[go: up one dir, main page]

JPS5972163A - Correcting system of sensitivity difference in image sensor - Google Patents

Correcting system of sensitivity difference in image sensor

Info

Publication number
JPS5972163A
JPS5972163A JP57181984A JP18198482A JPS5972163A JP S5972163 A JPS5972163 A JP S5972163A JP 57181984 A JP57181984 A JP 57181984A JP 18198482 A JP18198482 A JP 18198482A JP S5972163 A JPS5972163 A JP S5972163A
Authority
JP
Japan
Prior art keywords
sensitivity
signal
reciprocal
image sensor
correction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57181984A
Other languages
Japanese (ja)
Inventor
Yoshinori Tsujino
辻野 佳規
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP57181984A priority Critical patent/JPS5972163A/en
Publication of JPS5972163A publication Critical patent/JPS5972163A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F99/00Subject matter not provided for in other groups of this subclass

Landscapes

  • Photometry And Measurement Of Optical Pulse Characteristics (AREA)
  • Solid State Image Pick-Up Elements (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (a)  発明の技術分野 この発明は、半導体を利用した固体イメージセンサの素
子間感度差を補正する方式に係り、特に感度差補正のた
めに用いるテイジクル除算回路を改良して高品質の映像
信号を得る新しい信号処理方式に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (a) Technical Field of the Invention The present invention relates to a method for correcting sensitivity differences between elements of a solid-state image sensor using semiconductors, and in particular improves a tegicle division circuit used for correcting sensitivity differences. This invention relates to a new signal processing method for obtaining high-quality video signals.

(b+  技術の背景 最近、caD(電荷転送装置)を光センサと組合せて構
成した固体イメージセンサの進展が目ざましく、テイジ
タル両像処理の技術と相1って多方面(て応用されつつ
ある。ところで、かかる固体イメージセンサは、多数の
受光素子の配列をCODマルチプレクサとともに集積化
したもので、集子ごとの受光感度にパランキが出るのを
避は難い。
(b+ Background of the Technology) Recently, solid-state image sensors constructed by combining a caD (charge transfer device) with an optical sensor have made remarkable progress, and are being applied in many fields in tandem with digital image processing technology. By the way, such a solid-state image sensor is an arrangement in which a large number of light-receiving elements are integrated together with a COD multiplexer, and it is difficult to avoid paranki in the light-receiving sensitivity of each element.

このような素子間感度差も、撮像対象物に由来した映像
信号のレベルが比較的大きい場@はあまり問題々いが、
撮像対象物と背景雑音成分とのレベル差が小さい場合に
は対象物の識別に大きな影響を及はし、正確な画像再生
が損なわれる場合がある。
This difference in sensitivity between elements is not too problematic when the level of the video signal originating from the object to be imaged is relatively large.
If the level difference between the imaged object and the background noise component is small, it may have a large effect on object identification and may impair accurate image reproduction.

(C1従来技術と問題点 そこで上記のようなイメージセンサの素子間感反差を補
正するやり方として、一般的には次のような手法が考え
られている。すなわち補正を施すべきイメージセンサの
受光面に均一な光を照射して、各受光素子ごとの感度に
依存したレベル差を呈する受光出力を掛、これを感度信
号として実際の撮像時の映像信号を除算してやれば良い
わけである。
(C1 Prior Art and Problems Therefore, the following method is generally considered as a way to correct the above-mentioned sensitivity difference between elements of an image sensor. In other words, the light-receiving surface of the image sensor to be corrected is All you have to do is irradiate uniform light onto the sensor, multiply it by the light reception output that exhibits a level difference depending on the sensitivity of each light receiving element, and use this as a sensitivity signal to divide the video signal during actual imaging.

第1附1(*+I″i、  n個の受光菓子を有するイ
メージセンサに均一な光照射を行なった場合に街・もれ
る名素子ごとの受光出力P1−Pnを模式的に示してお
り、この受光出力は各素子の感度)(ランキを反映して
いるので感& 4R号と見なし得る。しかして。
The first appendix 1 (*+I″i) schematically shows the light receiving output P1-Pn for each of the famous elements when uniform light irradiation is performed on an image sensor having n light-receiving sweets, This received light output reflects the sensitivity (sensitivity) (rank) of each element, so it can be considered as sensitivity & 4R.

