[go: up one dir, main page]

EP0394155A1 - Damage resistant Al-li-cu-mg alloy having good cold-forming properties - Google Patents

Damage resistant Al-li-cu-mg alloy having good cold-forming properties Download PDF

Info

Publication number
EP0394155A1
EP0394155A1 EP90420197A EP90420197A EP0394155A1 EP 0394155 A1 EP0394155 A1 EP 0394155A1 EP 90420197 A EP90420197 A EP 90420197A EP 90420197 A EP90420197 A EP 90420197A EP 0394155 A1 EP0394155 A1 EP 0394155A1
Authority
EP
European Patent Office
Prior art keywords
alloy
good
cold
resistance
carried out
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP90420197A
Other languages
German (de)
French (fr)
Inventor
Michel Doudeau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Pechiney Rhenalu SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pechiney Rhenalu SAS filed Critical Pechiney Rhenalu SAS
Publication of EP0394155A1 publication Critical patent/EP0394155A1/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon

Definitions

  • the invention relates to an Al-based alloy containing essentially Li, Cu, Mg and Zr as main alloying elements and having a good ability to cold deformation, in particular during the cold rolling of sheets. or strips, and good resistance to damage, that is to say essentially good resistance to fatigue and corrosion under tension as well as good toughness.
  • Al alloys containing Li are mainly used for applications requiring a high modulus of elasticity and a low density, associated with high mechanical strengths.
  • the search for these high mechanical strengths leads to defining alloys whose content of main elements Li, Mg and Cu are increasingly high.
  • Commercial alloys designated by 8090, 8091, 2090, 2091 according to the designations of the Aluminum Association are known in this field.
  • the invention therefore proposes to find an alloy of this family having good cold transformation behavior, while retaining good mechanical properties of tensile strength, resistance to fatigue, resistance to corrosion under stress and tenacity.
  • an alloy which, in the state of use, has mechanical characteristics (RO, 2; Rm; A%) equivalent to those of the 2024-T3 alloy (for example for sheets of thickness 2 to 10 mm, RO, 2 ⁇ 290 MPa in all directions of the rolling plane, in accordance with standard AIR 9048), as well as good toughness (e.g. for sheets of lesser thickness at 6 mm, Kc TL ⁇ 125 MPa ⁇ m measured according to standard AMS 4100), and good resistance to corrosion under stress (for example products with a thickness greater than 25 mm, a tensile stress of non-breaking at 30 days greater than 200 MPa in the cross-short direction, under the test conditions of ASTM G44, G47 and G49).
  • mechanical characteristics for example for sheets of thickness 2 to 10 mm, RO, 2 ⁇ 290 MPa in all directions of the rolling plane, in accordance with standard AIR 9048
  • good toughness e.g. for sheets of lesser thickness at 6 mm, Kc TL ⁇ 125 MPa
  • the alloy preferably has an Mg content> 1.1% and / or an Mg / Cu ratio ⁇ 1.4.
  • its content is preferably between 0.1 and 0.4%.
  • the alloy according to the invention is produced and transformed in a conventional manner; a range comprising homogenization, hot transformation, such as rolling, forging, spinning, stamping, etc., optionally followed by annealing and / or cold transformation, such as rolling, drawing, drawing, calibration , etc ... is adequate.
  • Homogenization is generally carried out between 450 and 550 ° C for 12 to 48 hours and preferably at a temperature below 525 ° C.
  • Annealing if necessary, is carried out between 350 and 475 ° C for 1 to 20 hours.
  • the final heat treatment consists of dissolving between 450 and 550 ° C and preferably at a temperature below 525 ° C, quenching, and tempering between 135 and 200 ° C and preferably from 150 to 200 ° C , for durations between 1h to 100h, the longest times being generally associated with the lowest temperatures and vice versa.
  • a plastic deformation of between 1 and 5% can be applied between quenching and tempering.
  • a flow with the following chemical composition (% by weight): Li 1.95; Cu 1.25; Mg 1.1; Zr 0.07; Fe 0.04; If 0.04; stay Al was homogenized at 525-530 ° C for 25 hours, reheated 24 hours to 475 ° C, hot rolled of thickness 262 mm to 3.62 mm, annealed at 450 ° C for 1 hour in the form of a coil, then rolled to cold to 1.6 mm thick, dissolved at 500 ° C ⁇ 10 ° C for 15 min, cold worked 2%, then returned under the following conditions; A / 96h at 135 ° C / 48h at 175 ° C and C / 19h at 195 ° C.
  • 1.6 mm thick sheets recrystallized from the above castings were treated by quenching after dissolving at 527 ° C for 20 min and then hardened by 2%. They were then returned either to 190 ° C 12 hours ( ⁇ ) or to 150 ° C, 24 hours (+).
  • the KcA values according to the internal standard MBB-FOKKER FH 4.2,1400 determined by traction until rupture of test pieces of length 620 mm, width 160 mm, and having a central notch of 53.3 mm in the direction LT are given in Figure 2 as a function of the elastic limit in the long direction.
  • the casting according to the invention has the best toughness overall.
  • FATIGUE crack initiation
  • the casting according to the invention has the best fatigue characteristics (see fig. 4).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Conductive Materials (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

