0% by weight of Sc, and 0.03 to 1.0% by weight of Ag. And at least one of 0.005 to 0.2% by weight of Ti and 0.0001 to 0.08% by weight of Mn, and 0.01 to 1.5% by weight of Mn and Cr 0.01 -0.6% by weight, V 0.01-0.5% by weight, Ni 0.05-3.0% by weight, Mo 0.01-0.5% by weight, the balance being aluminum The critical extrusion speed is at least 1 m / min, the tensile strength is at least 450 N / mm 2 , the number of days until the occurrence of cracks in the stress corrosion cracking test exceeds 30 days, and the crack length in the welding crack test is less than 30 mm Excellent in stress corrosion cracking resistance, weldability, and formability We are in contact for high-strength aluminum alloy.
[0007]
In addition, the invention of claim 2 of the present application includes 4 to 8% by weight of Zn, 0.3 to 3.0% by weight of Mg, 0.03 to 3.0% by weight of Sc, and 0.03 to 1.0% by weight of Ag. And at least one of 0.005 to 0.2% by weight of Ti and 0.0001 to 0.08% by weight of Mn, and 0.01 to 1.5% by weight of Mn and Cr 0.01 -0.6% by weight, V 0.01-0.5% by weight, Ni 0.05-3.0% by weight, Mo 0.01-0.5% by weight, and further Cu 0.3 to 3.5% by weight, Zr 0.01 to 0.25% by weight, rare earth element (one or more of La, Ce, Pr, Nd and Sm) 0.03 to 5.0% by weight %, One or more of the above, and the balance consists of aluminum and unavoidable impurities, and the limit extrusion speed is 1 m / min or more. , Tensile strength of 450 N / mm 2 or more, the stress corrosion cracking resistance days 30 days beyond weld cracking test results crack length of up to stress corrosion cracking test results cracking is equal to or less than 30 mm, weldability A high strength aluminum alloy for welding with excellent formability.
[0008]
[Action]
Hereinafter, the role of the additive element and the reason for limiting the content of the high-strength aluminum alloy for welding of the present invention will be described.
Zn contributes to improving the strength of the present alloy and is an essential element for obtaining a tensile strength of 450 N / mm 2 or more. If Zn is less than 4% by weight, sufficient strength cannot be obtained, and if it exceeds 8% by weight, stress corrosion cracking resistance, weldability and workability deteriorate. Therefore, Zn is 4 to 8% by weight, and the most preferable range is 5 to 7.5% by weight.
[0009]
Mg contributes to the improvement of the strength of the present alloy similarly to Zn, and is an indispensable element for obtaining a tensile strength of 450 N / mm 2 or more. If Mg is less than 0.3% by weight, sufficient strength cannot be obtained, and if it exceeds 3.0% by weight, stress corrosion cracking resistance, weldability and workability deteriorate. Therefore, Mg is 0.3 to 3.0% by weight, and the most preferable range is 1.0 to 2.8% by weight.
Sc has an effect of improving weld cracking resistance and stress corrosion cracking resistance, and also contributes to improvement of the strength of the present alloy, and is an indispensable element for obtaining a tensile strength of 450 N / mm 2 or more. . If Sc is less than 0.03% by weight, the effect is small, and if it exceeds 3.0% by weight, strength and workability may be deteriorated. Therefore, Sc is set to 0.03 to 3.0, and the most preferable range is 0.1 to 2.5% by weight.
[0010]
Ti and B are elements that refine the structure and improve the weldability. If Ti is less than 0.005% by weight, its effect is small, and if it exceeds 0.2% by weight, a giant compound is generated, and there is a risk that toughness and workability are deteriorated. Therefore, Ti is made 0.005 to 0.2% by weight, and the most preferable range is 0.008 to 0.1% by weight.
When B is less than 0.0001% by weight, the effect of refining the crystal grains is small, and when B is contained in excess of 0.08% by weight, there is a risk that toughness and workability are deteriorated. Therefore, B is set to 0.0001 to 0.08% by weight.
[0011]
Mn, Cr, V, Ni, and Mo each have an effect of improving stress corrosion cracking resistance and improving strength, and one or more of them are added. When the content is Mn: less than 0.01% by weight, Cr: less than 0.01% by weight, V: less than 0.01% by weight, Ni: less than 0.05% by weight, and Mo: less than 0.01% by weight, the above effect is obtained. There is no. In addition, if the content of Mn exceeds 1.5% by weight, Cr: 0.6% by weight, V: 0.5% by weight, Ni: 3.0% by weight, and Mo: 0.5% by weight, the content becomes huge. There is a danger that crystallized substances are generated and toughness and workability are deteriorated. Therefore, Mn is 0.01 to 1.5% by weight, Cr is 0.01 to 0.6% by weight, V is 0.01 to 0.5% by weight, Ni is 0.05 to 3.0% by weight, Mo is 0.01 to 0.5% by weight, but the most preferable ranges are Mn: 0.1 to 1.0% by weight, Cr: 0.05 to 0.4% by weight, and V: 0.05 to 0.5% by weight. 0.3% by weight, Ni: 0.1 to 2.0% by weight, Mo: 0.03 to 0.3% by weight.
[0012]
Ag has an effect of improving stress corrosion cracking resistance and strength. If the content of Ag is less than 0.03% by weight, the effect is small, and if the content exceeds 1.0% by weight, workability and weldability are deteriorated. Therefore, the content of Ag is set to 0.03 to 1.0% by weight, and the most preferable range is 0.05 to 0.7% by weight.
Cu has the effect of improving stress corrosion cracking resistance and strength. If Cu is less than 0.3% by weight, the effect is small, and if it exceeds 3.5% by weight, workability and weldability deteriorate. Therefore, Cu is set to 0.3 to 3.5% by weight, and the most preferable range is 0.5 to 3.0% by weight.