素子間感度差をなくすきいうことは、均一な光照射に感
応した時の第1図(AIの受光出力を第1図(殉のよう
に一様なレベルの信48P1′−Pn′に補正すること
であり、そのためには受光出力P、−P、のそれぞれを
感度を現わすそれ自身のレベルPI−Pnで割ヤすれば
ρいことが判る。
Eliminating the difference in sensitivity between elements means correcting the light receiving output of the AI to a uniform level of signal 48P1'-Pn' when sensitive to uniform light irradiation (Figure 1). To do this, it can be seen that ρ is obtained by dividing each of the received light outputs P, -P by its own level PI-Pn representing the sensitivity.

ここで上述のごとき除算を実行するに当つ)てり。Here, when performing the division as described above).

イメージセンサの出力がディジタル信号として処理され
るところから、ティジ−タル除算回路を用いるのである
が、この除算回路の構成2しては、感度信号の逆数値を
あらかじめメモリの中にチーフル化しておき、これを実
際の映像信号に乗算する方式をきるのが簡便である。2
ころが各素子の感度信号を上述のような均一光照射時の
受光出力から得てこれを例えは8ヒントのディジタル信
号として表わした場合、その逆数値を同じ8ピントで表
わそうとすると、有効桁が制限されて高感度領域での補
正ができないことになる。
Since the output of the image sensor is processed as a digital signal, a digital division circuit is used.The second configuration of this division circuit is to store the reciprocal value of the sensitivity signal in advance in memory. , it is convenient to use a method of multiplying this by the actual video signal. 2
However, if the sensitivity signal of each element is obtained from the light reception output during uniform light irradiation as described above and is expressed as a digital signal of 8 tips, then if we try to express the inverse value using the same 8 points, then Effective digits are limited, making it impossible to perform correction in a high-sensitivity region.

つまり、NXNピント入力の乗算器を用い、これに合せ
てllBl偏度の逆数値をNピントアドレス・Nピント
出力のリードオンリメモリ(ROM)にチーグル化して
おこうとする場合、N−8ピントであると、アドレスに
は0〜2550レベル(lom&)が対応する。このと
き出力すべき逆数値の範囲は254〜上となるのである
が、この逆数値を256    256 8ヒツト出力として切捨て法によりテーブル化するなら
ば、入力のアドレス129〜265レベルの範囲の感度
信号に対してはもはや割当てるビットが々く、同じ逆数
値所が与えられることになる。
In other words, if you use a multiplier with N , 0 to 2550 levels (lom&) correspond to the address. At this time, the range of the reciprocal value to be output is from 254 to above, but if this reciprocal value is tabulated by the truncation method as 256 256 8 hit outputs, the sensitivity signal in the range of the input address level 129 to 265 There are now fewer bits to allocate to , and the same reciprocal value is given.

従ってかかる逆数値の決め方では、最大2倍の範囲内で
高感度域の感度差が補正できないわけで。
Therefore, with this method of determining the reciprocal value, it is not possible to correct the sensitivity difference in the high-sensitivity range within the range of twice as much.

補正M度が粗いものとなる。熱論、入力アドレスのビッ
ト長に対して逆数値を表わす出力のビット長ならひに乗
算結果のビット長をMピントに増すようにすれは、ビッ
ト長を増しだ分だけ補正精度は向上することになるが、
後の信号処理が複雑化する問題がある。
The correction M degree becomes coarse. The theory is that if the bit length of the output, which is the inverse of the bit length of the input address, is multiplied by M, the bit length of the multiplication result will be increased to M pinto, and the correction accuracy will be improved by the increase in bit length. It turns out, but
There is a problem that subsequent signal processing becomes complicated.

(d)  発秒1の目的 この発qVi、以上のような状況から、イメージセンサ
の素子同感度差の補正#1度の向上を目的とするもので
あり、ひいてVi−像品質の向上を図ろうとするもので
ある。
(d) Purpose of Issuance qVi From the above-mentioned situation, the purpose of this Issuance qVi is to improve the correction #1 degree of the element sensitivity difference of the image sensor, and thus to improve the Vi-image quality. This is what we are trying to achieve.

(θ)発明の構成 簡単に述べるとこの発明は、各受光素子ことの感度信号
の逆数テーブル化をなすに際し、有効ビット長の少ない
部分、すなわち受光出力の小さ々範囲についてはデータ
を丸めて1と見なすことKより入力データの有効ビン)
Mの範囲を挾くし、その結果、逆数値の有効桁を見かけ
上増大して高感度領域での補正精度を増すようにしたこ
とを特徴さするものである。
(θ) Structure of the Invention Briefly stated, the present invention, when creating a reciprocal table of the sensitivity signal of each light-receiving element, rounds the data to 1 for a portion with a small effective bit length, that is, a small range of light-receiving output. It can be assumed that K is the valid bin of the input data)
This is characterized in that the range of M is narrowed, and as a result, the effective digits of the reciprocal value are apparently increased, thereby increasing the correction accuracy in the high sensitivity region.

