[go: up one dir, main page]

JPS61288667A - solid-state imaging device - Google Patents

solid-state imaging device

Info

Publication number
JPS61288667A
JPS61288667A JP60131033A JP13103385A JPS61288667A JP S61288667 A JPS61288667 A JP S61288667A JP 60131033 A JP60131033 A JP 60131033A JP 13103385 A JP13103385 A JP 13103385A JP S61288667 A JPS61288667 A JP S61288667A
Authority
JP
Japan
Prior art keywords
gain
value
correction
pixel
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60131033A
Other languages
Japanese (ja)
Other versions
JP2516902B2 (en
Inventor
Yoshinori Tsujino
辻野 佳規
Isao Tofuku
東福 勲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60131033A priority Critical patent/JP2516902B2/en
Publication of JPS61288667A publication Critical patent/JPS61288667A/en
Application granted granted Critical
Publication of JP2516902B2 publication Critical patent/JP2516902B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Picture Signal Circuits (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

PURPOSE:To obtain the suitable correcting value concerning the picture element of the maximum appearance frequency gain value by selecting the correspondence that the product of the central gain value and the gain correcting coefficient value of the distribution comes to be mutually the same level, using the correcting value of the picture element with the maximum signal versus noise ratio in the picture element and executing the displaying. CONSTITUTION:The value of the gain correcting coefficient is for example set beforehand as shown in Figs. B and C rows. When the calculation, which multiplies the gain correcting coefficient value to the gain value, is executed as shown by a B row, the suitable correction is executed in the scope of gain value 5-10 bits by the correction, and the considerable scope of the central part of distribution is suitably improved. Then, still, the correction of the signal of four bits is suppressed. Next, the input of either of the gain value or the gain correcting coefficient value to a multiplier is shifted to one digit and the correspondence shown in the C row is selected. In the correction, the suitable correction is executed by the scope of gain values 4-9 bits, and the picture element of the central part of the gain distribution is sufficiently included.

Description

【発明の詳細な説明】 〔概要〕 この発明は、固体撮像装置において、 その画像信号のゲイン補正に際してその分布の中心部分
を容易に補正し、必要ならば分布の端に相当する画素の
データ置換を行うことにより、画像表示を改善するもの
である。
[Detailed Description of the Invention] [Summary] The present invention, in a solid-state imaging device, easily corrects the central portion of the distribution when correcting the gain of the image signal, and if necessary, replaces data of pixels corresponding to the edges of the distribution. By doing this, image display is improved.

〔産業上の利用分野〕[Industrial application field]

本発明は固体撮像装置にかかり、特にその画像信号補正
方法の改善に関する。
The present invention relates to solid-state imaging devices, and particularly relates to improvements in image signal correction methods thereof.

撮像装置では光学的画像を多数の画素に分割してそのデ
ータを処理するが、面品位の画像信号を得るために画素
相互間の特性のばらつきに対して、従来より一層効果的
な補正を行うことが要望されている。
Imaging devices divide optical images into a large number of pixels and process the data, but in order to obtain surface-quality image signals, corrections are made more effectively than before for variations in characteristics between pixels. This is requested.

〔従来の技術〕[Conventional technology]

固体撮像装置では通常、受光面の各画素領域に光起電形
、光伝導形成いはMis形などの光電変換素子を配設し
、これらの光電変換素子で発生された電気信号を、電荷
結合装置(CCD)などの電荷転送装置(CTD)によ
り時系列多重化して検出し、→ノンプリング、デジタル
変換後に信号の補正を行って、ディスプレイ装置に表示
する。
In a solid-state imaging device, a photoelectric conversion element such as a photovoltaic type, a photoconductive type, or a Mis type is usually arranged in each pixel region of the light receiving surface, and the electrical signals generated by these photoelectric conversion elements are transferred by charge coupling. The signal is multiplexed and detected in time series using a charge transfer device (CTD) such as a charge transfer device (CCD), and the signal is corrected after non-pulling and digital conversion, and then displayed on a display device.

前記補止は従来、全く感度のない欠陥画素に他の画素の
データを置換する欠陥画素補正と、画素相互間の感度の
ばらつきの補正とに分りで考えられている。
Conventionally, the compensation has been considered to be divided into defective pixel correction in which data of another pixel is substituted for a defective pixel having no sensitivity at all, and correction of variations in sensitivity between pixels.

