EP0394155A1 - Damage resistant Al-li-cu-mg alloy having good cold-forming properties - Google Patents
Damage resistant Al-li-cu-mg alloy having good cold-forming properties Download PDFInfo
- Publication number
- EP0394155A1 EP0394155A1 EP90420197A EP90420197A EP0394155A1 EP 0394155 A1 EP0394155 A1 EP 0394155A1 EP 90420197 A EP90420197 A EP 90420197A EP 90420197 A EP90420197 A EP 90420197A EP 0394155 A1 EP0394155 A1 EP 0394155A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- alloy
- good
- cold
- resistance
- carried out
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/04—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
Definitions
- the invention relates to an Al-based alloy containing essentially Li, Cu, Mg and Zr as main alloying elements and having a good ability to cold deformation, in particular during the cold rolling of sheets. or strips, and good resistance to damage, that is to say essentially good resistance to fatigue and corrosion under tension as well as good toughness.
- Al alloys containing Li are mainly used for applications requiring a high modulus of elasticity and a low density, associated with high mechanical strengths.
- the search for these high mechanical strengths leads to defining alloys whose content of main elements Li, Mg and Cu are increasingly high.
- Commercial alloys designated by 8090, 8091, 2090, 2091 according to the designations of the Aluminum Association are known in this field.
- the invention therefore proposes to find an alloy of this family having good cold transformation behavior, while retaining good mechanical properties of tensile strength, resistance to fatigue, resistance to corrosion under stress and tenacity.
- an alloy which, in the state of use, has mechanical characteristics (RO, 2; Rm; A%) equivalent to those of the 2024-T3 alloy (for example for sheets of thickness 2 to 10 mm, RO, 2 ⁇ 290 MPa in all directions of the rolling plane, in accordance with standard AIR 9048), as well as good toughness (e.g. for sheets of lesser thickness at 6 mm, Kc TL ⁇ 125 MPa ⁇ m measured according to standard AMS 4100), and good resistance to corrosion under stress (for example products with a thickness greater than 25 mm, a tensile stress of non-breaking at 30 days greater than 200 MPa in the cross-short direction, under the test conditions of ASTM G44, G47 and G49).
- mechanical characteristics for example for sheets of thickness 2 to 10 mm, RO, 2 ⁇ 290 MPa in all directions of the rolling plane, in accordance with standard AIR 9048
- good toughness e.g. for sheets of lesser thickness at 6 mm, Kc TL ⁇ 125 MPa
- the alloy preferably has an Mg content> 1.1% and / or an Mg / Cu ratio ⁇ 1.4.
- its content is preferably between 0.1 and 0.4%.
- the alloy according to the invention is produced and transformed in a conventional manner; a range comprising homogenization, hot transformation, such as rolling, forging, spinning, stamping, etc., optionally followed by annealing and / or cold transformation, such as rolling, drawing, drawing, calibration , etc ... is adequate.
- Homogenization is generally carried out between 450 and 550 ° C for 12 to 48 hours and preferably at a temperature below 525 ° C.
- Annealing if necessary, is carried out between 350 and 475 ° C for 1 to 20 hours.
- the final heat treatment consists of dissolving between 450 and 550 ° C and preferably at a temperature below 525 ° C, quenching, and tempering between 135 and 200 ° C and preferably from 150 to 200 ° C , for durations between 1h to 100h, the longest times being generally associated with the lowest temperatures and vice versa.
- a plastic deformation of between 1 and 5% can be applied between quenching and tempering.
- a flow with the following chemical composition (% by weight): Li 1.95; Cu 1.25; Mg 1.1; Zr 0.07; Fe 0.04; If 0.04; stay Al was homogenized at 525-530 ° C for 25 hours, reheated 24 hours to 475 ° C, hot rolled of thickness 262 mm to 3.62 mm, annealed at 450 ° C for 1 hour in the form of a coil, then rolled to cold to 1.6 mm thick, dissolved at 500 ° C ⁇ 10 ° C for 15 min, cold worked 2%, then returned under the following conditions; A / 96h at 135 ° C / 48h at 175 ° C and C / 19h at 195 ° C.