(fj  発明の実施例 今少し具体的に説明すると、イメージセンサの受光面に
均一光を照射したとき各受光素子からは第1図(A)に
示したような感度差を現わす受光出力P、−−Pfiが
得られるが、これを8ビツト256レベルのテイジタル
信づ”で表わすようにした場合、実際の感度がO−25
5のレヘル範囲にわたってバラツクことは殆んどない。
(Embodiment of the Invention) To explain in more detail, when uniform light is irradiated onto the light-receiving surface of an image sensor, the light-receiving output P from each light-receiving element exhibits a sensitivity difference as shown in FIG. 1(A). , --Pfi is obtained, but if this is expressed as an 8-bit 256-level digital signal, the actual sensitivity will be O-25.
There is little variation over the level range of 5.

従って実際(ftlは1〜16あるいは1〜3′Lまた
は]〜63レベル程度までの感度差は無視して差支えな
く、感度伯づLしては1例えば16〜255レベルの範
囲を考えれは充分である。つまり第1図(Alにおいで
、各受光素子の感度信号としては、受光出力を表わず8
ヒントデータの内下位4ビットで表わされる部分は丸め
て1つとし。
Therefore, in reality (ftl is 1 to 16, 1 to 3'L, or ] to 63 levels, it is safe to ignore the difference in sensitivity, and it is sufficient to consider a sensitivity range of 1 to 255 levels, for example). In other words, as shown in Figure 1 (in Al, the sensitivity signal of each light receiving element does not represent the light receiving output, but 8
The part represented by the lower 4 bits of the hint data is rounded off to one piece.

16”255 レヘ#の範囲のバラツキを伐り4ヒント
で表わすようにしても問題ないわけである。
16"255 There is no problem even if the variation in the range of rehe # is expressed by 4 hints.

このように感度信号の有効桁を例えF!5ヒントに圧縮
した後、逆数値を演算し、その出力を圧縮した桁数分だ
け桁上げして元の8ピントで表わすようにすれば、補正
信号の有効範囲が広がり、実質的に補正精度を向上する
ことができる。
In this way, the effective digits of the sensitivity signal are compared to F! After compressing to 5 hints, calculate the inverse value, and carry up the output by the compressed number of digits to represent the original 8 points. This will expand the effective range of the correction signal and substantially improve the correction accuracy. can be improved.

この発明は以上の考え方に沿ってイメージセンダの素子
間感度差を補正するもので、第2図に補正回路の1実施
例を示す。
The present invention corrects the sensitivity difference between elements of an image sensor based on the above idea, and FIG. 2 shows one embodiment of the correction circuit.

第2図において、イメージセンサ1からのアナログ受光
出力P+trJ、、素子ごとの時系列信号としてA ]
)変換器2に入り1例えば8ビツトのティジタル映像借
り■iとなる。そして上記イメージセンサ1に均一な基
準光を照射した時に得られるディジタル映像信号VI1
1を、それぞれ受光集子対応の感度信号として第1のメ
モリ3に順次記憶させる。この感度値メモリ3の出力側
には、丸め回路4が設けられ、これは感度値メモリ3か
もの8ピント信号の内例えば1〜150レベルを示す有
効桁の小さい感度値が読み出された時には、その出力を
無視するかまたは一括してレベル16と見なすように作
用する。
In Fig. 2, the analog light reception output P+trJ from the image sensor 1, A as a time series signal for each element]
) It enters the converter 2 and becomes 1, for example, an 8-bit digital video i. Then, a digital video signal VI1 obtained when the image sensor 1 is irradiated with uniform reference light
1 are sequentially stored in the first memory 3 as sensitivity signals corresponding to the light receiving collectors. A rounding circuit 4 is provided on the output side of the sensitivity value memory 3, which is used when a sensitivity value with a small significant digit indicating a level of 1 to 150 is read out of the eight focus signals of the sensitivity value memory 3. , the output is ignored or treated as level 16 all together.

かくして引続<!2の逆数値メモリ5の入力アドレスL
iは4ビツトに制限されたものとなり。
Thus, the continuation<! Input address L of reciprocal value memory 5 of 2
i is limited to 4 bits.