前者の欠陥画素補正は、例えば第2図(a)の如く2次
元に配列された画素のうち画素Xが感度のない欠陥画素
である場合に、この画素Xに隣接する8画素のうち正常
な画素データを画素座標Xにも表示するものである。
The former defective pixel correction is performed when, for example, pixel X is a defective pixel with no sensitivity among pixels arranged two-dimensionally as shown in Figure 2(a), and a normal defective pixel among the eight pixels adjacent to this pixel Pixel data is also displayed at pixel coordinates X.

この欠陥画素補正は例えは第2図(blのブロック図の
如き回路構成で行われる。すなわちこの補正機能を備え
ない場合には、同期信号発生器24の読出しアドレス信
号に従って、フレーJ、メモリ21に記録された各画素
データがドライバ22を介しで表示装置23に送られる
の乙こ対して、欠陥画素補正うす3作では、変換か必要
な画素のアドレスにこれに代わる画素のアl゛レスが記
録されたアドレス変換メモリ25を(INえて、例え番
ンI前記画累Xを読出ずアルレス信−号を正常な画素パ
;3°″のアドレスに変換している。
This defective pixel correction is performed with a circuit configuration as shown in the block diagram of FIG. Each pixel data recorded in is sent to the display device 23 via the driver 22. In contrast, in the defective pixel correction U3 work, the address of the pixel to replace it is converted or the address of the necessary pixel is sent to the display device 23 via the driver 22. For example, the address conversion memory 25 in which .

また後者の感度ばらつき補正は)1rI常欠陥画素補正
の前段で行われ、一般に下記演算式によって行われる。
The latter sensitivity variation correction is performed before the 1rI regular defective pixel correction, and is generally performed using the following calculation formula.

(p −p+、)/(po−r’+、)たたし、Pは撮
像対象物を見たときの出力、PLは均一な小入射光量の
基準ターケソI・を見たときの出力、Pl+は均一な大
入射光量の基準クーケラトを見たときの出力である。
(p - p+,)/(po-r'+,) where P is the output when looking at the object to be imaged, PL is the output when looking at the standard Turkesian I with a uniform small amount of incident light, Pl+ is the output when looking at a reference Kukerat with a uniform large amount of incident light.

この感度ばらつき補正は、O;1記式の分子のオフセッ
ト補正と分母のゲイン補正とに分けられる。
This sensitivity variation correction is divided into a numerator offset correction and a denominator gain correction in the O;1 notation.

オフセット補正は入射光強度に無関係な直流成分のばら
つきの補正、ゲイン補正は入射光の変化量に対する出力
の変化量の比のばらつきの補正であり、オフセント補正
−ゲイン補正の順に第3図のブロック図の如く行われる
。すなわち、オフセットメモリ28に各画素のオフセッ
ト補正値を、ゲインメモリ29にゲイン補正係数を予め
記憶しておき、デジタル画像信号に対して加算器26に
よってオフセット補正値を減算し、乗算器27によって
ゲイン補正係数を乗算する。
Offset correction is correction for variations in the DC component unrelated to the intensity of incident light, and gain correction is correction for variations in the ratio of the amount of change in output to the amount of change in incident light. This is done as shown in the figure. That is, the offset correction value of each pixel is stored in the offset memory 28 and the gain correction coefficient is stored in the gain memory 29 in advance, the offset correction value is subtracted by the adder 26 from the digital image signal, and the gain is calculated by the multiplier 27. Multiply by correction factor.

なお前記式から知られる様に、オフセット補正値は均一
な小入射光量の基準ターゲットを見たときの各画素の出
力P、−に基づいて設定され、ゲイン補正係数は大、小
入射光量の基準ターゲットを見たときの各画素の出力差
PHPtの逆数に定数を乗じた値に基づいて設定される
As is known from the above equation, the offset correction value is set based on the output P, - of each pixel when looking at a reference target with a uniform small amount of incident light, and the gain correction coefficient is set based on the reference target with a small amount of incident light and large amount. It is set based on a value obtained by multiplying the reciprocal of the output difference PHPt of each pixel when looking at the target by a constant.