- 1.6 mm thick sheets recrystallized from the above castings were treated by quenching after dissolving at 527 ° C for 20 min and then hardened by 2%. They were then returned either to 190 ° C 12 hours ( ⁇ ) or to 150 ° C, 24 hours (+).
- the KcA values according to the internal standard MBB-FOKKER FH 4.2,1400 determined by traction until rupture of test pieces of length 620 mm, width 160 mm, and having a central notch of 53.3 mm in the direction LT are given in Figure 2 as a function of the elastic limit in the long direction.
- the casting according to the invention has the best toughness overall.
- FATIGUE crack initiation
- the casting according to the invention has the best fatigue characteristics (see fig. 4).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Heat Treatment Of Steel (AREA)
- Conductive Materials (AREA)
- Heat Treatment Of Sheet Steel (AREA)
Abstract
Description
L'invention concerne un alliage à base d'Al contenant essentiellement du Li, du Cu, du Mg et du Zr comme éléments d'alliages principaux et possèdant une bonne aptitude à la déformation à froid, en particulier lors du laminage à froid de tôles ou bandes, et une bonne résistance aux dommages, c'està-dire essentiellement de bonnes résistances à la fatigue et à la corrosion sous tension ainsi qu'une bonne ténacité.The invention relates to an Al-based alloy containing essentially Li, Cu, Mg and Zr as main alloying elements and having a good ability to cold deformation, in particular during the cold rolling of sheets. or strips, and good resistance to damage, that is to say essentially good resistance to fatigue and corrosion under tension as well as good toughness.
Les alliages d'Al contenant du Li sont essentiellement utilisés pour les applications exigeant un haut module d'élasticité et une faible densité, associés à des résistances mécaniques élevées. La recherche de ces résistances mécaniques élevées conduit à définir des alliages dont la teneur en éléments principaux Li, Mg et Cu sont de plus en plus élevées. On connaît dans ce domaine les alliages commerciaux désignés par 8090, 8091, 2090, 2091 selon les désignations de l'Aluminium Association.Al alloys containing Li are mainly used for applications requiring a high modulus of elasticity and a low density, associated with high mechanical strengths. The search for these high mechanical strengths leads to defining alloys whose content of main elements Li, Mg and Cu are increasingly high. Commercial alloys designated by 8090, 8091, 2090, 2091 according to the designations of the Aluminum Association are known in this field.
Cependant, ces hautes résistances sont souvent associées à des ductilités ou ténacités relativement faibles et surtout à une aptitude à la déformation à froid, en particulier au laminage à froid, très limitée. Celle-ci se manifeste essentiellement par la formation de criques de rives importantes lors du laminage à froid des tôles ou bandes.However, these high resistances are often associated with relatively low ductilities or tenacities and above all with a very limited ability to cold deformation, in particular cold rolling. This is mainly manifested by the formation of large edge cracks during the cold rolling of sheets or strips.
L'invention se propose donc de trouver un alliage de cette famille ayant un bon comportement à la transformation à froid, tout en conservant de bonnes propriétés mécaniques de résistance à la traction, de tenue à la fatigue, de résistance à la corrosion sous tension et de ténacité.The invention therefore proposes to find an alloy of this family having good cold transformation behavior, while retaining good mechanical properties of tensile strength, resistance to fatigue, resistance to corrosion under stress and tenacity.