An Al-based alloy containing essentially Li, Cu, Mg and Zr as main alloying elements and having good resistance to deformation when cold, in particular during cold rolling of sheets or strips, and good resistance to damage, that is to say essentially good fatigue and stress-corrosion resistance, as well as good tenacity. …<??>The alloy has the following composition by weight (in %):… from 1.7 to 2.3 of Li… from 1.0 to 1.5 of Cu… from 1.0 to 1.8 of Mg… from 0.04 to 0.15 of Zr… up to 2 of Zn… up to 0.15 of Fe… up to 0.15 of Si… up to 0.5 of Mn… up to 0.25 of Cr… others: each </= 0.05… total </= 0.15… remainder Al. …<??>This alloy can be employed as a structural component, especially in the aeronautics and space industries.

Description

L'invention concerne un alliage à base d'Al contenant essentiellement du Li, du Cu, du Mg et du Zr comme éléments d'alliages principaux et possè­dant une bonne aptitude à la déformation à froid, en particulier lors du laminage à froid de tôles ou bandes, et une bonne résistance aux domma­ges, c'està-dire essentiellement de bonnes résistances à la fatigue et à la corrosion sous tension ainsi qu'une bonne ténacité.The invention relates to an Al-based alloy containing essentially Li, Cu, Mg and Zr as main alloying elements and having a good ability to cold deformation, in particular during the cold rolling of sheets. or strips, and good resistance to damage, that is to say essentially good resistance to fatigue and corrosion under tension as well as good toughness.

Les alliages d'Al contenant du Li sont essentiellement utilisés pour les applications exigeant un haut module d'élasticité et une faible densité, associés à des résistances mécaniques élevées. La recherche de ces résistan­ces mécaniques élevées conduit à définir des alliages dont la teneur en éléments principaux Li, Mg et Cu sont de plus en plus élevées. On connaît dans ce domaine les alliages commerciaux désignés par 8090, 8091, 2090, 2091 selon les désignations de l'Aluminium Association.Al alloys containing Li are mainly used for applications requiring a high modulus of elasticity and a low density, associated with high mechanical strengths. The search for these high mechanical strengths leads to defining alloys whose content of main elements Li, Mg and Cu are increasingly high. Commercial alloys designated by 8090, 8091, 2090, 2091 according to the designations of the Aluminum Association are known in this field.

Cependant, ces hautes résistances sont souvent associées à des ductilités ou ténacités relativement faibles et surtout à une aptitude à la déformation à froid, en particulier au laminage à froid, très limitée. Celle-ci se manifeste essentiellement par la formation de criques de rives importantes lors du laminage à froid des tôles ou bandes.However, these high resistances are often associated with relatively low ductilities or tenacities and above all with a very limited ability to cold deformation, in particular cold rolling. This is mainly manifested by the formation of large edge cracks during the cold rolling of sheets or strips.

L'invention se propose donc de trouver un alliage de cette famille ayant un bon comportement à la transformation à froid, tout en conservant de bonnes propriétés mécaniques de résistance à la traction, de tenue à la fatigue, de résistance à la corrosion sous tension et de ténacité.The invention therefore proposes to find an alloy of this family having good cold transformation behavior, while retaining good mechanical properties of tensile strength, resistance to fatigue, resistance to corrosion under stress and tenacity.