[0013]
Zr has the effect of improving weldability and strength, and the strength is further increased by adding Zr together with Sc. If Zr is less than 0.03% by weight, the effect is small, and if Zr exceeds 0.25% by weight, strength and workability deteriorate. Therefore, Zr is made 0.03 to 0.25% by weight, and the most preferable range is 0.05 to 0.2% by weight.
[0014]
Rare earth elements have the effect of improving weldability and strength, and the addition of Sc and Zr further increases the hardening. If the rare earth element is less than 0.03% by weight, the effect is small, and if it is more than 5.0% by weight, strength and workability deteriorate. Therefore, the rare earth element is used in an amount of 0.03 to 5.0% by weight, and the most preferable range is 0.05 to 3.0% by weight.
[0015]
As the rare earth element, one, two or more of La, Ce, Pr, Nd, Sm and the like can be used, and the amount of any one of these or the total amount of two or more of them can be used. What is necessary is just to be in the range of 0.03-5.0 weight%. As an alloy containing two or more of these, for example, a misch metal containing Ce and La as main components (usually 45 to 50% by weight of Ce, 20 to 40% by weight of La, and the rest other rare earth elements (Pr, Nd, Sm, etc.)) Consisting of). Any one of the above rare earth elements or a misch metal exhibits the same effect, but the rare earth element alone is expensive, and it is economically advantageous to add it as a misch metal.
[0016]
【Example】
Next, an embodiment of the present invention will be described. Alloys having compositions shown in Tables 1 to 4 ( Reference Examples Nos. 1 to 32, inventive alloys Nos. 33 to 35, reference examples Nos . 36 to 47 , comparative alloys Nos. 48 to 76, and conventional alloys Nos. 77 to 77) 79) was cast into an ingot for extrusion (9-inch diameter) using a semi-continuous water-cooled casting apparatus. The ingot was homogenized at 470 ° C. for 12 hours, heated to 430 ° C., and extruded into a rectangular material having a thickness of 5 mm and a width of 100 mm. At the time of extrusion, the extrudability of each alloy was evaluated on a three-point scale of ◎, 、, and × at the maximum extrusion speed (limit extrusion speed) at which the rectangular material could be extruded without surface defects or cracks. Are shown in Tables 5 to 8. The evaluation criteria are as follows.
A: The extrusion speed exceeds the limit extrusion speed of A7003 (18 m / min).
・ · The extrusion speed is equal to or higher than the limit extrusion speed of A7075 (1 m / min) and equal to or lower than the limit extrusion speed of A7003.
X: The extrusion speed is less than the limit extrusion speed of A7075.
[0017]
After extrusion, each material was quenched after solution treatment at 460 ° C. for 1 hour and tempered at 120 ° C. for 24 hours.
The materials thus produced were subjected to a tensile test, a stress corrosion cracking test, and a weld cracking test, and the results are shown in Tables 5 to 8. The test method is as shown below.
(1) Tensile test (a) Test piece: No. 5 test piece of JIS Z 2201 (b) Test method: A test is performed based on JIS Z 2241 using an Amsler universal testing machine.
(C) Measured value: The tensile strength is measured and determined according to the following criteria.
◎ less than ... tensile strength of 500N / mm 2 or more ○ ·· tensile strength of 450N / mm 2 or more × less than 500N / mm 2 at ... tensile strength of 450N / mm 2 [0018]
(2) Stress corrosion cracking test (a) Test piece: No. 1 test piece of JIS H 8711 (b) Test method: Based on JIS H 8711.
Stress loading: 75% of the proof stress was loaded using a No. 1 test piece jig, a test liquid, immersion: 3.5% NaCl solution, alternate immersion (period: 10 minutes immersion, 50 minutes drying) for 30 days.
(C) Evaluation: Observation of occurrence of stress corrosion cracking.
×: Cracks occurred within 30 days.
・ ・ ・: Cracking occurred within 30 days after exceeding 30 days.
・ ・ ・: No cracking occurred even after 60 days.
[0019]
(3) Weld crack test
Figure 0003594272
[0020]
[Table 1]
Figure 0003594272
[0021]
[Table 2]
Figure 0003594272
[0022]
[Table 3]
Figure 0003594272
[0023]
[Table 4]
Figure 0003594272
[0024]
[Table 5]
Figure 0003594272
[0025]
[Table 6]
Figure 0003594272
[0026]
[Table 7]
Figure 0003594272
[0027]
[Table 8]
Figure 0003594272
[0028]
As is clear from Tables 5 and 6, the alloy No. of the present invention. All of Nos. 32 to 35 are excellent in extrudability, strength, stress corrosion cracking resistance, and weldability. On the other hand, as is clear from Tables 7 and 8, Comparative Alloy No. 48 to 76, and conventional alloy Nos. 77-79 are inferior in any of the above characteristics.
[0029]
【The invention's effect】
As described above, the high-strength aluminum alloy for welding of the present invention has high strength, excellent resistance to stress corrosion cracking, and also excellent weldability and hot workability. Industrially remarkable effects, such as being able to appropriately respond to the request of
[Brief description of the drawings]
FIG. 1 is an explanatory plan view showing the shape (after welding) of a fishbone-shaped cracked test piece.
1 ··· Fishbone type crack test piece 1a · · · Weld bead 1b · · · Weld crack 1c · · · Crack length 1d · · · Welding direction 2 ··· Cut