De façon plus précise, on cherche à obtenir un alliage qui, à l'état d'utilisation, possède des caractéristiques mécaniques (R O,2; Rm; A%) équivalentes à celles de l'alliage 2024-T3 (par ex. pour les tôles d'épaisseur 2 à 10 mm, R O,2 ≧ 290 MPa dans toutes les directions du plan de laminage, conformément à la norme AIR 9048), ainsi qu'une bonne ténacité (par ex. pour des tôles d'épaisseur inférieure à 6 mm, Kc T-L ≧ 125 MPa √m mesuré suivant la norme AMS 4100), et une bonne résistance à la corrosion sous contrainte (par ex. des produits d'épaisseur supérieure à 25 mm, une contrainte de traction de non rupture à 30 jours supérieure à 200 MPa dans le sens travers-court, dans les conditions d'essai des normes ASTM G44, G47 et G49).More specifically, it is sought to obtain an alloy which, in the state of use, has mechanical characteristics (RO, 2; Rm; A%) equivalent to those of the 2024-T3 alloy (for example for sheets of
Ces objectifs sont atteints avec un alliage ayant la composition pondérale suivante (en %) :
1,7 ≦ Li ≦ 2,3
1,0 ≦ Cu ≦ 1,5
1 ,0 ≦ Mg ≦ 1,8
avec Mg/Cu < 1,5
0,04 ≦ Zr ≦ 0,15
Zn jusqu'à 2
Fe jusqu'à 0,15
Si jusqu'à 0,15
Mn jusqu'à 0,5
Cr jusqu'à 0,25
autres : chacun ≦ 0,05
total ≦ 0,15
reste : Al.These objectives are achieved with an alloy having the following weight composition (in%):
1.7 ≦ Li ≦ 2.3
1.0 ≦ Cu ≦ 1.5
1.0 ≦ Mg ≦ 1.8
with Mg / Cu <1.5
0.04 ≦ Zr ≦ 0.15
Zn up to 2
Fe up to 0.15
If up to 0.15
Mn up to 0.5
Cr up to 0.25
others: each ≦ 0.05
total ≦ 0.15
rest: Al.
L'alliage a de préférence une teneur en Mg > 1,1% et/ou un rapport Mg/Cu < 1,4. Lorsque l'alliage contient du Zn, sa teneur est de préférence comprise entre 0,1 et 0,4%.The alloy preferably has an Mg content> 1.1% and / or an Mg / Cu ratio <1.4. When the alloy contains Zn, its content is preferably between 0.1 and 0.4%.
Au-dessous des valeurs limites inférieures des éléments d'alliages principaux, les caractéristiques mécaniques de résistance sont insuffisantes; au-delà de Li=2,3%, les criques de rives au laminage deviennent trop importantes; au-delà de Cu=l,5% ou Mg=1,8% les propriétés de tolérance au dommage diminuent en particulier la durée de vie en fatigue; si Mg/Cu≧1,5 la résistance à la corrosion diminue. Le Zn contribue à la résistance mécanique et pour 0,1 ≦ Zn ≦ 0,4% la tenue à la corrosion sous tension est améliorée.Below the lower limit values of the main alloying elements, the mechanical strength characteristics are insufficient; beyond Li = 2.3%, the cracks on the edges during rolling become too large; beyond Cu = 1.5% or Mg = 1.8% the damage tolerance properties in particular reduce the fatigue life; if Mg / Cu ≧ 1.5 the corrosion resistance decreases. Zn contributes to mechanical resistance and for 0.1 ≦ Zn ≦ 0.4% the resistance to corrosion under stress is improved.
L'alliage selon l'invention est élaboré et transformé de façon classique; une gamme comportant une homogénéisation, une transformation à chaud, telle que laminage, forgeage, filage, matriçage, etc...suivie éventuellement d'un recuit et /ou d'une transformation à froid, telle que laminage, étirage, tréfilage, calibrage, etc... est adéquate.
L'homogénéisation est généralement pratiquée entre 450 et 550°C pendant 12 à 48h et de préférence à une température inférieure à 525°C.The alloy according to the invention is produced and transformed in a conventional manner; a range comprising homogenization, hot transformation, such as rolling, forging, spinning, stamping, etc., optionally followed by annealing and / or cold transformation, such as rolling, drawing, drawing, calibration , etc ... is adequate.
Homogenization is generally carried out between 450 and 550 ° C for 12 to 48 hours and preferably at a temperature below 525 ° C.
Le recuit, s'il y a lieu, est pratiqué entre 350 et 475°C pendant 1 à 20 heures.
Le traitement thermique final consiste en une mise en solution entre 450 et 550°C et de préférence à une température inférieure à 525°C, une trempe, et un revenu compris entre 135 et 200°C et de préférence de 150 à 200°C, pendant des durées comprises entre 1h à 100h, les temps les plus long étant généralement associés aux températures les plus basses et vice versa. Une déformation plastique comprise entre 1 et 5% (par traction ou compression) peut être appliquée entre trempe et revenu.Annealing, if necessary, is carried out between 350 and 475 ° C for 1 to 20 hours.