De façon plus précise, on cherche à obtenir un alliage qui, à l'état d'utili­sation, possède des caractéristiques mécaniques (R O,2; Rm; A%) équivalentes à celles de l'alliage 2024-T3 (par ex. pour les tôles d'épaisseur 2 à 10 mm, R O,2 ≧ 290 MPa dans toutes les directions du plan de laminage, conformément à la norme AIR 9048), ainsi qu'une bonne ténacité (par ex. pour des tôles d'épaisseur inférieure à 6 mm, Kc T-L ≧ 125 MPa √m mesuré suivant la norme AMS 4100), et une bonne résistance à la corrosion sous contrainte (par ex. des produits d'épaisseur supérieure à 25 mm, une contrain­te de traction de non rupture à 30 jours supérieure à 200 MPa dans le sens travers-court, dans les conditions d'essai des normes ASTM G44, G47 et G49).More specifically, it is sought to obtain an alloy which, in the state of use, has mechanical characteristics (RO, 2; Rm; A%) equivalent to those of the 2024-T3 alloy (for example for sheets of thickness 2 to 10 mm, RO, 2 ≧ 290 MPa in all directions of the rolling plane, in accordance with standard AIR 9048), as well as good toughness (e.g. for sheets of lesser thickness at 6 mm, Kc TL ≧ 125 MPa √m measured according to standard AMS 4100), and good resistance to corrosion under stress (for example products with a thickness greater than 25 mm, a tensile stress of non-breaking at 30 days greater than 200 MPa in the cross-short direction, under the test conditions of ASTM G44, G47 and G49).

Ces objectifs sont atteints avec un alliage ayant la composition pondérale suivante (en %) :
1,7 ≦ Li ≦ 2,3
1,0 ≦ Cu ≦ 1,5
1 ,0 ≦ Mg ≦ 1,8
avec Mg/Cu < 1,5
0,04 ≦ Zr ≦ 0,15
Zn jusqu'à 2
Fe jusqu'à 0,15
Si jusqu'à 0,15
Mn jusqu'à 0,5
Cr jusqu'à 0,25
autres : chacun ≦ 0,05
total ≦ 0,15
reste : Al.
These objectives are achieved with an alloy having the following weight composition (in%):
1.7 ≦ Li ≦ 2.3
1.0 ≦ Cu ≦ 1.5
1.0 ≦ Mg ≦ 1.8
with Mg / Cu <1.5
0.04 ≦ Zr ≦ 0.15
Zn up to 2
Fe up to 0.15
If up to 0.15
Mn up to 0.5
Cr up to 0.25
others: each ≦ 0.05
total ≦ 0.15
rest: Al.

L'alliage a de préférence une teneur en Mg > 1,1% et/ou un rapport Mg/Cu < 1,4. Lorsque l'alliage contient du Zn, sa teneur est de préférence comprise entre 0,1 et 0,4%.The alloy preferably has an Mg content> 1.1% and / or an Mg / Cu ratio <1.4. When the alloy contains Zn, its content is preferably between 0.1 and 0.4%.

Au-dessous des valeurs limites inférieures des éléments d'alliages principaux, les caractéristiques mécaniques de résistance sont insuffisantes; au-delà de Li=2,3%, les criques de rives au laminage deviennent trop importantes; au-delà de Cu=l,5% ou Mg=1,8% les propriétés de tolérance au dommage diminuent en particulier la durée de vie en fatigue; si Mg/Cu≧1,5 la résistance à la corrosion diminue. Le Zn contribue à la résistance mécanique et pour 0,1 ≦ Zn ≦ 0,4% la tenue à la corrosion sous tension est améliorée.Below the lower limit values of the main alloying elements, the mechanical strength characteristics are insufficient; beyond Li = 2.3%, the cracks on the edges during rolling become too large; beyond Cu = 1.5% or Mg = 1.8% the damage tolerance properties in particular reduce the fatigue life; if Mg / Cu ≧ 1.5 the corrosion resistance decreases. Zn contributes to mechanical resistance and for 0.1 ≦ Zn ≦ 0.4% the resistance to corrosion under stress is improved.

L'alliage selon l'invention est élaboré et transformé de façon classique; une gamme comportant une homogénéisation, une transformation à chaud, telle que laminage, forgeage, filage, matriçage, etc...suivie éventuellement d'un recuit et /ou d'une transformation à froid, telle que laminage, étirage, tréfilage, calibrage, etc... est adéquate.
L'homogénéisation est généralement pratiquée entre 450 et 550°C pendant 12 à 48h et de préférence à une température inférieure à 525°C.
The alloy according to the invention is produced and transformed in a conventional manner; a range comprising homogenization, hot transformation, such as rolling, forging, spinning, stamping, etc., optionally followed by annealing and / or cold transformation, such as rolling, drawing, drawing, calibration , etc ... is adequate.
Homogenization is generally carried out between 450 and 550 ° C for 12 to 48 hours and preferably at a temperature below 525 ° C.

