[go: up one dir, main page]

EP0679199B1 - Aluminium-silicon-magnesium alloy having improved ductility and deep-drawing properties, and method for producing same - Google Patents

Aluminium-silicon-magnesium alloy having improved ductility and deep-drawing properties, and method for producing same Download PDF

Info

Publication number
EP0679199B1
EP0679199B1 EP95901489A EP95901489A EP0679199B1 EP 0679199 B1 EP0679199 B1 EP 0679199B1 EP 95901489 A EP95901489 A EP 95901489A EP 95901489 A EP95901489 A EP 95901489A EP 0679199 B1 EP0679199 B1 EP 0679199B1
Authority
EP
European Patent Office
Prior art keywords
alloy
quenching
temperature
hot rolling
ageing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP95901489A
Other languages
German (de)
French (fr)
Other versions
EP0679199A1 (en
Inventor
Jean-Christophe Ehrstrom
Daniel Ferton
Christophe Sigli
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Constellium Issoire SAS
Original Assignee
Pechiney Rhenalu SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=26230749&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0679199(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority claimed from FR9313966A external-priority patent/FR2712605B1/en
Application filed by Pechiney Rhenalu SAS filed Critical Pechiney Rhenalu SAS
Publication of EP0679199A1 publication Critical patent/EP0679199A1/en
Application granted granted Critical
Publication of EP0679199B1 publication Critical patent/EP0679199B1/en
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/02Alloys based on aluminium with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/043Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with silicon as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/047Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys with magnesium as the next major constituent
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/04Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon
    • C22F1/05Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of aluminium or alloys based thereon of alloys of the Al-Si-Mg type, i.e. containing silicon and magnesium in approximately equal proportions

Definitions

  • the invention relates to aluminum alloys of the Al-Si-Mg type with ductility. and improved stampability, used in the form of sheets or strips, as well as a process for obtaining them.
  • the sheets or bands are particularly intended for stamping and in particular for automobile body.
  • Mn is favorable to mechanical strength and to deformability; this action is sensitive beyond 0.1%; however, above 0.8% Mn, coarse compounds (Al, Mn, Fe) are formed which impair formability.
  • Mg the elastic limit after curing of the coatings is too low; for values greater than 0.8%, the formability becomes insufficient and the maturation too rapid.
  • Si content is less than 0.5%, the mechanical characteristics are too low; if Si> 1.3%, coarse primary compounds appear and impair formability.
  • Cu content is greater than 0.9%, the corrosion resistance (intercrystalline) is insufficient.
  • Fe content is greater than 0.5%, this results in coarse precipitation which is detrimental to formability.
  • the method according to the invention comprising the casting operations, reheating, hot rolling and possibly cold rolling, dissolution and quenching, maturing and possibly surface coating and "cooking” thereof, is characterized in that the temperature of the reheating before hot rolling and the inlet temperature to the rolling mill hot is between 460 and 520 ° C.
  • the temperature holding time is between 30 min and 24 h.
  • the temperature at the end of hot rolling is preferably less than 400 ° C. and even 350 ° C.
  • the dissolution is preferably carried out between 520 and 570 ° C. and in particular, between 550 and 570 ° C, for 5 min to 1 h.
  • Average speed quenching temperature is preferably greater than 100 ° C / sec.
  • a pass-through oven can be used.
  • the alloy matures at room temperature and reaches a hardness stationary in about 15 days, state in which it is able to undergo formatting.
  • the alloy may undergo tempering hardening during the baking treatment of the coating (around 180 ° C. for 30 min). It has however been noted that in the case of an alloy homogenized in a conventional manner, the practice of a pre-annealing between 70 and 150 ° C for 0.5 to 5 h after quenching leads to a significant increase in the coefficient d 'hardening n (after maturation) and a significant increase in the mechanical strength characteristics (after curing of the coatings).
  • Figure 1 represents the evolutions of the coefficient of work hardening n with the matured state as a function of the elastic limit in the hardened state with and without pre-income, under the conditions shown in Example 2.
  • the alloys were produced in ingots, 1.25 ⁇ 0.6 m 2 in section, scalped, reheated (rising speed: 46 ° C / h; holding temperature: 480 ° C) and hot rolled with an inlet temperature of 480 ° C and an outlet temperature of 310 ° C to a thickness of 4mm, then cold rolled to a thickness of 1.2mm.
  • the biaxial expansion test consists of deforming a sheet 300x300x1.2 mm maintained by a circular blank with a diameter of 250 mm by pressure hydraulic. The deformation is measured at the top of the dome formed. It can be seen that the alloy according to the invention exhibits improved formability characteristics compared to those of alloys obtained according to the prior art. There is also a slight hardening which is not specifically sought in the invention.
  • the Mn precipitates have a median size of 0.06 ⁇ m with a maximum dimension of 0.18 ⁇ m.
  • Alloy Composition weight%) Mn Mg Yes Cu Fe AT 0.1 0.35 0.9 0.1 0.25 B 0.4 0.45 0.9 0.1 0.25 VS 0.4 0.4 1.1 0.4 0.25 Range Reheating Dissolution State (T4)
  • Speed Maintenance 1 46 ° C / h 1h at 580 ° C 30 sec at 550 ° C 15 days at 20 ° C 2 (claimed) 46 ° C / h 2h at 480 ° C 30 min at 550 ° C 15 days at 20 ° C Alloy Range R 0.2, (MPa) Rm (MPa) AT % A% distributed ⁇ f (%) AT 1 105 220 25 19 52 B 1 115 230 29 22 59 B 2 120 235 31 23 62 VS 1 135 250 28 21 53 VS* 2 140 255 30 23 60