従来のゲイン補正方法では第4図のD行に示す如く、ゲ
インが最も大きい画素を基準とし、ゲインがこれより小
さい画素のレベルをこれに合わせる係数を用いている。
In the conventional gain correction method, as shown in row D of FIG. 4, a pixel with the largest gain is used as a reference, and a coefficient is used to adjust the level of pixels with a smaller gain to this pixel.

すなわち例えば各画素のゲインが最大8ビツトで表され
最小lヒツトまでばらつくとき、8ヒツトのゲインの補
iE結果の有効桁数が8ビツトであるためには8ビツト
のゲイン補正係数が必要であり、補正結果は最大16ヒ
ントとなる。ただし同図中図で示す有効な最小位桁より
下位の桁は誤差範囲である。桁数が小さいゲインの補正
結果のレベルをこれに合わせるためには、同図に示す如
く9〜15ピツ1〜のゲイン補正係数が必要となる。
That is, for example, when the gain of each pixel is represented by a maximum of 8 bits and varies up to a minimum of 1 bits, an 8-bit gain correction coefficient is required in order for the number of effective digits of the 8-bit gain compensation iE result to be 8 bits. , the correction result is a maximum of 16 hints. However, the digits lower than the effective minimum digit shown in the middle diagram of the figure are within the error range. In order to match the level of the correction result of a gain with a small number of digits, a gain correction coefficient of 9 to 15 points is required as shown in the figure.

この様な補正によって得られる画像では、を効桁数が少
ない低ゲインの画素に大きいちらつきが現れ甚だ目障り
となる。
In images obtained by such correction, large flickers appear in low-gain pixels with a small number of effective digits, which is extremely annoying to the eyes.

本発明者が先に提供した特願昭57−18198/lに
よる補正方法では、第4図E行に示す如くゲイン補正係
数設定の際に、ゲインの低レベル部分(図示例でば3ヒ
ツト以下)は無視して一括処理し、有効桁数が小さい画
素の補正結果のレベルを下げて、前記のちらつきを抑制
している。
In the correction method according to Japanese Patent Application No. 57-18198/l, which was previously provided by the present inventor, when setting the gain correction coefficient, as shown in line E of FIG. ) are ignored and processed all at once, and the level of the correction result of pixels with a small number of effective digits is lowered to suppress the flickering described above.

なお該発明による補正方法ではゲイン補正係数の最大桁
数、従って演算ヒント長を圧縮する効果が得られる。
Note that the correction method according to the invention has the effect of compressing the maximum number of digits of the gain correction coefficient, and therefore the calculation hint length.

〔発明が解決しようとする問題点〕 従来知られている固体撮像装置の信号補正方法のうちゲ
イン補正は、上述の如くピッI−数最犬のゲインを基7
1Lとしているが、光電変換素子の感度等の分布におい
てその最大値近傍の分布頻度は一般に小ざく、これを忠
実に表示してもその効果は少ない。
[Problems to be Solved by the Invention] Among the conventionally known signal correction methods for solid-state imaging devices, gain correction is based on the gain with the highest pitch I-number as described above.
1L, however, in the distribution of the sensitivity of the photoelectric conversion element, the distribution frequency near the maximum value is generally small, and even if this is faithfully displayed, the effect is small.

また前記発明の補正方法では、光電変換素子の感度等の
分布パターンによっては分布頻度の大きいゲインの画素
を無視する結果となり、良好な画像が得られない。
Further, in the correction method of the invention, depending on the distribution pattern of the sensitivity of the photoelectric conversion element, etc., pixels with a gain having a high distribution frequency may be ignored, and a good image cannot be obtained.

上述の如き現状から脱皮して固体撮像装置の映像を更に
改善するために、画像信号補正方法の改善が要望されて
いる。
In order to escape from the current state of affairs as described above and further improve the images of solid-state imaging devices, there is a need for improvements in image signal correction methods.