Claims (2)

Zn 4〜8重量%、Mg 0.3〜3.0重量%、Sc 0.03〜3.0重量%、Ag 0.03〜1.0重量%を含有し、かつ、Ti 0.005〜0.2重量%、B 0.0001〜0.08重量%のうち少なくとも1種を含み、且つMn 0.01〜1.5重量%、Cr 0.01〜0.6重量%、V 0.01〜0.5重量%、Ni 0.05〜3.0重量%、Mo 0.01〜0.5重量%のうち少なくとも1種を含有し、残部アルミニウムおよび不可避不純物からなり、限界押出速度が1m/min以上、引張強さ450N/mm2 以上、応力腐食割れ試験結果割れ発生迄の日数が30日を越え、溶接割れ試験結果割れ長さが30mm未満であることを特徴とする耐応力腐食割れ性、溶接性、成形性に優れた溶接用高力アルミニウム合金。It contains 4 to 8% by weight of Zn, 0.3 to 3.0% by weight of Mg, 0.03 to 3.0% by weight of Sc, and 0.03 to 1.0% by weight of Ag, and 0.005 to 1.0% of Ti. 0.2% by weight, at least one of B 0.0001 to 0.08% by weight, Mn 0.01 to 1.5% by weight, Cr 0.01 to 0.6% by weight, V 0. 0.01 to 0.5% by weight, Ni 0.05 to 3.0% by weight, Mo 0.01 to 0.5% by weight, the balance consisting of aluminum and unavoidable impurities. Stress corrosion resistance, characterized in that the number of days until crack generation is more than 30 days, and the crack length is less than 30 mm as a result of welding crack test, at least 1 m / min, tensile strength 450 N / mm 2 or more, stress corrosion crack test result. High strength aluminum alloy for welding with excellent cracking, weldability and formability. Zn 4〜8重量%、Mg 0.3〜3.0重量%、Sc 0.03〜3.0重量%、Ag 0.03〜1.0重量%を含有し、かつ、Ti 0.005〜0.2重量%、B 0.0001〜0.08重量%のうち少なくとも1種を含み、且つMn 0.01〜1.5重量%、Cr 0.01〜0.6重量%、V 0.01〜0.5重量%、Ni 0.05〜3.0重量%、Mo 0.01〜0.5重量%のうち少なくとも1種を含有し、更にCu 0.3〜3.5重量%、Zr 0.01〜0.25重量%、希土類元素(La、Ce、Pr、Nd、Smのうち1種または2種以上)0.03〜5.0重量%、のうち1種または2種以上を含有し、残部アルミニウムおよび不可避不純物からなり、限界押出速度が1m/min以上、引張強さ450N/mm2 以上、応力腐食割れ試験結果割れ発生迄の日数が30日を越え 溶接割れ試験結果割れ長さが30mm未満であることを特徴とする耐応力腐食割れ性、溶接性、成形性に優れた溶接用高力アルミニウム合金。It contains 4 to 8% by weight of Zn, 0.3 to 3.0% by weight of Mg, 0.03 to 3.0% by weight of Sc, and 0.03 to 1.0% by weight of Ag, and 0.005 to 1.0% of Ti. 0.2% by weight, at least one of B 0.0001 to 0.08% by weight, Mn 0.01 to 1.5% by weight, Cr 0.01 to 0.6% by weight, V 0. 0.01 to 0.5% by weight, Ni 0.05 to 3.0% by weight, Mo 0.01 to 0.5% by weight, at least one of Cu 0.3 to 3.5% by weight, Zr 0.01 to 0.25% by weight, rare earth element (one or more of La, Ce, Pr, Nd, Sm) 0.03 to 5.0% by weight, one or more of them , The balance consisting of aluminum and unavoidable impurities, the limit extrusion speed is 1 m / min or more, and the tensile strength is 450 N / mm 2 or less. The stress corrosion cracking test results The days before crack occurrence exceeds 30 days Welding crack test results The crack length is less than 30 mm For welding excellent in stress corrosion cracking resistance, weldability and formability High strength aluminum alloy.
JP12457396A 1995-06-14 1996-05-20 High strength aluminum alloy for welding with excellent stress corrosion cracking resistance Expired - Lifetime JP3594272B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP12457396A JP3594272B2 (en) 1995-06-14 1996-05-20 High strength aluminum alloy for welding with excellent stress corrosion cracking resistance