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)
  • Heat Treatment Of Steel (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Metal Rolling (AREA)

Description

L'invention concerne des alliages d'aluminium type Al-Si-Mg à ductilité et emboutissabilité améliorées, utilisés sous forme de tôles ou bandes, ainsi qu'un procédé d'obtention de ceux-ci. Les tôles ou bandes sont particulièrement destinées à l'emboutissage et en particulier à la carrosserie automobile.The invention relates to aluminum alloys of the Al-Si-Mg type with ductility. and improved stampability, used in the form of sheets or strips, as well as a process for obtaining them. The sheets or bands are particularly intended for stamping and in particular for automobile body.

Pour une résistance mécanique donnée, la ductilité et l'emboutissabilité sont les caractéristiques essentielles des tôles ou bandes destinées à être mises en forme à froid, avant revêtements superficiels telles que la peinture et "cuisson" de ceux-ci.For a given mechanical strength, ductility and drawability are the essential characteristics of the sheets or bands intended for be cold formed, before surface coatings such as painting and "baking" of these.

Les alliages classiques utilisés dans ce domaine, tels que les alliages 6009, 6016, 6111 (décrit dans le brevet US 4 614 552), selon la désignation de l'Aluminium Association présentent encore des caractéristiques mécaniques d'utilisation et de formabilité insuffisantes.The conventional alloys used in this field, such as alloys 6009, 6016, 6111 (described in US Patent 4,614,552), according to the designation of the Aluminum Association still exhibit mechanical characteristics of use and formability insufficient.

Le brevet EP 0 375 572 de la demanderesse décrit un alliage contenant (en poids %) :

  • de 0,9 à 1,35 % Si
  • de 0,1 à 0,5 % Mg
  • Mn ≤ 0,3 %
  • de 0,5 à 0,8 % Cu
  • Fe ≤ 0,35 %
  • Patent EP 0 375 572 of the applicant describes an alloy containing (by weight%):
  • from 0.9 to 1.35% Si
  • 0.1 to 0.5% Mg
  • Mn ≤ 0.3%
  • from 0.5 to 0.8% Cu
  • Fe ≤ 0.35%
  • L'alliage selon l'invention contient (en poids %) :

  • de 0,15 à 0,65 Mn
  • de 0,3 à 0,6 Mg
  • de 0,7 à 1,2 Si
  • de 0,1 à 0,5 Cu
  • jusqu'à 0,4 Fe
  • jusqu'à 0,05 (chacun) et 0,15 (au total) d'autres éléments
  • reste Al
  • The alloy according to the invention contains (by weight%):
  • from 0.15 to 0.65 Mn
  • 0.3 to 0.6 Mg
  • from 0.7 to 1.2 Si
  • 0.1 to 0.5 Cu
  • up to 0.4 Fe
  • up to 0.05 (each) and 0.15 (total) other items
  • stay Al
  • La composition préférée est la suivante :

  • de 0,25 à 0,45 Mn
  • de 0,3 à 0,5 Mg
  • de 0,85 à 1,10 Si
  • de 0,1 à 0,3 Cu
  • jusqu'à 0,3 Fe
  • reste: Al+ impuretés inévitables.
  • The preferred composition is as follows:
  • from 0.25 to 0.45 Mn
  • from 0.3 to 0.5 Mg
  • from 0.85 to 1.10 Si
  • 0.1 to 0.3 Cu
  • up to 0.3 Fe
  • rest: Al + unavoidable impurities.
  • On sait que la présence de Mn est favorable à la résistance mécanique et à la déformabilité; cette action est sensible au-delà de 0,1%; cependant au-delà de 0,8% Mn, il y a formation de composés (Al,Mn,Fe) grossiers qui nuisent à la formabilité. La demanderesse a aussi trouvé que des teneurs élevées en Mn conduisent à une homogénéisation de la déformation microscopique, ce qui est favorable à une bonne répartition des déformations.
    Pour des valeurs de Mg inférieures à 0,25%, la limite élastique après cuisson des revêtements est trop faible; pour les valeurs supérieures à 0,8%, la formabilité devient insuffisante et la maturation trop rapide.
    Si la teneur en Si est inférieure à 0,5%, les caractéristiques mécaniques sont trop faibles; si Si > 1,3%, des composés primaires grossiers apparaissent et nuisent à la formabilité.
    Si la teneur en Cu est supérieure à 0,9%, la tenue à la corrosion (intercristalline) est insuffisante.
    Si la teneur en Fe est supérieure à 0,5%, il en résulte une précipitation grossière néfaste à la formabilité.
    It is known that the presence of Mn is favorable to mechanical strength and to deformability; this action is sensitive beyond 0.1%; however, above 0.8% Mn, coarse compounds (Al, Mn, Fe) are formed which impair formability. The Applicant has also found that high contents of Mn lead to homogenization of the microscopic deformation, which is favorable to a good distribution of the deformations.
    For values of Mg less than 0.25%, the elastic limit after curing of the coatings is too low; for values greater than 0.8%, the formability becomes insufficient and the maturation too rapid.
    If the Si content is less than 0.5%, the mechanical characteristics are too low; if Si> 1.3%, coarse primary compounds appear and impair formability.
    If the Cu content is greater than 0.9%, the corrosion resistance (intercrystalline) is insufficient.
    If the Fe content is greater than 0.5%, this results in coarse precipitation which is detrimental to formability.