Le recuit, s'il y a lieu, est pratiqué entre 350 et 475°C pendant 1 à 20 heures.
Le traitement thermique final consiste en une mise en solution entre 450 et 550°C et de préférence à une température inférieure à 525°C, une trempe, et un revenu compris entre 135 et 200°C et de préférence de 150 à 200°C, pendant des durées comprises entre 1h à 100h, les temps les plus long étant généralement associés aux températures les plus basses et vice versa. Une déformation plastique comprise entre 1 et 5% (par traction ou compression) peut être appliquée entre trempe et revenu.
Annealing, if necessary, is carried out between 350 and 475 ° C for 1 to 20 hours.
The final heat treatment consists of dissolving between 450 and 550 ° C and preferably at a temperature below 525 ° C, quenching, and tempering between 135 and 200 ° C and preferably from 150 to 200 ° C , for durations between 1h to 100h, the longest times being generally associated with the lowest temperatures and vice versa. A plastic deformation of between 1 and 5% (by traction or compression) can be applied between quenching and tempering.

L'invention sera mieux comprise à l'aide des exemples suivants illustrés par les figures suivantes :

  • . La figure 1 représente la variation de la longueur (maximale) des criques de rives au laminage à froid en fonction de la teneur en Li (pour un écrouissage de 70% env.)
  • . La figure 2 représente la ténacité de différentes coulées en fonction de leur limite d'élasticité dans le sens long
  • . La figure 3 représente la vitesse de fissuration en fonction de Δ K, d'une coulée selon l'invention, en comparaison de celle du 2024-T3
  • . La figure 4 représente les durées de vie d'éprouvettes de fatigue des coulées étudiées, en fonction de leur limite d'élasticité sens long.
The invention will be better understood using the following examples illustrated by the following figures:
  • . FIG. 1 represents the variation of the (maximum) length of the edge cracks during cold rolling as a function of the Li content (for a hardening of 70% approx.)
  • . Figure 2 shows the toughness of different flows according to their elastic limit in the long direction
  • . FIG. 3 represents the cracking speed as a function of Δ K, of a casting according to the invention, in comparison with that of 2024-T3
  • . FIG. 4 represents the lifetimes of fatigue test tubes of the flows studied, as a function of their long-term elastic limit.

EXEMPLE 1EXAMPLE 1 Caractéristiques mécaniques de traction et résistance à la corrosion sous tensionMechanical tensile properties and resistance to corrosion under stress

Une coulée de composition chimique suivante (% en poids) :
Li 1,95; Cu 1,25; Mg 1,1; Zr 0,07; Fe 0,04; Si 0,04; reste Al
a été homogénéisée à 525-530°C pendant 25 heures, réchauffée 24h à 475°C, laminée à chaud de l'épaisseur 262 mm à 3,62 mm, recuite à 450°C pendant 1h sous forme de bobine, puis laminée à froid jusqu'à 1,6 mm d'épaisseur, mise en solution à 500°C ± 10°C pendant 15 min, écrouie à froid de 2 % , puis revenue dans les conditions suivantes ;
A/ 96h à 135°C B/ 48h à 175°C et C/ 19h à 195°C.
Les résultats des caractéristiques mécaniques de traction déterminées dans les conditions de la norme ASTM E 8M sur éprouvettes plates (Kt=1,035) dans le sens Long (L), Travers (T) et à 60° de la direction de laminage (X) ainsi que les résultats d'essais de corrosion sous tension dans le sens travers long (TL) dans les conditions indiquées sont reportés au Tableau I.
A flow with the following chemical composition (% by weight):
Li 1.95; Cu 1.25; Mg 1.1; Zr 0.07; Fe 0.04; If 0.04; stay Al
was homogenized at 525-530 ° C for 25 hours, reheated 24 hours to 475 ° C, hot rolled of thickness 262 mm to 3.62 mm, annealed at 450 ° C for 1 hour in the form of a coil, then rolled to cold to 1.6 mm thick, dissolved at 500 ° C ± 10 ° C for 15 min, cold worked 2%, then returned under the following conditions;
A / 96h at 135 ° C / 48h at 175 ° C and C / 19h at 195 ° C.
The results of the mechanical tensile characteristics determined under the conditions of standard ASTM E 8M on flat specimens (Kt = 1.035) in the Long (L), Travers (T) direction and at 60 ° from the rolling direction (X) as well that the results of corrosion tests under tension in the long transverse direction (TL) under the conditions indicated are given in Table I.

EXEMPLE 2EXAMPLE 2 Aptitude au laminage à froidSuitability for cold rolling

Des coulées à teneurs en Li, Cu et Mg variables, dont les analyses sont reportées au Tableau II, ont été élaborées, coulées en plateau de section 800x300 mm², puis homogénéisées, scalpées, réchauffées et laminées à chaud jusqu'à une épaisseur de 4mm. Puis elles ont été laminées à froid, et caractérisées, pour chaque écrouissage intermédiaire, par la longueur maximale de criques de rives produites.Flows with varying Li, Cu and Mg contents, the analyzes of which are shown in Table II, were prepared, cast in plates with a cross section of 800 × 300 mm², then homogenized, scalped, reheated and hot rolled to a thickness of 4 mm. . Then they were cold rolled, and characterized, for each intermediate work hardening, by the maximum length of shore cracks produced.