〔問題点を解決するだめの手段〕[Failure to solve the problem]

前記問題点は、各画素のゲイン値と予め設定されたゲイ
ン補正係数値の少なくとも1つを、必要に応じシフトし
て、 該ゲイン値の分布の中心近傍にあるゲイン値と該ゲイン
補正係数値との積が相互に同一レベルとなる、該ゲイン
値と該ゲイン補正係数値との対応を選択し、 撮像に際して、前記対応により該ゲイン補正係数値を用
いてゲイン補正演算を行い、 前記同一レベルの積が得られるゲイン値の画素について
は該演算結果を補正値とし、 前記同一レベルの積が得られるゲイン値よりゲイン値が
大きい画素については、該画素の近傍に配置され、かつ
前記同一レベルの積が得られる画素中信号対雑音比が最
大の画素の該補正値を用いて、 画像表示を行う本発明による固体撮像装置により解決さ
れる。
The above problem is solved by shifting at least one of the gain value of each pixel and the preset gain correction coefficient value as necessary to obtain the gain value and the gain correction coefficient value near the center of the distribution of the gain value. Select a correspondence between the gain value and the gain correction coefficient value such that the product of the two values is at the same level, and upon imaging, perform a gain correction calculation using the gain correction coefficient value according to the correspondence, and obtain the same level. For a pixel with a gain value that yields a product of This problem is solved by the solid-state imaging device according to the present invention, which displays an image using the correction value of the pixel with the maximum signal-to-noise ratio in the pixel where the product of .

〔作 用〕[For production]

本発明による固体撮像装置では、ゲイン補正係数の値の
組合せを予め設定する。この値は前記式により、大、小
入射光量の基準ターゲットを見たときの各画素の出力差
P、I Ptの逆数に定数を乗した値に暴くことは当然
であるが、通常、その最小桁数はゲインの最大桁数より
小さく、すなわち最大成いは最大に近い桁数のゲイン値
については補正後の有効桁数が減少する値とし、また前
記発明と同様に、桁数の少ないゲイン値については補正
係数値の桁数を抑制している。
In the solid-state imaging device according to the present invention, combinations of gain correction coefficient values are set in advance. It goes without saying that this value can be expressed as the reciprocal of the output difference P, I Pt of each pixel when looking at the reference target with large and small incident light amounts, using the above formula, but it is usually the minimum value. The number of digits is smaller than the maximum number of digits of the gain, that is, for a gain value with a maximum number of digits or a number of digits close to the maximum, the number of effective digits after correction is reduced. Regarding the value, the number of digits of the correction coefficient value is suppressed.

このゲイン補正係数値と、各画素のゲイン値、すなわち
前記出力差PH−PLの少なくとも1つを必要に応じシ
フトして、ゲイン補正乗算器に入力し、ゲイン値の分布
の中心近傍の多数頻度の値とゲイシネ11正係数値との
積が相互に同一レベルとなる両値の対応を選択する。
At least one of the gain correction coefficient value and the gain value of each pixel, that is, the output difference PH−PL, is shifted as necessary and inputted to the gain correction multiplier, and the majority frequency near the center of the distribution of gain values is A correspondence between the values such that the product of the value and the positive coefficient value of the gain cine 11 is at the same level is selected.

この様に予め設定、選択されたゲイン補正係数値と前記
対応関係とが総合されて従来のゲイン補正係数に相当し
、撮像に際しては、この対応によりこのゲイン補正係数
値を用いてゲイン補正演算を行う。
In this way, the preset and selected gain correction coefficient value and the above-mentioned correspondence are combined and correspond to the conventional gain correction coefficient, and during imaging, the gain correction calculation is performed using this gain correction coefficient value according to this correspondence. conduct.

このゲイン補正演算により、少なくとも分布の中心近傍
のゲイン値を有する多数頻度の画素については、適正な
補正値が得られる。
Through this gain correction calculation, appropriate correction values can be obtained at least for pixels having a large number of gain values near the center of the distribution.

しかしながら同一レベルの積が得られるゲイン値よりゲ
イン値が大きい画素については、乗算器の演算長をオー
バーフローして適正な補正値が得られないが、この画素
に対してはその近傍に配置され、かつ同一レベルの積が
得られる画素中信号対雑音比が最大の画素の補正値に置
換する。
However, for a pixel whose gain value is larger than the gain value for which a product of the same level can be obtained, the operation length of the multiplier is overflowed and an appropriate correction value cannot be obtained. In addition, the correction value is replaced with the correction value of the pixel with the maximum signal-to-noise ratio in the pixel for which a product of the same level can be obtained.

なお、全く或いは殆ど感度のない欠陥画素に他の画素の
データを置換する欠陥画素補正を、前記従来例と同様に
行う。
Note that defective pixel correction in which data of another pixel is substituted for a defective pixel having no or almost no sensitivity is performed in the same manner as in the conventional example.