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP14764995 1995-06-14
JP2751596 1996-02-15
JP7-147649 1996-02-15
JP8-27515 1996-02-15
JP12457396A JP3594272B2 (en) 1995-06-14 1996-05-20 High strength aluminum alloy for welding with excellent stress corrosion cracking resistance

Publications (2)

Publication Number Publication Date
JPH09279284A JPH09279284A (en) 1997-10-28
JP3594272B2 true JP3594272B2 (en) 2004-11-24

Family

ID=27285824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP12457396A Expired - Lifetime JP3594272B2 (en) 1995-06-14 1996-05-20 High strength aluminum alloy for welding with excellent stress corrosion cracking resistance

Country Status (1)

Country Link
JP (1) JP3594272B2 (en)

Families Citing this family (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010016472A (en) * 2000-12-13 2001-03-05 주식회사 하바메탈 Aluminium-magnesium-zinc-scandium alloy composition
EP1229141A1 (en) * 2001-02-05 2002-08-07 ALUMINIUM RHEINFELDEN GmbH Cast aluminium alloy
DE112004003147B4 (en) 2003-04-10 2022-11-17 Novelis Koblenz Gmbh Al-Zn-Mg-Cu alloy
US20050238529A1 (en) * 2004-04-22 2005-10-27 Lin Jen C Heat treatable Al-Zn-Mg alloy for aerospace and automotive castings
RU2406773C2 (en) 2005-02-01 2010-12-20 Тимоти Лэнган Deformed aluminium alloy of aluminium-zinc-magnesium-scandium system and procedure for its production
CN100445019C (en) * 2006-09-14 2008-12-24 中国航空工业第一集团公司北京航空材料研究院 Al-Mg-Sc series welding wire
RU2010133971A (en) * 2008-01-16 2012-02-27 КВЕСТЕК ИННОВЕЙШНЗ ЭлЭлСи. (US) HIGH-STRENGTH ALUMINUM CASTING ALLOYS RESISTANT TO THE FORMATION OF HOT CRACKS
US7875133B2 (en) 2008-04-18 2011-01-25 United Technologies Corporation Heat treatable L12 aluminum alloys
US7879162B2 (en) 2008-04-18 2011-02-01 United Technologies Corporation High strength aluminum alloys with L12 precipitates
US7875131B2 (en) 2008-04-18 2011-01-25 United Technologies Corporation L12 strengthened amorphous aluminum alloys
US7871477B2 (en) 2008-04-18 2011-01-18 United Technologies Corporation High strength L12 aluminum alloys
US8017072B2 (en) 2008-04-18 2011-09-13 United Technologies Corporation Dispersion strengthened L12 aluminum alloys
US8002912B2 (en) 2008-04-18 2011-08-23 United Technologies Corporation High strength L12 aluminum alloys
US7811395B2 (en) 2008-04-18 2010-10-12 United Technologies Corporation High strength L12 aluminum alloys
US20090263273A1 (en) 2008-04-18 2009-10-22 United Technologies Corporation High strength L12 aluminum alloys
US8409373B2 (en) 2008-04-18 2013-04-02 United Technologies Corporation L12 aluminum alloys with bimodal and trimodal distribution
US8409496B2 (en) 2009-09-14 2013-04-02 United Technologies Corporation Superplastic forming high strength L12 aluminum alloys
US8409497B2 (en) 2009-10-16 2013-04-02 United Technologies Corporation Hot and cold rolling high strength L12 aluminum alloys
JP6165687B2 (en) * 2013-09-04 2017-07-19 株式会社神戸製鋼所 Aluminum alloy plate
RU2752487C2 (en) 2015-05-11 2021-07-28 Арконик Текнолоджиз ЭлЭлСи Improved thick wrought aluminium 7xxx alloys and methods for production thereof
CN105821267A (en) * 2016-05-03 2016-08-03 贵州航天风华精密设备有限公司 Corrosion-resistant aluminum alloy and preparation method thereof
CN110241339A (en) * 2019-07-26 2019-09-17 北京大学邯郸创新研究院 A kind of high-strength aluminum alloy
CN114214547B (en) * 2021-09-30 2022-08-23 中国航发北京航空材料研究院 Aluminum-zinc-magnesium-scandium alloy and preparation method thereof