La figure 1 montre, qu'au-delà de Li=2,3%, et pour un écrouissage de 70% les criques de rives deviennent importantes et surtout sont instables, c est-à-dire qu'elles peuvent se propager rapidement jusqu'à détacher un morceau de la tôle laminée.Figure 1 shows that beyond Li = 2.3%, and for a hardening of 70% the shore cracks become important and above all are unstable, that is to say that they can propagate quickly up to '' to detach a piece from the rolled sheet.

EXEMPLE 3EXAMPLE 3 TénacitéTenacity

Des tôles de l,6mm d'épaisseur recristallisées issues des coulées ci-dessus, ont été traitées par trempe après mise en solution à 527°C pendant 20min puis écrouies de 2%. Elles ont ensuite été revenues soit à 190°C 12 heures (·) soit à 150°C, 24 heures (+).1.6 mm thick sheets recrystallized from the above castings were treated by quenching after dissolving at 527 ° C for 20 min and then hardened by 2%. They were then returned either to 190 ° C 12 hours (·) or to 150 ° C, 24 hours (+).

Les valeurs de KcA selon la norme interne MBB-FOKKER FH 4.2,1400 déterminées par traction jusqu'à rupture d'éprouvettes de longueur 620 mm, de largeur 160 mm, et ayant une entaille centrale de 53,3mm dans le sens L-T sont données à la figure 2 en fonction de la limite d'élasticité dans le sens long.
La coulée selon l'invention présente globalement la meilleure ténacité.
The KcA values according to the internal standard MBB-FOKKER FH 4.2,1400 determined by traction until rupture of test pieces of length 620 mm, width 160 mm, and having a central notch of 53.3 mm in the direction LT are given in Figure 2 as a function of the elastic limit in the long direction.
The casting according to the invention has the best toughness overall.

EXEMPLE 4EXAMPLE 4 Vitesse de propagation des fissures en fatigueSpeed of propagation of cracks in fatigue

Les propriétés des tôles issues de la coulée 2141 de l,6mm d'épaisseur ci-dessus ont été comparées à celles de l'alliage classique 2024 à l'état T3 dans les états de traitement thermique donnés à l'Exemple 3 sur éprouvet­tes CCT 160mm (norme interne MBB-FOKKER, sens LT) et reportées à la Fig.3. Cette coulée présente une résistance en fatigue supérieure à celle de l'alliage 2024-T3.The properties of the sheets from casting 2141 1.6 mm thick above were compared to those of the conventional alloy 2024 in the T3 state in the heat treatment states given in Example 3 on CCT test pieces 160mm (internal standard MBB-FOKKER, direction LT) and shown in Fig. 3. This casting has a higher fatigue strength than that of the 2024-T3 alloy.