The final heat treatment consists of dissolving between 450 and 550 ° C and preferably at a temperature below 525 ° C, quenching, and tempering between 135 and 200 ° C and preferably from 150 to 200 ° C , for durations between 1h to 100h, the longest times being generally associated with the lowest temperatures and vice versa. A plastic deformation of between 1 and 5% (by traction or compression) can be applied between quenching and tempering.
L'invention sera mieux comprise à l'aide des exemples suivants illustrés par les figures suivantes :
- . La figure 1 représente la variation de la longueur (maximale) des criques de rives au laminage à froid en fonction de la teneur en Li (pour un écrouissage de 70% env.)
- . La figure 2 représente la ténacité de différentes coulées en fonction de leur limite d'élasticité dans le sens long
- . La figure 3 représente la vitesse de fissuration en fonction de Δ K, d'une coulée selon l'invention, en comparaison de celle du 2024-T3
- . La figure 4 représente les durées de vie d'éprouvettes de fatigue des coulées étudiées, en fonction de leur limite d'élasticité sens long.
- . FIG. 1 represents the variation of the (maximum) length of the edge cracks during cold rolling as a function of the Li content (for a hardening of 70% approx.)
- . Figure 2 shows the toughness of different flows according to their elastic limit in the long direction
- . FIG. 3 represents the cracking speed as a function of Δ K, of a casting according to the invention, in comparison with that of 2024-T3
- . FIG. 4 represents the lifetimes of fatigue test tubes of the flows studied, as a function of their long-term elastic limit.
Une coulée de composition chimique suivante (% en poids) :
Li 1,95; Cu 1,25; Mg 1,1; Zr 0,07; Fe 0,04; Si 0,04; reste Al
a été homogénéisée à 525-530°C pendant 25 heures, réchauffée 24h à 475°C, laminée à chaud de l'épaisseur 262 mm à 3,62 mm, recuite à 450°C pendant 1h sous forme de bobine, puis laminée à froid jusqu'à 1,6 mm d'épaisseur, mise en solution à 500°C ± 10°C pendant 15 min, écrouie à froid de 2 % , puis revenue dans les conditions suivantes ;
A/ 96h à 135°C B/ 48h à 175°C et C/ 19h à 195°C.
Les résultats des caractéristiques mécaniques de traction déterminées dans les conditions de la norme ASTM E 8M sur éprouvettes plates (Kt=1,035) dans le sens Long (L), Travers (T) et à 60° de la direction de laminage (X) ainsi que les résultats d'essais de corrosion sous tension dans le sens travers long (TL) dans les conditions indiquées sont reportés au Tableau I.A flow with the following chemical composition (% by weight):
Li 1.95; Cu 1.25; Mg 1.1; Zr 0.07; Fe 0.04; If 0.04; stay Al
was homogenized at 525-530 ° C for 25 hours, reheated 24 hours to 475 ° C, hot rolled of thickness 262 mm to 3.62 mm, annealed at 450 ° C for 1 hour in the form of a coil, then rolled to cold to 1.6 mm thick, dissolved at 500 ° C ± 10 ° C for 15 min, cold worked 2%, then returned under the following conditions;
A / 96h at 135 ° C / 48h at 175 ° C and C / 19h at 195 ° C.
The results of the mechanical tensile characteristics determined under the conditions of standard ASTM E 8M on flat specimens (Kt = 1.035) in the Long (L), Travers (T) direction and at 60 ° from the rolling direction (X) as well that the results of corrosion tests under tension in the long transverse direction (TL) under the conditions indicated are given in Table I.
Des coulées à teneurs en Li, Cu et Mg variables, dont les analyses sont reportées au Tableau II, ont été élaborées, coulées en plateau de section 800x300 mm², puis homogénéisées, scalpées, réchauffées et laminées à chaud jusqu'à une épaisseur de 4mm. Puis elles ont été laminées à froid, et caractérisées, pour chaque écrouissage intermédiaire, par la longueur maximale de criques de rives produites.Flows with varying Li, Cu and Mg contents, the analyzes of which are shown in Table II, were prepared, cast in plates with a cross section of 800 × 300 mm², then homogenized, scalped, reheated and hot rolled to a thickness of 4 mm. . Then they were cold rolled, and characterized, for each intermediate work hardening, by the maximum length of shore cracks produced.