    Le procédé de fabrication habituellement utilisé comporte les opérations suivantes :

    • coulée d'un alliage de composition donnée sous forme de lingots ou de bandes
    • homogénéisation éventuelle
    • réchauffage et laminage à chaud
    • laminage à froid
    • mise en solution
    • mise en forme à froid à l'état T4
    • revêtement superficiel éventuel et sa "cuisson", par exemple une peinture (laquelle contribue au durcissement de l'alliage) -voir par exemple US 4614552, US 4784921, US 4840852, WO 87/02712.
    The manufacturing process usually used includes the following operations:
    • casting of an alloy of given composition in the form of ingots or strips
    • possible homogenization
    • reheating and hot rolling
    • cold rolling
    • dissolution
    • cold forming in T4 state
    • possible surface coating and its "baking", for example a paint (which contributes to the hardening of the alloy) - see for example US 4614552, US 4784921, US 4840852, WO 87/02712.

    La demanderesse a trouvé que cette gamme pouvait être simplifiée et/ou améliorée, d'une part en réduisant l'étape d'homogénéisation à un réchauffage avant laminage à chaud, ou d'autre part, en introduisant une trempe rapide et une étape de pré-revenu après trempe et avant mâturation.The Applicant has found that this range could be simplified and / or improved, on the one hand by reducing the homogenization step to a reheating before hot rolling, or on the other hand, by introducing a rapid quenching and a pre-tempering step after quenching and before maturation.

    Ainsi, le procédé selon l'invention, comportant les opérations de coulée, réchauffage, laminage à chaud et éventuellement à froid, mise en solution et trempe, mâturation et éventuellement revêtement superficiel et "cuisson" de celui-ci, est caractérisé en ce que la température du réchauffage avant laminage à chaud et la température d'entrée au laminoir à chaud est comprise entre 460 et 520°C.Thus, the method according to the invention, comprising the casting operations, reheating, hot rolling and possibly cold rolling, dissolution and quenching, maturing and possibly surface coating and "cooking" thereof, is characterized in that the temperature of the reheating before hot rolling and the inlet temperature to the rolling mill hot is between 460 and 520 ° C.

    Une montée en température à une vitesse comprise entre 10°C/h et 150°C/h et une température de maintien limitée entre 460°C et 520°C conduisent en effet à un maximum de la densité volumique des précipités, au Mn : Al(Fe,Mn)Si; leur taille maximale est inférieure à 0,2 µm et leur taille médiane est inférieure à 0,07 µm.A temperature rise at a speed between 10 ° C / h and 150 ° C / h and a holding temperature limited between 460 ° C and 520 ° C lead to effect at a maximum of the volume density of the precipitates, at Mn: Al (Fe, Mn) Si; their maximum size is less than 0.2 µm and their size median is less than 0.07 µm.

    Après montée en température, la durée de maintien en température est comprise entre 30 min et 24 h.
    La température de fin de laminage à chaud est de préférence inférieure à 400°C et même 350°C.
    After the temperature has risen, the temperature holding time is between 30 min and 24 h.
    The temperature at the end of hot rolling is preferably less than 400 ° C. and even 350 ° C.

    Les fins précipités au manganèse subsistent jusqu'au stade final, et la demanderesse émet l'hypothèse que la présence de ceux-ci est à l'origine de l'amélioration des caractéristiques de mise en forme à froid.The fine manganese precipitates remain until the final stage, and the plaintiff hypothesizes that the presence of these is at the origin improved cold forming characteristics.

    La mise en solution est de préférence réalisée entre 520 et 570°C et en particulier, entre 550 et 570°C, pendant 5 min à 1 h. La vitesse moyenne de trempe est de préférence supérieure à 100°C/sec.The dissolution is preferably carried out between 520 and 570 ° C. and in particular, between 550 and 570 ° C, for 5 min to 1 h. Average speed quenching temperature is preferably greater than 100 ° C / sec.