EXEMPLE 5EXAMPLE 5 FATIGUE : amorçage des fissuresFATIGUE: crack initiation

Les propriétés de fatigue de tôles de 1,6mm d'épaisseur issues de coulées ci-dessus ont été déterminées en traction ondulée ( σ= 90 ± 40 MPa) dans le sens L-T sur éprouvettes prismatiques (Kt=1) aux états de traitement thermique correspondant à l'Exemple 3.
La coulée selon l'invention présente les meilleures caractéristiques de fatigue (voir fig.4). TABLEAU I REVENU SENS R0,2 (MPa) Rm (MPa) A% (%) CSC TL (jours) 96h à 135°C L 338 435 12,2 - TL 343 451 14,2 3 NR 30 * X 290 414 17,2 - 48h à 175°C L 382 440 11,0 - TL 390 456 11,5 3 NR 30 * X 336 419 13,5 - 19h à 195°C L 365 416 11,0 - TL 372 430 11,5 3 NR 30 * X 341 400 13,0 - * 3 éprouvettes non rompues en 30 jours. TABLEAU II Analyses des coulées étudiées (% en poids) % Li % Cu % Mg 2133 2,67 1,12 0,63 H.I* 2134 2,66 1,09 1,28 H.I* 2135 2,65 1,64 0,69 H.I* 2139 2,64 1,65 1,22 H.I* 2140 2,07 1,17 0,69 H.I* 2141 2,06 1,14 1,45 Inv ** 2142 2,07 1,65 0,68 H.I 2147 2,12 1,74 1,44 H.I 2149 2,35 1,48 0,98 H.I 2144 2,1 1,9 0,92 H.I Fe = 0,03%; Si =0,02% et Zr =0,05% pour toutes les coulées. * H.I.: hors invention ** Inv: selon l'invention.
The fatigue properties of 1.6 mm thick sheets from the above castings were determined in wavy tension (σ = 90 ± 40 MPa) in the LT direction on prismatic test pieces (Kt = 1) in the heat treatment states corresponding to Example 3.
The casting according to the invention has the best fatigue characteristics (see fig. 4). TABLE I RETURNED MEANING R0.2 (MPa) Rm (MPa) AT% (%) CSC TL (days) 96h at 135 ° C L 338 435 12.2 - TL 343 451 14.2 3 NR 30 * X 290 414 17.2 - 48h at 175 ° C L 382 440 11.0 - TL 390 456 11.5 3 NR 30 * X 336 419 13.5 - 7 p.m. at 195 ° C L 365 416 11.0 - TL 372 430 11.5 3 NR 30 * X 341 400 13.0 - * 3 test pieces not broken in 30 days. Analysis of the flows studied (% by weight) No. % Li % Cu % Mg 2133 2.67 1.12 0.63 HI * 2134 2.66 1.09 1.28 HI * 2135 2.65 1.64 0.69 HI * 2139 2.64 1.65 1.22 HI * 2140 2.07 1.17 0.69 HI * 2141 2.06 1.14 1.45 Inv ** 2142 2.07 1.65 0.68 HI 2147 2.12 1.74 1.44 HI 2149 2.35 1.48 0.98 HI 2144 2.1 1.9 0.92 HI Fe = 0.03%; Si = 0.02% and Zr = 0.05% for all flows. * HI: outside invention ** Inv: according to the invention.

Claims (11)

1. Alliage d'Al contenant essentiellement du Li, du Mg, du Cu et du Zr possèdant une bonne déformabilité à froid et de bonnes caractéristiques de résistance aux dommages à l'état traité, caractérisé en ce qu'il contient (en poids %) :
de 1,7 à 2,3 de Li
de 1,0 à 1,5 de Cu ) avec Mg/Cu < 1,5
de 1,0 à 1,8 de Mg)
de 0,04 à 0,15 de Zr
jusqu'à 2 de Zn
jusqu'à 0,15 de Fe
jusqu'à 0,15 de Si
jusqu'à 0,5 de Mn
jusqu'à 0,25 de Cr
autres :chacun ≦ 0,05
total ≦ 0,15
reste Al.
1. Al alloy essentially containing Li, Mg, Cu and Zr having good cold deformability and good characteristics of resistance to damage in the treated state, characterized in that it contains (by weight% ):
1.7 to 2.3 of Li
1.0 to 1.5 Cu) with Mg / Cu <1.5
1.0 to 1.8 Mg)
from 0.04 to 0.15 Zr
up to 2 of Zn
up to 0.15 Fe
up to 0.15 Si
up to 0.5 of Mn
up to 0.25 Cr
others: each ≦ 0.05
total ≦ 0.15
remains Al.
2. Alliage selon la revendication 1 caractérisé en ce qu'il contient plus de 1,1% Mg.2. Alloy according to claim 1 characterized in that it contains more than 1.1% Mg. 3. Alliage selon l'une des revendications 1 ou 2, caractérisé en ce que Mg/Cu < 1,4.3. Alloy according to one of claims 1 or 2, characterized in that Mg / Cu <1.4. 4. Alliage selon l'une des revendications 1 à 3, caractérisé en ce qu'il contient de 0,1 à 0,4% Zn.4. Alloy according to one of claims 1 to 3, characterized in that it contains 0.1 to 0.4% Zn. 5. Procédé d'obtention d'un alliage selon l'une de ces revendications 1 à 4 comprenant l'élaboration, la coulée, une homogénéisation, la transfor­mation à chaud, un recuit et une transformation à froid éventuel(le)s, la mise en solution, la trempe, une déformation à froid éventuelle et un revenu, caractérisé en ce que l'homogénéisation a lieu entre 450 et 550°C pendant 12 à 48 heures.5. Method for obtaining an alloy according to one of these claims 1 to 4 comprising the preparation, the casting, a homogenization, the hot transformation, an annealing and a possible cold transformation (s), the dissolution, quenching, possible cold deformation and tempering, characterized in that the homogenization takes place between 450 and 550 ° C for 12 to 48 hours. 6. Procédé selon la revendication 5, caractérisé en ce que l'homogénéisation a lieu entre 450 et 525°C.6. Method according to claim 5, characterized in that the homogenization takes place between 450 and 525 ° C. 7. Procédé selon la revendication 4 caractérisé en ce que le recuit est pratiqué entre 350 et 475 pendant 1 à 20 heures.7. Method according to claim 4 characterized in that the annealing is carried out between 350 and 475 for 1 to 20 hours. 8. Procédé selon l'une des revendications 5 à 7 caractérisé en ce que la mise en solution est effectuée entre 450 et 550 °C.8. Method according to one of claims 5 to 7 characterized in that the dissolution is carried out between 450 and 550 ° C. 9. Procédé selon la revendication 7 caractérisé en ce que la mise en solution est effectuée entre 450 et 525°C.9. Method according to claim 7 characterized in that the dissolution is carried out between 450 and 525 ° C. 10. Procédé selon l'une des revendications 5 à 9 caractérisé en ce que le revenu est effectué entre 135 et 200°C.10. Method according to one of claims 5 to 9 characterized in that the tempering is carried out between 135 and 200 ° C. 11. Procédé selon la revendication 10 caractérisé en ce que le revenu est pratiqué entre 150 et 200 °C.11. Method according to claim 10 characterized in that the tempering is carried out between 150 and 200 ° C.
EP90420197A 1989-04-21 1990-04-19 Damage resistant Al-li-cu-mg alloy having good cold-forming properties Withdrawn EP0394155A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR8906135 1989-04-21
FR8906135A FR2646172B1 (en) 1989-04-21 1989-04-21 AL-LI-CU-MG ALLOY WITH GOOD COLD DEFORMABILITY AND GOOD DAMAGE RESISTANCE