KR102742846B1 (en) * 2023-01-25 2024-12-16 (주)컬러큐브 Aluminum-scandium alloy and manufacturing method thereof

Also Published As

Publication number Publication date
JPH09279284A (en) 1997-10-28

Similar Documents

Publication Publication Date Title
JP3594272B2 (en) High strength aluminum alloy for welding with excellent stress corrosion cracking resistance
JP3594270B2 (en) Al-Mg-Si based alloy with excellent weldability
JP2005527702A (en) Al-Mg alloy products for welded structures
JP2023536096A (en) Novel 6xxx aluminum alloy and method of making same
JPS6136578B2 (en)
JPH05117826A (en) Manufacture of high strength aluminum alloy-made rim
JPH03122248A (en) High strength aluminum alloy for welding excellent in stress corrosion cracking resistance
JPS6043901B2 (en) Non-heat treatment type Al-Mg alloy
JPH06278243A (en) Aluminum alloy clad plate with excellent molding workability, corrosive resistance and hardening property
JPH0637699B2 (en) Manufacturing method of A-l-Mg base alloy plate for welded structure
JPH0413830A (en) High strength aluminum alloy for welding excellent in stress corrosion cracking resistance
EP0394155A1 (en) Damage resistant Al-li-cu-mg alloy having good cold-forming properties
JP2875375B2 (en) How to prevent local corrosion in welds
JPS6135261B2 (en)
JPH03122247A (en) High strength aluminum alloy for welding excellent in stress corrosion cracking resistance
JP2915481B2 (en) High strength aluminum alloy for welded structural materials with excellent resistance to stress corrosion cracking
JP3064672B2 (en) High strength spring steel
JP3123682B2 (en) High strength aluminum alloy material for welding
JPH03122246A (en) High strength aluminum alloy for welding excellent in stress corrosion cracking resistance
JP2915489B2 (en) High strength aluminum alloy for welded structural materials with excellent resistance to stress corrosion cracking
JPH0413833A (en) High strength aluminum alloy for welding excellent in stress corrosion cracking resistance
JP2915490B2 (en) High strength aluminum alloy for welded structural materials with excellent resistance to stress corrosion cracking
JP2000345270A (en) Impact absorbing member in automotive frame structure
JP2915487B2 (en) High strength aluminum alloy for welded structural materials with excellent resistance to stress corrosion cracking
JPH05247576A (en) Aluminum alloy for drive mechanism parts

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040120

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20040202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040305

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20040305

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040511

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040709

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20040723

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040825

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040830

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20070910

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080910

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090910

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100910

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 9

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term