JPS61268075A - PV type infrared sensing element - Google Patents
PV type infrared sensing elementInfo
- Publication number
- JPS61268075A JPS61268075A JP60109429A JP10942985A JPS61268075A JP S61268075 A JPS61268075 A JP S61268075A JP 60109429 A JP60109429 A JP 60109429A JP 10942985 A JP10942985 A JP 10942985A JP S61268075 A JPS61268075 A JP S61268075A
- Authority
- JP
- Japan
- Prior art keywords
- crystal layer
- section
- sensing element
- crystal substrate
- mesa
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10F—INORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
- H10F30/00—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
- H10F30/20—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
- H10F30/21—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
- H10F30/22—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
- H10F30/221—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier being a PN homojunction
- H10F30/2212—Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier being a PN homojunction the devices comprising active layers made of only Group II-VI materials, e.g. HgCdTe infrared photodiodes
Landscapes
- Light Receiving Elements (AREA)
- Solid State Image Pick-Up Elements (AREA)
Abstract
Description
【発明の詳細な説明】
〔概要〕
本発明は、例えば赤外線撮像装置に用いて好適な光起電
力(photo voltaic:PV)型赤外線検
知素子に於いて、CdTa結晶基板上ニHg l−X
Cd X T e結晶層をエピタキシャル成長させ、そ
のHg+−x Cdg T’ e結晶層の表面がら界面
近傍のX値が大きい部分に達するまでエツチングを行っ
てメサ部分を形成し、そのメサ部分及びその周辺に於い
て前記’CdTe結晶基板に達しない深さにpn接合を
形成することに依り、ガード・リングを形成したり、或
いは、プロセス条 ・件の最適化を図ることなく、表面
リーク電流が流れないようにして熱雑音を低減させるよ
うにしたものである。Detailed Description of the Invention [Summary] The present invention provides a photovoltaic (PV) type infrared sensing element suitable for use in, for example, an infrared imaging device.
A mesa portion is formed by epitaxially growing a Cd By forming a pn junction at a depth that does not reach the CdTe crystal substrate mentioned above, surface leakage current can flow without forming a guard ring or optimizing process conditions. This is to reduce thermal noise.
本発明は、Hg I−* Cd)I T e結晶を用い
るPV型型外外線検知素子改良に関する。The present invention relates to an improvement of a PV type external radiation detection element using a Hg I-*Cd) I Te crystal.
従来、Hg r−* Cdg T e結晶を用いたpv
型赤外線検知素子では、X値が均一であるHgt−3I
CdxTeのエピタキシャル成長面にダイオードを形成
している。Conventionally, pv using Hgr-*CdgTe crystal
In the Hgt-3I type infrared sensing element, the X value is uniform.
A diode is formed on the epitaxial growth surface of CdxTe.
前記のように形成したダイオードは、その周辺に於ける
表面リーク電流の為、熱雑音が大である旨の問題がある
。The diode formed as described above has a problem in that it has large thermal noise due to surface leakage current in its periphery.
この為、ダイオードの周辺にガード・リングをを形成し
たり(前者)、プロセス条件の最適化を図る(後者)な
どの対策が考えられている。For this reason, countermeasures have been considered, such as forming a guard ring around the diode (the former) and optimizing process conditions (the latter).
然しなから、前者は電極構造が複雑であり、また、後者
はプロセス管理が困難になる旨の欠点がある。However, the former has the disadvantage that the electrode structure is complicated, and the latter has the disadvantage that process control becomes difficult.
本発明は、簡単な技術を適用することに依り、ダイオー
ドの周辺に於ける表面リーク電流を低減させ、高性能の
pv赤外線検知素子を得られるようにする。The present invention reduces the surface leakage current around the diode by applying a simple technique, making it possible to obtain a high performance PV infrared sensing element.
本発明では、例えばCdTeを基板としてエピタキシャ
ル成長させたH g r−x CdえTo結晶層がCd
とHgの相互拡散の為、その厚さ方向に組成変動を生じ
、CdTe基板との界面に近い程、X値が大、即ち、エ
ネルギ・バンド・ギャップは広くなり、そして、X値が
大きいと真性キャリヤ濃度が低いことが原因となって表
面リーク電流が小さくなるので、それを利用して熱雑音
を低減させる。In the present invention, for example, a H gr-x CdeTo crystal layer epitaxially grown using CdTe as a substrate is
Due to interdiffusion of Hg and Hg, a compositional variation occurs in the thickness direction, and the closer to the interface with the CdTe substrate, the larger the X value, that is, the wider the energy band gap; The surface leakage current is reduced due to the low intrinsic carrier concentration, which is utilized to reduce thermal noise.