Publications (1)

Publication Number Publication Date
EP0394155A1 true EP0394155A1 (en) 1990-10-24

Family

ID=9381541

Family Applications (1)

Application Number Title Priority Date Filing Date
EP90420197A Withdrawn EP0394155A1 (en) 1989-04-21 1990-04-19 Damage resistant Al-li-cu-mg alloy having good cold-forming properties

Country Status (5)

Country Link
US (1) US5108516A (en)
EP (1) EP0394155A1 (en)
JP (1) JPH02294448A (en)
CA (1) CA2014776A1 (en)
FR (1) FR2646172B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991008319A1 (en) * 1989-11-28 1991-06-13 Alcan International Limited Improvements in or relating to aluminium alloys
WO1992018658A1 (en) * 1991-04-12 1992-10-29 Alcan International Limited Improvements in or relating to aluminium alloys
FR2675816A1 (en) * 1991-04-24 1992-10-30 Hoogovens Aluminium Gmbh PROCESS FOR THE PRODUCTION OF ALUMINUM SHEETS

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2310005C1 (en) * 2006-03-27 2007-11-10 Открытое акционерное общество "Каменск-Уральский металлургический завод" Aluminum base alloy and product of such alloy
CN113223629B (en) * 2021-05-13 2023-04-28 中南大学 Design method of Al-Mg-Si-Mn-Fe alloy
CN117187607A (en) * 2023-10-10 2023-12-08 中北大学 Preparation method of high-plasticity cast aluminum alloy

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0088511A1 (en) * 1982-02-26 1983-09-14 The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Improvements in or relating to aluminium alloys
EP0090583A2 (en) * 1982-03-31 1983-10-05 Alcan International Limited Heat treatment of aluminium alloys
EP0124286A1 (en) * 1983-03-31 1984-11-07 Alcan International Limited Aluminium alloys
WO1985002416A1 (en) * 1983-11-24 1985-06-06 Cegedur Société De Transformation De L'aluminium P Aluminium alloys containing lithium, magnesium and copper
EP0149193A2 (en) * 1983-12-30 1985-07-24 The Boeing Company Aluminium-lithium alloy (4)
EP0157711A1 (en) * 1984-03-15 1985-10-09 Pechiney Rhenalu Process for the manufacture of objects from Al-Li-Mg-Cu alloys with high ductibility and isotropy properties
EP0158571A1 (en) * 1984-03-15 1985-10-16 Cegedur Societe De Transformation De L'aluminium Pechiney Al-Cu-Li-Mg alloys with a very high specific mechanical resistance
EP0188762A1 (en) * 1984-12-24 1986-07-30 Aluminum Company Of America Aluminum-lithium alloys having improved corrosion resistance