本発明により上述の補正を、オフセット補正後に行うこ
とにより、特異画素のない良好な画像が表示される。
According to the present invention, by performing the above-mentioned correction after offset correction, a good image without peculiar pixels can be displayed.

〔実施例〕〔Example〕

以下本発明を実施例により第1図を参照して具体的に説
明する。ただし、同図A行は比較のために前記発明によ
る従来方法を示し、B行は本発明による補正操作の中間
段階、0行は本発明による補正操作の完了段階を示す。
Hereinafter, the present invention will be explained in detail by way of examples with reference to FIG. However, line A in the figure shows the conventional method according to the invention for comparison, line B shows the intermediate stage of the correction operation according to the invention, and line 0 shows the completion stage of the correction operation according to the invention.

本実施例の固体撮像装置は12ビツトのゲイン袖圧用乗
算器を備えて、ゲイン補正係数は第1図のゲイン補正係
数の列に示す如く最大12ビツトに制限される。また犬
、小入射光量の基【1!、クーゲットを見たとぎの各画
素の出力差PIIP+の分布は、同図ゲイン及びゲイン
分布の列に示す如く、最大10ビツトでその中心的な範
囲は7〜4ビツトであるとする。
The solid-state imaging device of this embodiment is equipped with a 12-bit gain pressure multiplier, and the gain correction coefficient is limited to a maximum of 12 bits as shown in the column of gain correction coefficients in FIG. Also, dogs, the basis of small incident light intensity [1! Assume that the distribution of the output difference PIIP+ of each pixel when looking at the cuget, as shown in the column of gain and gain distribution in the figure, has a maximum of 10 bits and a central range of 7 to 4 bits.

この場合に前記従来技術により、ゲイン10ヒソI・の
画素の補正後の有効桁数を10ビツトとする最高感度基
準の補正を行うならば、同図A行に示す如く、ゲインが
8〜10ビン)の画素は正確に補正されるが、7ヒソI
・以下の画素については補正係数が12ヒツトの一定値
に丸められてゲイン補正後のレベルが抑制され、画素の
大多数を占めるゲイン分布の中心的な範囲が忠実に表示
されない。
In this case, if the above-mentioned prior art is used to correct the maximum sensitivity standard in which the number of effective digits after correction for a pixel with a gain of 10 I. The pixels of bin) are corrected accurately, but 7 Hiso I
- For the following pixels, the correction coefficient is rounded to a constant value of 12 hits, and the level after gain correction is suppressed, so that the central range of the gain distribution, which accounts for the majority of pixels, is not faithfully displayed.

これに対して本発明のゲイン補正では予めゲイン補正係
数の値を、例えば同図B、C行に示す如く設定する。本
実施例では、ゲインの最大桁数10ビットに対して補正
係数値の最小桁数は7ビソI・であり、大きい桁数のゲ
インについては補正後の有効桁数減少が予想され、また
最大桁数は上述の如<12ビットで、前記発明と同様に
桁数の少ないゲインについては桁数が抑制されζいる。
In contrast, in the gain correction of the present invention, the value of the gain correction coefficient is set in advance, for example, as shown in lines B and C in the figure. In this example, the maximum number of digits for the gain is 10 bits, and the minimum number of digits for the correction coefficient value is 7 bits, and it is expected that the number of effective digits will decrease after correction for a gain with a large number of digits. The number of digits is <12 bits as described above, and as in the invention, the number of digits is suppressed for gains with a small number of digits.

このゲイン補正係数値をゲイン値に乗算する演算がB行
の様に行われたとする。この補正ではゲイン値5〜10
ビットの範囲て適正な補正か行われ、分布の中心的な部
分のかなりの範囲が適正で前記A行の補正に比較すれば
改善されているか、なお4ビツトの信号の補正は抑制さ
れている。
Assume that the calculation of multiplying the gain value by this gain correction coefficient value is performed as shown in line B. In this correction, the gain value is 5 to 10.
Appropriate correction has been made for the bit range, and a considerable range in the central part of the distribution is correct, and it is an improvement compared to the correction for row A, and the correction for the 4-bit signal is suppressed. .