    Pour les faibles durées de maintien, un four à passage peut être utilisé. For short holding times, a pass-through oven can be used.

    Typiquement l'alliage mûrit à l'ambiante et atteint une dureté stationnaire en 15 jours environ, état dans lequel il est apte à subir des mises en forme.Typically the alloy matures at room temperature and reaches a hardness stationary in about 15 days, state in which it is able to undergo formatting.

    Après formage et éventuellement un revêtement de surface, l'alliage peut subir un durcissement par revenu au cours du traitement de cuisson du revêtement (vers 180°C pendant 30 min). Il a cependant été remarqué que dans le cas d'un alliage homogénéisé de façon classique, la pratique d'un pré-revenu entre 70 et 150°C pendant 0,5 à 5 h après la trempe conduit à une augmentation notable du coefficient d'écrouissage n (aprés mâturation) et à une augmentation significative des caractéristiques de résistance mécanique (après cuisson des revêtements).
    Le coefficient d'écrouissage est égal à n = d(Lnσ)/dε, σ étant la contrainte de Von Misès et ε la déformation équivalente de Von Misès pour des déformations en traction comprises entre 5 et 20% (ε=Ln (1/1o)).
    After forming and possibly a surface coating, the alloy may undergo tempering hardening during the baking treatment of the coating (around 180 ° C. for 30 min). It has however been noted that in the case of an alloy homogenized in a conventional manner, the practice of a pre-annealing between 70 and 150 ° C for 0.5 to 5 h after quenching leads to a significant increase in the coefficient d 'hardening n (after maturation) and a significant increase in the mechanical strength characteristics (after curing of the coatings).
    The coefficient of work hardening is equal to n = d (Lnσ) / dε, σ being the stress of Von Misès and ε the equivalent strain of Von Misès for strains in tension ranging between 5 and 20% (ε = Ln (1 / 1o)).

    La figure 1 représente les évolutions du coefficient d'écrouissage n à l'état mûri en fonction de la limite élastique à l'état durci avec et sans pré-revenu, dans les conditions reportées à l'Exemple 2.Figure 1 represents the evolutions of the coefficient of work hardening n with the matured state as a function of the elastic limit in the hardened state with and without pre-income, under the conditions shown in Example 2.

    L'invention sera mieux comprise à l'aide des exemples suivants :The invention will be better understood using the following examples:

    Exemple 1Example 1

    Les alliages dont la composition est reportée au Tableau I ont été élaborés en lingots, de 1,25x0,6 m2 de section, scalpés, réchauffés (vitesse de montée : 46°C/h; température de maintien: 480°C) et laminés à chaud avec une température d'entrée de 480°C et une température de sortie de 310°C jusqu'à une épaisseur de 4mm, puis à froid jusqu'à une épaisseur de 1,2mm.The alloys, the composition of which is given in Table I, were produced in ingots, 1.25 × 0.6 m 2 in section, scalped, reheated (rising speed: 46 ° C / h; holding temperature: 480 ° C) and hot rolled with an inlet temperature of 480 ° C and an outlet temperature of 310 ° C to a thickness of 4mm, then cold rolled to a thickness of 1.2mm.

    La mise en solution en four à passage a été effectuée dans les conditions données au Tableau II, refroidissement brouillard puis les tôles ont subi un vieillissement de 15 jours à la température ambiante avant essais.The dissolution in a passing oven was carried out under the conditions given in Table II, fog cooling then the sheets have undergone 15 days aging at room temperature before testing.

    Les caractéristiques mécaniques (sens long) et les déformations à rupture ε f en expansion biaxiale obtenues sont reportés au Tableau III. Mechanical characteristics (long sense) and breaking strains ε f in biaxial expansion obtained are given in Table III.

    Le test d'expansion biaxiale consiste à déformer une tôle 300x300x1,2 mm maintenue par un flan circulaire de diamètre 250 mm par une pression hydraulique. La déformation est mesurée au sommet du dôme formé. On peut constater que l'alliage suivant l'invention présente des caractéristiques de formabilité améliorées par rapport à celles des alliages obtenus selon l'art antérieur. On constate également un léger durcissement qui n'est pas spécifiquement recherché dans l'invention.The biaxial expansion test consists of deforming a sheet 300x300x1.2 mm maintained by a circular blank with a diameter of 250 mm by pressure hydraulic. The deformation is measured at the top of the dome formed. It can be seen that the alloy according to the invention exhibits improved formability characteristics compared to those of alloys obtained according to the prior art. There is also a slight hardening which is not specifically sought in the invention.