16〜255レベルに対応した逆数値のみが有効となる
。従ってこれを読出す場合1桁上は回路6を挿入して先
に入力アドレスを丸め処理した4ビツト分だけ有効桁を
桁上けしても逆数データがオーバーフローすることはな
く、輝度分解能の正確な8ヒントの逆数補正佑Ji3K
Iを得ることができる。
Only reciprocal values corresponding to levels 16 to 255 are valid. Therefore, when reading this, the reciprocal data will not overflow even if circuit 6 is inserted and the significant digit is carried over by the 4 bits obtained by rounding the input address, and the luminance resolution will not be accurate. 8 hint reciprocal correction Yu Ji3K
You can get I.

以上のようにして均−光照射時の受光出力に対応した感
度信号から補正4FIMとしての逆数値データを逆数値
メモリ5に記憶させた後、実際の対象物を撮像するに際
しては1時系列テイジタル映像信号■、と、受光素子対
応に逆数値メモリ6から読出された逆数補止信J8Ki
とが8×8ピントのディジタル乗瀞回路7において捌は
合わされる。4この結果9乗算回路7の出力にVi受光
素子対応に感度補正されたテイジタル映像信号v 、r
が得られる仁とになる。々お、第2図中参照符号7は。
After storing the reciprocal value data as the corrected 4FIM in the reciprocal value memory 5 from the sensitivity signal corresponding to the light reception output during uniform light irradiation as described above, when actually imaging the object, 1 time series digital data is stored. The video signal ■, and the reciprocal correction signal J8Ki read out from the reciprocal value memory 6 corresponding to the light receiving element.
The signals are combined in a digital multiplying circuit 7 with an 8×8 focus. 4 As a result 9 The output of the multiplication circuit 7 is the digital video signal v , r whose sensitivity has been corrected to correspond to the Vi light receiving element.
It becomes the benevolence that can be obtained. The reference numeral 7 in FIG.

丸め制御回路を示し、一括処理するレベル範囲を設定す
るとともに、逆数値メモリ5からの読出しテ〜りの桁シ
フト数を連動して調整できるようになっており、これに
より補正ゲインを任意に設定することができる。また各
部の動作ねタロツク発生制御回路8からのクロツク信号
に同期して制御されるものである。
The rounding control circuit is shown, and it is possible to set the level range for batch processing, and to adjust the number of digit shifts of the readout from the reciprocal value memory 5 in conjunction with this, allowing the correction gain to be set arbitrarily. can do. Further, the operation of each part is controlled in synchronization with the clock signal from the lock generation control circuit 8.

+f)  発明の効果 さて以上の説明から明らかなように、要するにこの発明
は、逆数値乗算の手法で除算a能を達成してイメージセ
ンサの素子間感度差のバラツキを補正するに際し、低レ
ベル範囲の入力は無視して一括処理し、無視した範囲の
桁数分たけ逆数値補正信号の有効桁を上げて乗算を実行
することを骨子2するものである。従って特に高感度域
での逆数補正信号の分pN能が低下するという方式上の
欠点が解消されて高精度の補正ができるのて、高品質の
画像を再生するのにきわめて有利である。
+f) Effects of the Invention As is clear from the above description, the present invention achieves division a function using the method of reciprocal value multiplication and corrects variations in sensitivity differences between elements of an image sensor. The second main point is to ignore the inputs and process them all at once, and to perform multiplication by increasing the effective digits of the inverse value correction signal by the number of digits in the ignored range. Therefore, the drawback of the system that the pN capability of the reciprocal correction signal is reduced particularly in the high sensitivity region is eliminated, and highly accurate correction can be performed, which is extremely advantageous for reproducing high quality images.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(A)および(B)はイメージセンサの素子間感
度差をもった受光出力と補正された信号出力とを対比し
て示す模式図、第2図はこの発明を実行する感度差補正
回路の1実施例構成を示すブロック図である。 図において、1はイメージセンサ、2けAD変8はタロ
ツク発生制御回路を示す。
Figures 1 (A) and (B) are schematic diagrams showing a comparison of the light reception output with the sensitivity difference between the elements of the image sensor and the corrected signal output, and Figure 2 is a sensitivity difference correction according to the present invention. FIG. 2 is a block diagram showing the configuration of one embodiment of the circuit. In the figure, 1 is an image sensor, and 2-digit AD converter 8 is a tarokk generation control circuit.