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0088511A1 (en) * 1982-02-26 1983-09-14 The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and Improvements in or relating to aluminium alloys
EP0090583A2 (en) * 1982-03-31 1983-10-05 Alcan International Limited Heat treatment of aluminium alloys
EP0124286A1 (en) * 1983-03-31 1984-11-07 Alcan International Limited Aluminium alloys
WO1985002416A1 (en) * 1983-11-24 1985-06-06 Cegedur Société De Transformation De L'aluminium P Aluminium alloys containing lithium, magnesium and copper
EP0149193A2 (en) * 1983-12-30 1985-07-24 The Boeing Company Aluminium-lithium alloy (4)
EP0157711A1 (en) * 1984-03-15 1985-10-09 Pechiney Rhenalu Process for the manufacture of objects from Al-Li-Mg-Cu alloys with high ductibility and isotropy properties
EP0158571A1 (en) * 1984-03-15 1985-10-16 Cegedur Societe De Transformation De L'aluminium Pechiney Al-Cu-Li-Mg alloys with a very high specific mechanical resistance
EP0188762A1 (en) * 1984-12-24 1986-07-30 Aluminum Company Of America Aluminum-lithium alloys having improved corrosion resistance

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991008319A1 (en) * 1989-11-28 1991-06-13 Alcan International Limited Improvements in or relating to aluminium alloys
US5374321A (en) * 1989-11-28 1994-12-20 Alcan International Limited Cold rolling for aluminum-lithium alloys
WO1992018658A1 (en) * 1991-04-12 1992-10-29 Alcan International Limited Improvements in or relating to aluminium alloys
FR2675816A1 (en) * 1991-04-24 1992-10-30 Hoogovens Aluminium Gmbh PROCESS FOR THE PRODUCTION OF ALUMINUM SHEETS

Also Published As

Publication number Publication date
CA2014776A1 (en) 1990-10-21
JPH02294448A (en) 1990-12-05
US5108516A (en) 1992-04-28
FR2646172A1 (en) 1990-10-26
FR2646172B1 (en) 1993-09-24

Similar Documents

Publication Publication Date Title
EP1114877B1 (en) Al-Cu-Mg alloy aircraft structural element
JP3594272B2 (en) High strength aluminum alloy for welding with excellent stress corrosion cracking resistance
KR101216820B1 (en) Method of producing an aluminium alloy brazing sheet and light brazed heat exchanger assemblies
EP0787217B1 (en) METHOD FOR MAKING AlSiMgCu ALLOY PRODUCTS HAVING ENHANCED INTERCRYSTALLINE CORROSION RESISTANCE
RU2413025C2 (en) Product out of deformed aluminium alloy of aa7000 series and procedure for production of said product
CA2627070C (en) Al-cu-mg alloy suitable for aerospace application
EP0679199B1 (en) Aluminium-silicon-magnesium alloy having improved ductility and deep-drawing properties, and method for producing same
JP5278494B2 (en) Method for producing 6000 series aluminum alloy plate excellent in paint bake hardenability
WO2020016506A1 (en) Process for manufacturing thin sheets made of 7xxx aluminum alloy suitable for shaping and assembly
EP1143027B1 (en) Process for making avionic structural elements from an Al-Si-Mg alloy
JPH09165640A (en) Al-cu-mg alloy having high creeping resistance
EP0227563B1 (en) Process od desensitization to exfoliating corrosion of lithium-containing aluminium alloys, resulting simultaneously in a high mechanical resistance and in good damage limitation
EP0394155A1 (en) Damage resistant Al-li-cu-mg alloy having good cold-forming properties
US20070151637A1 (en) Al-Cu-Mg ALLOY SUITABLE FOR AEROSPACE APPLICATION
US5643372A (en) Process for the desensitisation to intercrystalline corrosion of 2000 and 6000 series Al alloys and corresponding products
JP2001240930A (en) Al-Mg-Si BASED ALUMINUM ALLOY EXTRUDED MATERIAL FOR DOOR BEAM, AND DOOR BEAM
JPH09291328A (en) Aluminum alloy multiple member for brazing, and brazing method
JP3853021B2 (en) Method for producing Al-Cu-Mg-Si alloy hollow extruded material excellent in strength and corrosion resistance
US20240279779A1 (en) Strip made of 6xxx alloy and manufacturing process
WO2022196381A1 (en) High-strength aluminum alloy extruded material and manufaturing method therefor
JPH05318147A (en) Aluminum alloy clad plate for forming having excellent galling resistance and scratch resistance and its production
JP2000017365A (en) Al-Mg-Si SERIES ALUMINUM ALLOY SHEET FOR FORMING
JP2006299342A (en) Method for manufacturing aluminum alloy material for press forming and pressed material
JP3652937B2 (en) Aluminum alloy with excellent strength and corrosion resistance
JPH1088290A (en) Age-hardening steel for die casting die

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE

17P Request for examination filed

Effective date: 19901115

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19920514