    Les précipités au Mn ont une taille médiane à 0,06 µm avec une dimension maximale de 0,18 µm. Alliage Composition (poids %) Mn Mg Si Cu Fe A 0,1 0,35 0,9 0,1 0,25 B 0,4 0,45 0,9 0,1 0,25 C 0,4 0,4 1,1 0,4 0,25 Gamme Réchauffage Mise en solution Etat (T4) Vitesse Maintien 1 (témoin) 46°C/h 1h à 580°C 30 sec à 550°C 15 j à 20°C 2 (revendiquée) 46°C/h 2h à 480°C 30 min à 550°C 15 j à 20°C Alliage Gamme R 0, 2 (MPa) Rm (MPa) A % A % réparti ε f (%) A 1 105 220 25 19 52 B 1 115 230 29 22 59 B 2 120 235 31 23 62 C 1 135 250 28 21 53 C* 2 140 255 30 23 60 The Mn precipitates have a median size of 0.06 µm with a maximum dimension of 0.18 µm. Alloy Composition (weight%) Mn Mg Yes Cu Fe AT 0.1 0.35 0.9 0.1 0.25 B 0.4 0.45 0.9 0.1 0.25 VS 0.4 0.4 1.1 0.4 0.25 Range Reheating Dissolution State (T4) Speed Maintenance 1 (witness) 46 ° C / h 1h at 580 ° C 30 sec at 550 ° C 15 days at 20 ° C 2 (claimed) 46 ° C / h 2h at 480 ° C 30 min at 550 ° C 15 days at 20 ° C Alloy Range R 0.2, (MPa) Rm (MPa) AT % A% distributed ε f (%) AT 1 105 220 25 19 52 B 1 115 230 29 22 59 B 2 120 235 31 23 62 VS 1 135 250 28 21 53 VS* 2 140 255 30 23 60

    Exemple 2Example 2

    Un alliage de composition pondérale suivante (en %)
       Si: 1,08 Fe: 0,10 Cu : 0,05 Mn: 0,38 Mg: 0,40 a été coulé en plateaux de 1,25 x 0,6 m2, homogénéisé à 520°C pendant 33 h, laminé à chaud jusqu'à 4 mm d'épaisseur entre 494 et 304°C, laminé à froid jusqu'à 1,2 mm d'épaisseur, mis en solution dans un four à air avec une montée en 30 min à 560°C et maintien de 5 min à cette température et trempe à l'eau à 20°C.
    10 min après la trempe, des échantillons ont subi un pré-revenu de 2 h à 100°C, d'autres échantillons de comparaison n'étant pas traités.
    Les essais de traction ont été effectués 14 jours après la trempe et certains échantillons ont été contrôlés après un revenu de 30 min à 180°C, simulant les conditions de cuisson des revêtements.
    An alloy with the following weight composition (in%)
    If: 1.08 Fe: 0.10 Cu: 0.05 Mn: 0.38 Mg: 0.40 was poured into 1.25 x 0.6 m 2 trays, homogenized at 520 ° C for 33 h, hot rolled up to 4 mm thick between 494 and 304 ° C, cold rolled up to 1.2 mm thick, dissolved in an air oven with rise in 30 min at 560 ° C and maintaining 5 min at this temperature and quenching with water at 20 ° C.
    10 min after quenching, samples were pre-annealed for 2 h at 100 ° C, other comparison samples were not treated.
    The tensile tests were carried out 14 days after quenching and certain samples were checked after 30 min tempering at 180 ° C, simulating the firing conditions of the coatings.

    Les résultats obtenus sont reportés sur le Tableau IV ci-après et représentés graphiquement sur la figure 1.
    On peut constater les effets bénéfiques du pré-revenu sur le coefficient n à l'état mûri (T4) et sur les caractéristiques mécaniques après cuisson des revêtements.

    Figure 00070001
    The results obtained are reported in Table IV below and shown graphically in Figure 1.
    We can see the beneficial effects of pre-tempering on the coefficient n in the matured state (T4) and on the mechanical characteristics after curing of the coatings.
    Figure 00070001

    Exemple 3Example 3

    Des produits ont été traités conformément à l'Exemple 2, sauf en ce qui concerne différentes vitesses de refroidissement lors de la trempe.Products were treated in accordance with Example 2, except for that concerns different cooling rates during quenching.

    Les résultats obtenus sont reportés au Tableau V. Vitesse de trempe (°C/sec) ETAT T4 30 min à 180°C R 0,2 R 0,2 (MPa) Rm (MPa) A (%) Au (%) (MPa) 6 111 247 30,7 22,2 120 20 117 251 30,9 23,4 136 580 140 271 32,4 24,4 161 The results obtained are reported in Table V. Quenching speed (° C / sec) STATUS T4 30 min at 180 ° CR 0.2 R 0.2 (MPa) Rm (MPa) AT (%) At (%) (MPa) 6 111 247 30.7 22.2 120 20 117 251 30.9 23.4 136 580 140 271 32.4 24.4 161

    On constate que les vitesses de trempe élevées sont nettement favorables à l'obtention des caractéristiques mécaniques élevées à l'état durci, avec une augmentation de l'allongement réparti à l'état T4.It can be seen that the high quenching speeds are clearly favorable obtaining high mechanical characteristics in the hardened state, with an increase in elongation distributed in the T4 state.