La figure 1 montre, qu'au-delà de Li=2,3%, et pour un écrouissage de 70% les criques de rives deviennent importantes et surtout sont instables, c est-à-dire qu'elles peuvent se propager rapidement jusqu'à détacher un morceau de la tôle laminée.Figure 1 shows that beyond Li = 2.3%, and for a hardening of 70% the shore cracks become important and above all are unstable, that is to say that they can propagate quickly up to '' to detach a piece from the rolled sheet.
Des tôles de l,6mm d'épaisseur recristallisées issues des coulées ci-dessus, ont été traitées par trempe après mise en solution à 527°C pendant 20min puis écrouies de 2%. Elles ont ensuite été revenues soit à 190°C 12 heures (·) soit à 150°C, 24 heures (+).1.6 mm thick sheets recrystallized from the above castings were treated by quenching after dissolving at 527 ° C for 20 min and then hardened by 2%. They were then returned either to 190 ° C 12 hours (·) or to 150 ° C, 24 hours (+).
Les valeurs de KcA selon la norme interne MBB-FOKKER FH 4.2,1400 déterminées par traction jusqu'à rupture d'éprouvettes de longueur 620 mm, de largeur 160 mm, et ayant une entaille centrale de 53,3mm dans le sens L-T sont données à la figure 2 en fonction de la limite d'élasticité dans le sens long.
La coulée selon l'invention présente globalement la meilleure ténacité.The KcA values according to the internal standard MBB-FOKKER FH 4.2,1400 determined by traction until rupture of test pieces of length 620 mm,
The casting according to the invention has the best toughness overall.
Les propriétés des tôles issues de la coulée 2141 de l,6mm d'épaisseur ci-dessus ont été comparées à celles de l'alliage classique 2024 à l'état T3 dans les états de traitement thermique donnés à l'Exemple 3 sur éprouvettes CCT 160mm (norme interne MBB-FOKKER, sens LT) et reportées à la Fig.3. Cette coulée présente une résistance en fatigue supérieure à celle de l'alliage 2024-T3.The properties of the sheets from casting 2141 1.6 mm thick above were compared to those of the
Les propriétés de fatigue de tôles de 1,6mm d'épaisseur issues de coulées ci-dessus ont été déterminées en traction ondulée ( σ= 90 ± 40 MPa) dans le sens L-T sur éprouvettes prismatiques (Kt=1) aux états de traitement thermique correspondant à l'Exemple 3.
La coulée selon l'invention présente les meilleures caractéristiques de fatigue (voir fig.4).
The casting according to the invention has the best fatigue characteristics (see fig. 4).
Claims (11)
de 1,7 à 2,3 de Li
de 1,0 à 1,5 de Cu ) avec Mg/Cu < 1,5
de 1,0 à 1,8 de Mg)
de 0,04 à 0,15 de Zr
jusqu'à 2 de Zn
jusqu'à 0,15 de Fe
jusqu'à 0,15 de Si
jusqu'à 0,5 de Mn
jusqu'à 0,25 de Cr
autres :chacun ≦ 0,05
total ≦ 0,15
reste Al.1. Al alloy essentially containing Li, Mg, Cu and Zr having good cold deformability and good characteristics of resistance to damage in the treated state, characterized in that it contains (by weight% ):
1.7 to 2.3 of Li
1.0 to 1.5 Cu) with Mg / Cu <1.5
1.0 to 1.8 Mg)
from 0.04 to 0.15 Zr
up to 2 of Zn
up to 0.15 Fe
up to 0.15 Si
up to 0.5 of Mn
up to 0.25 Cr
others: each ≦ 0.05
total ≦ 0.15
remains Al.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR8906135 | 1989-04-21 | ||
FR8906135A FR2646172B1 (en) | 1989-04-21 | 1989-04-21 | AL-LI-CU-MG ALLOY WITH GOOD COLD DEFORMABILITY AND GOOD DAMAGE RESISTANCE |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0394155A1 true EP0394155A1 (en) | 1990-10-24 |
Family
ID=9381541
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP90420197A Withdrawn EP0394155A1 (en) | 1989-04-21 | 1990-04-19 | Damage resistant Al-li-cu-mg alloy having good cold-forming properties |
Country Status (5)
Country | Link |
---|---|
US (1) | US5108516A (en) |