本実施例ではこの場合に、ゲイン値或いはゲイン補正係
数値の何れか一方の乗算器への入力を1桁シフl−して
、0行に示す対応を選択する。この補正ではゲイン値4
〜9ピッI−の範囲で適正な補正が行われ、ゲイン分布
の中心的な部分の画素が十分に含まれる。
In this embodiment, in this case, either the gain value or the gain correction coefficient value input to the multiplier is shifted by one digit l-, and the correspondence shown in the 0th row is selected. In this correction, the gain value is 4.
Appropriate correction is performed in the range of ~9 pi I-, and pixels in the central part of the gain distribution are sufficiently included.

撮像に際しては、このゲイン補正係数値をこの様に対応
させてゲイン補正演算を行う。
During imaging, gain correction calculations are performed using the gain correction coefficient values in correspondence with each other in this manner.

ただし本実施例では、最大の10ピッ1−長のゲインは
乗算器の演算長をオーバーフローして適正な補正値が得
られないが、この画素については、これに隣接するなど
近傍にありかつ適正なゲイン補正を受けた画素のうち、
信号対雑音比が最大の画素の補正値に置換して表示する
However, in this example, the maximum gain of 10 pips 1-length overflows the operation length of the multiplier and an appropriate correction value cannot be obtained. Of the pixels that have undergone gain correction,
The correction value of the pixel with the highest signal-to-noise ratio is replaced and displayed.

更に全く或いは殆ど感度のない欠陥画素があるならば、
この画素に他の画素のデータを置換する欠陥画素補正を
前記従来例と同様に行う。以上の補正により、特異画素
のない良好な画像が表示される。
Furthermore, if there are defective pixels with no or almost no sensitivity,
Defective pixel correction is performed to replace this pixel with data of another pixel in the same manner as in the prior art example. With the above correction, a good image without any unusual pixels is displayed.

なお、もしゲイン補正係数値を前記実施例の値より1ビ
ツトずらして、4ビツト以下のゲインに対して12ビツ
ト、5ビツトのゲインに対して11ビツト、・・・、1
0ビツトのゲインに対して6ビツトに設定すれば、本発
明によるシフト機能が無い場合にも、本実施例のゲイン
分布に対してはその中心的な部分が適正な補正の範囲に
含まれるが、ゲイン分布の中心的な部分が下方にシフト
する場合には適正な補正範囲に中心的な部分が十分に含
まれず、上方にシフトする場合には有効値桁数を失うこ
ととなる。
Furthermore, if the gain correction coefficient value is shifted by 1 bit from the value in the above embodiment, it becomes 12 bits for a gain of 4 bits or less, 11 bits for a gain of 5 bits, etc.
If the gain is set to 6 bits for a gain of 0 bits, the central part of the gain distribution of this embodiment will be included in the range of appropriate correction even in the absence of the shift function according to the present invention. If the central part of the gain distribution shifts downward, the central part will not be sufficiently included in the appropriate correction range, and if it shifts upward, the number of effective value digits will be lost.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、与えられた規模の固
体撮像装置において、出現頻度が最も多いゲイン値を有
する画素について適正な補正値が容易に得られ、またゲ
イン値分布の端に相当する画素についても効果的な処理
か行われて、情報が十分に表示され、かつ特異画素のな
い良好な画像が得られる。
As explained above, according to the present invention, in a solid-state imaging device of a given scale, an appropriate correction value can be easily obtained for the pixel having the gain value that appears most frequently, and Effective processing is also performed on pixels, resulting in a good image in which information is sufficiently displayed and there are no unusual pixels.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明によるゲイン補正方法の例を示す図、 第2図(a)は欠陥画素補正の模式図、第2図(blは
欠陥画素補正のブロック図、第3図は感度ばらつき補正
のブロック図、第4図は従来のゲイン補正方法の例を示
す図である。
Fig. 1 is a diagram showing an example of the gain correction method according to the present invention, Fig. 2 (a) is a schematic diagram of defective pixel correction, Fig. 2 (bl is a block diagram of defective pixel correction, and Fig. 3 is sensitivity variation correction FIG. 4 is a block diagram showing an example of a conventional gain correction method.