    Claims (11)

    1. An aluminium alloy for strips and sheets for deep drawing, characterised in that it contains, in weight % :
      0.15 to 0.65 Mn
      0.3 to 0.6 Mg
      0.7 to 1.2 Si
      0.1 to 0.5 Cu
      up to 0.4 Fe
      up to 0,05 (each et 0.15 (in total) of other elements,
      remainder : Al
    2. An alloy according to claim 1, characterised in that it contains :
      0.25 to 0.45 Mn
      0.3 to 0.5 Mg
      0.85 to 1,10 Si
      0.1 to 0.3 Cu
      up to 0.3 Fe.
    3. An alloy according to any one of claims 1 to 2, characterised in that it contains Mn precipitates of the type Al (Mn, Fe) Si, in which the average size is less than 0.07 µm and the maximum size is less than 0.20 µm.
    4. A process for the production of sheets or bands of an Al alloy in accordance with any one of claims 1 to 3, comprising the steps of reheating without homogenization and hot rolling (and optionally cold rolling), solution heat treating and quenching, and ageing at room temperature, characterised in that the reheating temperature and the temperature at the start of the hot rolling step is between 460 and 520° C.
    5. A process according to claim 4, characterised in that the temperature is held for between 30 min and 24 h.
    6. A process according to claims 4 or 5, characterised in that the heating rate is between 10° C/h and 150° C/h.
    7. A process acording to any one of claims 4 to 6, characterised in that the hot rolling end temperature is less than 400° C, preferably less than 350° C.
    8. A process according to any one of claims 4 to 7, characterised in that the solution heat treatment step is carried out at between 520° C and 570° C, for 5 min to 1 h.
    9. A process according to any one of claims 4 to 8, characterised in that the room temperature ageing period is at least 15 days.
    10. A process for the production of sheets or strips of Al alloy in accordance with any of claims 1 to 3, comprising at least one ingot homogenization or reheating step, a hot rolling step (and optionally a cold rolling step), a solution heat treatment step and a quenching step, an ageing step, a forming step and a firing treatment step for any coating, characterised in that pre-tempering between 70 and 150°C of a period of 0.5 to 5 h is carried out between the quenching and ageing steps.
    11. A process for the production of a sheet or strip of Al alloy in accordance with claim 10, characterised in taht the average cooling rate during the quenching step is greater than 100° C/sec.
    EP95901489A 1993-11-17 1994-11-15 Aluminium-silicon-magnesium alloy having improved ductility and deep-drawing properties, and method for producing same Revoked EP0679199B1 (en)

    Applications Claiming Priority (5)

    Application Number Priority Date Filing Date Title
    FR9313966 1993-11-17
    FR9313966A FR2712605B1 (en) 1993-11-17 1993-11-17 Process for obtaining Al-Si-Mg alloys with improved ductility and stampability and product thus obtained.
    FR9401603 1994-02-08
    FR9401603A FR2713664B1 (en) 1993-11-17 1994-02-08 Al-Si-Mg alloy with improved ductility and stampability and process for obtaining it.
    PCT/FR1994/001330 WO1995014113A1 (en) 1993-11-17 1994-11-15 Aluminium-silicon-magnesium alloy having improved ductility and deep-drawing properties, and method for producing same

    Publications (2)

    Publication Number Publication Date
    EP0679199A1 EP0679199A1 (en) 1995-11-02
    EP0679199B1 true EP0679199B1 (en) 1999-06-02

    Family

    ID=26230749

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP95901489A Revoked EP0679199B1 (en) 1993-11-17 1994-11-15 Aluminium-silicon-magnesium alloy having improved ductility and deep-drawing properties, and method for producing same

    Country Status (8)

    Country Link
    EP (1) EP0679199B1 (en)
    JP (1) JPH08505904A (en)
    KR (1) KR960700353A (en)
    BR (1) BR9406554A (en)
    CA (1) CA2152402C (en)
    DE (1) DE69418855T2 (en)
    FR (1) FR2713664B1 (en)
    WO (1) WO1995014113A1 (en)

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6267922B1 (en) 1995-09-19 2001-07-31 Alcan International Limited Precipitation-hardened aluminum alloys for automotive structural applications
    DE102005045340B4 (en) * 2004-10-05 2010-08-26 Aleris Aluminum Koblenz Gmbh Process for heat treating an aluminum alloy element
    EP3967784A4 (en) * 2019-05-08 2022-08-10 Changshu Synergy Automobile Parts Co., Ltd. Alloy material and production process therefor