EP (1) | EP0394155A1 (en) |
JP (1) | JPH02294448A (en) |
CA (1) | CA2014776A1 (en) |
FR (1) | FR2646172B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991008319A1 (en) * | 1989-11-28 | 1991-06-13 | Alcan International Limited | Improvements in or relating to aluminium alloys |
WO1992018658A1 (en) * | 1991-04-12 | 1992-10-29 | Alcan International Limited | Improvements in or relating to aluminium alloys |
FR2675816A1 (en) * | 1991-04-24 | 1992-10-30 | Hoogovens Aluminium Gmbh | PROCESS FOR THE PRODUCTION OF ALUMINUM SHEETS |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2310005C1 (en) * | 2006-03-27 | 2007-11-10 | Открытое акционерное общество "Каменск-Уральский металлургический завод" | Aluminum base alloy and product of such alloy |
CN113223629B (en) * | 2021-05-13 | 2023-04-28 | 中南大学 | Design method of Al-Mg-Si-Mn-Fe alloy |
CN117187607A (en) * | 2023-10-10 | 2023-12-08 | 中北大学 | Preparation method of high-plasticity cast aluminum alloy |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0088511A1 (en) * | 1982-02-26 | 1983-09-14 | The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and | Improvements in or relating to aluminium alloys |
EP0090583A2 (en) * | 1982-03-31 | 1983-10-05 | Alcan International Limited | Heat treatment of aluminium alloys |
EP0124286A1 (en) * | 1983-03-31 | 1984-11-07 | Alcan International Limited | Aluminium alloys |
WO1985002416A1 (en) * | 1983-11-24 | 1985-06-06 | Cegedur Société De Transformation De L'aluminium P | Aluminium alloys containing lithium, magnesium and copper |
EP0149193A2 (en) * | 1983-12-30 | 1985-07-24 | The Boeing Company | Aluminium-lithium alloy (4) |
EP0157711A1 (en) * | 1984-03-15 | 1985-10-09 | Pechiney Rhenalu | Process for the manufacture of objects from Al-Li-Mg-Cu alloys with high ductibility and isotropy properties |
EP0158571A1 (en) * | 1984-03-15 | 1985-10-16 | Cegedur Societe De Transformation De L'aluminium Pechiney | Al-Cu-Li-Mg alloys with a very high specific mechanical resistance |
EP0188762A1 (en) * | 1984-12-24 | 1986-07-30 | Aluminum Company Of America | Aluminum-lithium alloys having improved corrosion resistance |
-
1989
- 1989-04-21 FR FR8906135A patent/FR2646172B1/en not_active Expired - Fee Related
-
1990
- 1990-04-18 CA CA002014776A patent/CA2014776A1/en not_active Abandoned
- 1990-04-19 EP EP90420197A patent/EP0394155A1/en not_active Withdrawn
- 1990-04-19 JP JP2104366A patent/JPH02294448A/en active Pending
-
1991
- 1991-07-09 US US07/727,453 patent/US5108516A/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0088511A1 (en) * | 1982-02-26 | 1983-09-14 | The Secretary of State for Defence in Her Britannic Majesty's Government of the United Kingdom of Great Britain and | Improvements in or relating to aluminium alloys |
EP0090583A2 (en) * | 1982-03-31 | 1983-10-05 | Alcan International Limited | Heat treatment of aluminium alloys |
EP0124286A1 (en) * | 1983-03-31 | 1984-11-07 | Alcan International Limited | Aluminium alloys |
WO1985002416A1 (en) * | 1983-11-24 | 1985-06-06 | Cegedur Société De Transformation De L'aluminium P | Aluminium alloys containing lithium, magnesium and copper |
EP0149193A2 (en) * | 1983-12-30 | 1985-07-24 | The Boeing Company | Aluminium-lithium alloy (4) |
EP0157711A1 (en) * | 1984-03-15 | 1985-10-09 | Pechiney Rhenalu | Process for the manufacture of objects from Al-Li-Mg-Cu alloys with high ductibility and isotropy properties |
EP0158571A1 (en) * | 1984-03-15 | 1985-10-16 | Cegedur Societe De Transformation De L'aluminium Pechiney | Al-Cu-Li-Mg alloys with a very high specific mechanical resistance |