Claims (1)

【特許請求の範囲】[Claims] (1)あらかじめ均一な光照射に応答して現われる各受
光素子ごとの出力信号レベルをNビットの感度信号とし
て記憶させるとともに、該感度信号の逆数に対応したN
ビットの逆数補正信号を発生させ、撮像対象物に8応し
た各受光素子ごとに得られるNヒントのテイジタル映像
伯号と当該逆数補正信七七を素子対F3に乗算して素子
間感度差を補正するに際し、下位mピントで表わされる
上記感度信号の低レベル部分を丸めて処理する一方、丸
め処理したmビット分だけ上記逆数補正信号の有効ビッ
トを桁上けして乗算を実行するようにしたことを特徴と
するイメージセンサの8に差補正方式。
(1) The output signal level of each light receiving element that appears in response to uniform light irradiation is stored in advance as an N-bit sensitivity signal, and the N bits corresponding to the reciprocal of the sensitivity signal are
A bit reciprocal correction signal is generated, and the element pair F3 is multiplied by the digital image number of N hints obtained for each light receiving element corresponding to the imaged object and the reciprocal correction signal 77 to calculate the sensitivity difference between the elements. When performing the correction, the low level portion of the sensitivity signal represented by the lower m focuses is rounded and processed, and the effective bits of the reciprocal correction signal are carried over by the rounded m bits to perform multiplication. The image sensor is characterized by a difference correction method.
JP57181984A 1982-10-15 1982-10-15 Correcting system of sensitivity difference in image sensor Pending JPS5972163A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57181984A JPS5972163A (en) 1982-10-15 1982-10-15 Correcting system of sensitivity difference in image sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57181984A JPS5972163A (en) 1982-10-15 1982-10-15 Correcting system of sensitivity difference in image sensor

Publications (1)

Publication Number Publication Date
JPS5972163A true JPS5972163A (en) 1984-04-24

Family

ID=16110285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57181984A Pending JPS5972163A (en) 1982-10-15 1982-10-15 Correcting system of sensitivity difference in image sensor

Country Status (1)

Country Link
JP (1) JPS5972163A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151670A (en) * 1984-08-21 1986-03-14 Nec Corp Video signal processing device
JPS61104238A (en) * 1984-10-26 1986-05-22 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for measuring mode field diameter
JPS61288667A (en) * 1985-06-17 1986-12-18 Fujitsu Ltd solid-state imaging device
JPS6354076A (en) * 1986-08-25 1988-03-08 Toshiba Corp Device for adjusting light sensitivity of photoelectric conversion element

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6151670A (en) * 1984-08-21 1986-03-14 Nec Corp Video signal processing device
JPS61104238A (en) * 1984-10-26 1986-05-22 Nippon Telegr & Teleph Corp <Ntt> Method and apparatus for measuring mode field diameter
JPH0439902B2 (en) * 1984-10-26 1992-07-01 Nippon Telegraph & Telephone
JPS61288667A (en) * 1985-06-17 1986-12-18 Fujitsu Ltd solid-state imaging device
JPS6354076A (en) * 1986-08-25 1988-03-08 Toshiba Corp Device for adjusting light sensitivity of photoelectric conversion element
JPH0431627B2 (en) * 1986-08-25 1992-05-27

Similar Documents

Publication Publication Date Title
US4660082A (en) Output correction in image reproduction
US4647976A (en) Apparatus and method for producing a still image video signal using solid-state imaging device
JP4351658B2 (en) Memory capacity reduction method, memory capacity reduction noise reduction circuit, and memory capacity reduction device
US5086343A (en) Method and apparatus for compensating for sensitivity variations in the output of a solid state image sensor
JPH04219063A (en) Image reading device
US5838463A (en) Binary image processor
US5243426A (en) Circuit for gamma correction of a digital video signal and having a memory for storing data defining a desired gamma correction characteristic
JP2830482B2 (en) High dynamic range imaging device
JPS5972163A (en) Correcting system of sensitivity difference in image sensor
US8072515B2 (en) Correction circuit, correction method and image pickup apparatus
GB2223643A (en) Data processing apparatus
JP4403873B2 (en) Clamp level adjusting device and electronic camera
US20030122938A1 (en) Resolution correction apparatus, resolution correction program, and computer-readable recording medium having same program recorded thereon
JPH0218789B2 (en)
JPS6326914B2 (en)
SU594599A1 (en) Tv aperture corrector
JP2505906B2 (en) Document reader
JP2506982B2 (en) Image reader
JPH07307877A (en) Infrared ray image pickup device
JPH0287783A (en) Shading correction circuit
JPH0222961A (en) Auto shading correction circuit
JPH06189160A (en) Digital gamma correcting device
JPS61135276A (en) Shading corrector
JPH04355576A (en) Sensitivity correction method for image pickup device
JPS6161559A (en) Information reading device