    Families Citing this family (16)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    CH688379A5 (en) * 1994-11-29 1997-08-29 Alusuisse Lonza Services Ag Thermaformed and weldable aluminum alloy of the AlMgSi type
    FR2742165B1 (en) * 1995-12-12 1998-01-30 Pechiney Rhenalu PROCESS FOR PRODUCING HIGH STRENGTH AND FORMABILITY ALUMINUM ALLOY THIN STRIPS
    FR2748035B1 (en) * 1996-04-29 1998-07-03 Pechiney Rhenalu ALUMINUM-SILICON-MAGNESIUM ALLOY FOR AUTOMOTIVE BODYWORK
    JP2001503473A (en) * 1996-06-14 2001-03-13 アルミナム カンパニー オブ アメリカ Rolled sheet made of aluminum alloy with high formability
    EP0931170A1 (en) * 1996-09-30 1999-07-28 Alcan International Limited Aluminium alloy for rolled product process
    JP3266099B2 (en) 1998-03-27 2002-03-18 株式会社神戸製鋼所 Aluminum alloy door beam
    JP4101749B2 (en) 2001-07-23 2008-06-18 コラス・アルミニウム・バルツプロドウクテ・ゲーエムベーハー Weldable high strength Al-Mg-Si alloy
    DK1316623T3 (en) * 2001-11-28 2008-01-21 Hydro Aluminium Deutschland Aluminum alloy for the manufacture of roll-shaped products
    DE10324452B4 (en) * 2002-07-01 2010-05-06 Aleris Aluminum Duffel Bvba AI-Mg-Si alloy sheet
    SE0203009D0 (en) * 2002-10-14 2002-10-14 Sapa Heat Transfer Ab High strenth aluminum fine material for brazing
    US7491278B2 (en) 2004-10-05 2009-02-17 Aleris Aluminum Koblenz Gmbh Method of heat treating an aluminium alloy member and apparatus therefor
    EP2635720B1 (en) 2010-11-05 2017-07-12 Aleris Aluminum Duffel BVBA Formed automotive part made from an aluminium alloy product and method of its manufacture
    FR3065013B1 (en) 2017-04-06 2020-08-07 Constellium Neuf-Brisach IMPROVED PROCESS FOR MANUFACTURING AN AUTOMOTIVE BODY STRUCTURE COMPONENT
    WO2018206696A1 (en) * 2017-05-11 2018-11-15 Aleris Aluminum Duffel Bvba Method of manufacturing an al-si-mg alloy rolled sheet product with excellent formability
    US11203801B2 (en) 2019-03-13 2021-12-21 Novelis Inc. Age-hardenable and highly formable aluminum alloys and methods of making the same
    WO2024186359A1 (en) * 2023-03-07 2024-09-12 Novelis Inc. High recycle content aluminum alloys for automotive skin

    Family Cites Families (7)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    JPS57143472A (en) * 1981-03-02 1982-09-04 Sumitomo Light Metal Ind Ltd Manufacture of aluminum alloy sheet for forming
    US4589932A (en) * 1983-02-03 1986-05-20 Aluminum Company Of America Aluminum 6XXX alloy products of high strength and toughness having stable response to high temperature artificial aging treatments and method for producing
    US4614552A (en) * 1983-10-06 1986-09-30 Alcan International Limited Aluminum alloy sheet product
    FR2601040B1 (en) * 1986-07-07 1988-09-02 Cegedur SOLDERABLE AND WELDABLE ALUMINUM ALLOY AND MANUFACTURING METHOD THEREOF
    FR2642436B1 (en) * 1988-12-21 1991-06-14 Pechiney Rhenalu A1 ALLOY CONTAINING ESSENTIALLY SI, MG AND CU FOR STAMPING
    JPH036348A (en) * 1989-06-03 1991-01-11 Kobe Steel Ltd Aluminum alloy for automobile panel excellent in chemical conversion treating property and its production
    CH685707A5 (en) * 1991-12-16 1995-09-15 Alusuisse Lonza Services Ag Body panel.

    Cited By (3)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US6267922B1 (en) 1995-09-19 2001-07-31 Alcan International Limited Precipitation-hardened aluminum alloys for automotive structural applications
    DE102005045340B4 (en) * 2004-10-05 2010-08-26 Aleris Aluminum Koblenz Gmbh Process for heat treating an aluminum alloy element
    EP3967784A4 (en) * 2019-05-08 2022-08-10 Changshu Synergy Automobile Parts Co., Ltd. Alloy material and production process therefor

    Also Published As

    Publication number Publication date
    JPH08505904A (en) 1996-06-25
    CA2152402A1 (en) 1995-05-26
    DE69418855T2 (en) 1999-10-07
    WO1995014113A1 (en) 1995-05-26
    KR960700353A (en) 1996-01-19
    EP0679199A1 (en) 1995-11-02
    BR9406554A (en) 1996-02-06
    CA2152402C (en) 2003-09-23
    FR2713664A1 (en) 1995-06-16
    FR2713664B1 (en) 1996-05-24
    DE69418855D1 (en) 1999-07-08