EP0188762A1 (en) * | 1984-12-24 | 1986-07-30 | Aluminum Company Of America | Aluminum-lithium alloys having improved corrosion resistance |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1991008319A1 (en) * | 1989-11-28 | 1991-06-13 | Alcan International Limited | Improvements in or relating to aluminium alloys |
US5374321A (en) * | 1989-11-28 | 1994-12-20 | Alcan International Limited | Cold rolling for aluminum-lithium alloys |
WO1992018658A1 (en) * | 1991-04-12 | 1992-10-29 | Alcan International Limited | Improvements in or relating to aluminium alloys |
FR2675816A1 (en) * | 1991-04-24 | 1992-10-30 | Hoogovens Aluminium Gmbh | PROCESS FOR THE PRODUCTION OF ALUMINUM SHEETS |
Also Published As
Publication number | Publication date |
---|---|
CA2014776A1 (en) | 1990-10-21 |
JPH02294448A (en) | 1990-12-05 |
US5108516A (en) | 1992-04-28 |
FR2646172A1 (en) | 1990-10-26 |
FR2646172B1 (en) | 1993-09-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1114877B1 (en) | Al-Cu-Mg alloy aircraft structural element | |
JP3594272B2 (en) | High strength aluminum alloy for welding with excellent stress corrosion cracking resistance | |
KR101216820B1 (en) | Method of producing an aluminium alloy brazing sheet and light brazed heat exchanger assemblies | |
EP0787217B1 (en) | METHOD FOR MAKING AlSiMgCu ALLOY PRODUCTS HAVING ENHANCED INTERCRYSTALLINE CORROSION RESISTANCE | |
RU2413025C2 (en) | Product out of deformed aluminium alloy of aa7000 series and procedure for production of said product | |
CA2627070C (en) | Al-cu-mg alloy suitable for aerospace application | |
EP0679199B1 (en) | Aluminium-silicon-magnesium alloy having improved ductility and deep-drawing properties, and method for producing same | |
JP5278494B2 (en) | Method for producing 6000 series aluminum alloy plate excellent in paint bake hardenability | |
WO2020016506A1 (en) | Process for manufacturing thin sheets made of 7xxx aluminum alloy suitable for shaping and assembly | |
EP1143027B1 (en) | Process for making avionic structural elements from an Al-Si-Mg alloy | |
JPH09165640A (en) | Al-cu-mg alloy having high creeping resistance | |
EP0227563B1 (en) | Process od desensitization to exfoliating corrosion of lithium-containing aluminium alloys, resulting simultaneously in a high mechanical resistance and in good damage limitation | |
EP0394155A1 (en) | Damage resistant Al-li-cu-mg alloy having good cold-forming properties | |
US20070151637A1 (en) | Al-Cu-Mg ALLOY SUITABLE FOR AEROSPACE APPLICATION | |
US5643372A (en) | Process for the desensitisation to intercrystalline corrosion of 2000 and 6000 series Al alloys and corresponding products | |
JP2001240930A (en) | Al-Mg-Si BASED ALUMINUM ALLOY EXTRUDED MATERIAL FOR DOOR BEAM, AND DOOR BEAM | |
JPH09291328A (en) | Aluminum alloy multiple member for brazing, and brazing method | |
JP3853021B2 (en) | Method for producing Al-Cu-Mg-Si alloy hollow extruded material excellent in strength and corrosion resistance | |
US20240279779A1 (en) | Strip made of 6xxx alloy and manufacturing process | |
WO2022196381A1 (en) | High-strength aluminum alloy extruded material and manufaturing method therefor | |
JPH05318147A (en) | Aluminum alloy clad plate for forming having excellent galling resistance and scratch resistance and its production | |
JP2000017365A (en) | Al-Mg-Si SERIES ALUMINUM ALLOY SHEET FOR FORMING | |
JP2006299342A (en) | Method for manufacturing aluminum alloy material for press forming and pressed material | |
JP3652937B2 (en) | Aluminum alloy with excellent strength and corrosion resistance | |
JPH1088290A (en) | Age-hardening steel for die casting die |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI LU NL SE |
|
17P | Request for examination filed |
Effective date: 19901115 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
18W | Application withdrawn |
Withdrawal date: 19920514 |