Claims (1)

【特許請求の範囲】 各画素のゲイン値と予め設定されたゲイン補正係数値の
少なくとも1つを、必要に応じシフトして、 該ゲイン値の分布の中心近傍にあるゲイン値と該ゲイン
補正係数値との積が相互に同一レベルとなる、該ゲイン
値と該ゲイン補正係数値との対応を選択し、 撮像に際して、前記対応により該ゲイン補正係数値を用
いてゲイン補正演算を行い、 前記同一レベルの積が得られるゲイン値の画素について
は該演算結果を補正値とし、 前記同一レベルの積が得られるゲイン値よりゲイン値が
大きい画素については、該画素の近傍に配置され、かつ
前記同一レベルの積が得られる画素中信号対雑音比が最
大の画素の該補正値を用いて、 画像表示を行うことを特徴とする固体撮像装置。
[Claims] At least one of the gain value of each pixel and a preset gain correction coefficient value is shifted as necessary to obtain a gain value near the center of the distribution of the gain value and the gain correction coefficient. Select a correspondence between the gain value and the gain correction coefficient value whose products with the numerical values are at the same level, perform gain correction calculation using the gain correction coefficient value according to the correspondence during imaging, For a pixel with a gain value from which a product of levels can be obtained, the calculation result is used as a correction value, and for a pixel whose gain value is larger than the gain value from which a product of the same level can be obtained, a pixel that is located near the pixel and has the same A solid-state imaging device characterized in that an image is displayed using the correction value of a pixel with a maximum signal-to-noise ratio among pixels for which a product of levels can be obtained.
JP60131033A 1985-06-17 1985-06-17 Solid-state imaging device Expired - Lifetime JP2516902B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60131033A JP2516902B2 (en) 1985-06-17 1985-06-17 Solid-state imaging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60131033A JP2516902B2 (en) 1985-06-17 1985-06-17 Solid-state imaging device

Publications (2)

Publication Number Publication Date
JPS61288667A true JPS61288667A (en) 1986-12-18
JP2516902B2 JP2516902B2 (en) 1996-07-24

Family

ID=15048447

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60131033A Expired - Lifetime JP2516902B2 (en) 1985-06-17 1985-06-17 Solid-state imaging device

Country Status (1)

Country Link
JP (1) JP2516902B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003189191A (en) * 2001-12-20 2003-07-04 Honda Motor Co Ltd Output correction device for image sensor

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972163A (en) * 1982-10-15 1984-04-24 Fujitsu Ltd Correcting system of sensitivity difference in image sensor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5972163A (en) * 1982-10-15 1984-04-24 Fujitsu Ltd Correcting system of sensitivity difference in image sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003189191A (en) * 2001-12-20 2003-07-04 Honda Motor Co Ltd Output correction device for image sensor

Also Published As

Publication number Publication date
JP2516902B2 (en) 1996-07-24

Similar Documents

Publication Publication Date Title
US8089533B2 (en) Fixed pattern noise removal circuit, fixed pattern noise removal method, program, and image pickup apparatus
CN101420518B (en) Noise correction device, imaging device and noise correction method
US7710470B2 (en) Image processing apparatus that reduces noise, image processing method that reduces noise, electronic camera that reduces noise, and scanner that reduces noise
US7432966B2 (en) Image data correcting method and imaging device
CN110796979B (en) Driving method and driving device of display panel
US6226034B1 (en) Spatial non-uniformity correction of a color sensor
KR100880281B1 (en) Image processing method and image processing circuit
EP0746938B1 (en) Composing an image from sub-images
EP1801749A2 (en) Image processing circuit and image processing method
US8111301B2 (en) Method of performing auto white balance in YCbCr color space
JP5524133B2 (en) Image processing device
CN113068011B (en) Image sensor, image processing method and system
JP2000350055A (en) Outline correction device for digital video camera
JPS61288667A (en) solid-state imaging device
JP2006041687A (en) Image processing apparatus, image processing method, image processing program, electronic camera, and scanner
JP2017223823A (en) Image processor, image processing program, and image processing method
US20020191085A1 (en) Processing of color signals in a color camera
JP2006331172A (en) Gradation correction apparatus
JP4465135B2 (en) Shading correction apparatus and method
JP4694925B2 (en) Method and apparatus for processing a video signal to compensate for defects in a display device
JP2021110885A (en) Imaging device and its control method
US20240070826A1 (en) Image processing method, image processing apparatus, and storage medium
CN114219703B (en) Image conversion method and device, and computer readable storage medium
CN115375545A (en) Image correction method and device
JP2024097255A (en) Image processing apparatus, image processing method, and program