    Similar Documents

    Publication Publication Date Title
    EP0679199B1 (en) Aluminium-silicon-magnesium alloy having improved ductility and deep-drawing properties, and method for producing same
    JP6785772B2 (en) Highly moldable aluminum sheet for automobiles with reduced or no surface roping and its manufacturing method
    EP0949344B1 (en) Process for making aluminium alloy sheet
    EP0786535B1 (en) Method of manufacturing aluminum alloy plate for forming
    JP4903183B2 (en) Method for forming aluminum alloy with excellent bending properties
    FR2820438A1 (en) PROCESS FOR MANUFACTURING A CORROSIVE PRODUCT WITH HIGH RESISTANCE IN ALZNMAGCU ALLOY
    JP7479854B2 (en) Manufacturing method of aluminum alloy extrusion material
    US20190264311A1 (en) Method for manufacturing bent article using aluminum alloy
    EP0157711B1 (en) Process for the manufacture of objects from al-li-mg-cu alloys with high ductibility and isotropy properties
    EP1143027B1 (en) Process for making avionic structural elements from an Al-Si-Mg alloy
    CN116134169A (en) Novel 6xxx aluminum alloy and production method thereof
    CN1043580C (en) Method for producing sheet suitable for making can fittings
    WO2022181306A1 (en) Method for manufacturing aluminum alloy extruded material having high strength and excellent scc resistance and quenchability
    CA2445667A1 (en) Process for preparing an aluminum alloy sheet with improved bendability and aluminum alloy sheet produced therefrom
    JPH06340940A (en) Aluminum alloy sheet excellent in press formability and baking hardenability and its production
    JPH10259464A (en) Production of aluminum alloy sheet for forming
    JP2681396B2 (en) Manufacturing method of aluminum alloy sheet for forming with excellent corrosion resistance
    EP0394155A1 (en) Damage resistant Al-li-cu-mg alloy having good cold-forming properties
    JPH09249953A (en) Aluminum Extruded Forged Product Manufacturing Method
    KR102589408B1 (en) Al-Mg-Si BASED ALUMINUM ALLOY SHEET HAVING EXCELLENT FORMABILITY
    JPH05318147A (en) Aluminum alloy clad plate for forming having excellent galling resistance and scratch resistance and its production
    FR2857377A1 (en) Aluminium alloy for rolled products with a high capacity of absorption of kinetic energy by plastic deformation, notably for motor vehicle components
    FR2712605A1 (en) Aluminium@ alloy suitable as sheet to be deep drawn, for use in e.g. car body industry
    JP2024139746A (en) Manufacturing method for high-strength aluminum alloy extrusion material with excellent SCC resistance and aluminum alloy used therein
    CA3221029A1 (en) Strip made of 6xxx alloy and manufacturing process

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19950728

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): CH DE FR GB IT LI

    17Q First examination report despatched

    Effective date: 19980706

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): CH DE FR GB IT LI

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 19990602

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: WILLIAM BLANC & CIE CONSEILS EN PROPRIETE INDUSTRI

    Ref country code: CH

    Ref legal event code: EP

    REF Corresponds to:

    Ref document number: 69418855

    Country of ref document: DE

    Date of ref document: 19990708

    GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

    Effective date: 19990602

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    26 Opposition filed

    Opponent name: ALCAN INTERNATIONAL LIMITED

    Effective date: 20000301

    26 Opposition filed

    Opponent name: HOOGOVENS ALUMINIUM NV

    Effective date: 20000301

    Opponent name: ALCAN INTERNATIONAL LIMITED

    Effective date: 20000301

    PLBF Reply of patent proprietor to notice(s) of opposition

    Free format text: ORIGINAL CODE: EPIDOS OBSO

    PLBQ Unpublished change to opponent data

    Free format text: ORIGINAL CODE: EPIDOS OPPO

    PLAB Opposition data, opponent's data or that of the opponent's representative modified

    Free format text: ORIGINAL CODE: 0009299OPPO

    PLBI Opposition filed

    Free format text: ORIGINAL CODE: 0009260

    26 Opposition filed

    Opponent name: CORUS ALUMINIUM NV

    Effective date: 20000301

    Opponent name: ALCAN INTERNATIONAL LIMITED

    Effective date: 20000301

    RDAH Patent revoked

    Free format text: ORIGINAL CODE: EPIDOS REVO

    APAC Appeal dossier modified

    Free format text: ORIGINAL CODE: EPIDOS NOAPO

    APAE Appeal reference modified

    Free format text: ORIGINAL CODE: EPIDOS REFNO

    APAC Appeal dossier modified

    Free format text: ORIGINAL CODE: EPIDOS NOAPO

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20031021

    Year of fee payment: 10

    Ref country code: CH

    Payment date: 20031021

    Year of fee payment: 10

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: FR

    Payment date: 20031118

    Year of fee payment: 10

    APBU Appeal procedure closed

    Free format text: ORIGINAL CODE: EPIDOSNNOA9O

    RDAG Patent revoked

    Free format text: ORIGINAL CODE: 0009271

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: PATENT REVOKED

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    27W Patent revoked

    Effective date: 20040526

    APAH Appeal reference modified

    Free format text: ORIGINAL CODE: EPIDOSCREFNO