そこで、本発明のpv型赤外線検知素子では、CdTe
結晶基板l上にHg +−x CdXT e結晶層2を
エピタキシャル成長させて、そのHgI−xCdXTe
結晶層2の表面から界面近傍のX値が大きい部分に達す
るまでエツチングを行ってメサ部分4を形成し、そのメ
サ部分4及びその周辺に於いて前記CdTe結晶基板l
に達しない深さにpn接合を形成するようにしている。Therefore, in the pv type infrared sensing element of the present invention, CdTe
A Hg +-x CdXTe crystal layer 2 is epitaxially grown on a crystal substrate l, and the HgI-xCdXTe
A mesa portion 4 is formed by etching from the surface of the crystal layer 2 to a portion near the interface where the X value is large.
The pn junction is formed at a depth that does not reach .
前記手段を採ることに依り、ガード・リングを形成した
り、或いは、プロセスを最適化する等の手段を講じなく
とも、表面リーク電流が流れないようにすることができ
、従って、熱雑音を低減することが可能となる。By taking the above measures, it is possible to prevent surface leakage current from flowing without forming a guard ring or optimizing the process, thereby reducing thermal noise. It becomes possible to do so.
第1図(A)乃至(D)は本発明一実施例を製造する場
合について解説する為の工程要所に於けるpv型赤外線
検知素子の要部切断側面図、第2図はX値分布の状態を
説明する為の線図を表している。Figures 1 (A) to (D) are cross-sectional side views of essential parts of a PV-type infrared sensing element at key points in the process to explain the manufacturing of an embodiment of the present invention, and Figure 2 is an X-value distribution. It represents a diagram for explaining the state of.
第1図(A)及び第2図参照
(al 液相エピタキシャル成長(liquid
phase epitax3F:LPE)を適用する
ことに依り、CdTe基板1上にHgI−xC(lxT
e結晶層2を厚さ数十〔μm〕程度にエピタキシャル成
長させる。See Figure 1 (A) and Figure 2 (al Liquid phase epitaxial growth (liquid phase epitaxial growth)
By applying phase epitax 3F: LPE), HgI-xC (lxT
The e-crystal layer 2 is epitaxially grown to a thickness of about several tens [μm].
前記のようにして得たHg、、CdXTe結晶層2は、
その厚さ方向に第2図に見られるように組成変動領域3
を有している。即ち、表面からCdTe基板1との界面
に近づ(につれ、X値が大になっている。The Hg, CdXTe crystal layer 2 obtained as described above is
As seen in Fig. 2 in the thickness direction, the composition variation region 3
have. That is, the X value increases as the distance from the surface approaches the interface with the CdTe substrate 1.
第1図(B)参照
山) 通常のフォト・リソグラフィ技術を適用すること
に依り、Hg r−x Cdx T e結晶層2のエツ
チングを行ってメサ部分4を形成する。(See Fig. 1(B)) The mesa portion 4 is formed by etching the Hg r-x Cdx Te crystal layer 2 by applying a normal photolithography technique.
尚、このメサ・エツチングを行う場合、エツチング・マ
スクとしては適当なレジストを、また、エッチャントと
しては例えばブロムメタノ 、−ルを適用して良く、そ
して、そのエツチングは組成変動領域3に於けるX値が
大である部分に充分に到達するように行うものとする。When performing this mesa etching, an appropriate resist may be used as an etching mask, and, for example, bromine methane may be used as an etchant. This shall be done in such a way as to sufficiently reach the portion where the is large.
第1図(C)参照
(0) イオン注入法を適用することに依り、メサ部
分4及びその周辺一部にかけてB+の打ち込みを行い、
熱処理を行って深さ約1〔μm〕程度のp型不純物領域
5を形成し、pn接合ダイオードを構成する。Refer to FIG. 1(C) (0) By applying the ion implantation method, B+ is implanted into the mesa portion 4 and a part of its surrounding area.
Heat treatment is performed to form a p-type impurity region 5 with a depth of about 1 [μm], thereby forming a pn junction diode.
この場合のイオン注入の条件は、
ドーズ量: 1 x 10” 〜10” (elm−”
)加速エネルギ: 100〜200 (KeV)として
良い。The conditions for ion implantation in this case are: Dose: 1 x 10” to 10” (elm-”
) Acceleration energy: 100 to 200 (KeV) may be used.
図から判るように、このpn接合ダイオードは、メサ部
分4に形成されたダイオード部分6と前記メサ・エツチ
ングで露出された組成変動領域3に於けるX値が大きい
部分に形成されたダイオード部分7とからならている。As can be seen from the figure, this pn junction diode consists of a diode portion 6 formed in the mesa portion 4 and a diode portion 7 formed in a portion where the X value is large in the composition variation region 3 exposed by the mesa etching. It is made up of.
第1図(D)参照
(d) 化学気相堆積(chemi c’a l
vap。See Figure 1 (D) (d) Chemical vapor deposition
vap.
ur deposition:CVD)法を適用する
ことに依り、S i O2からなる絶縁膜8を厚さ約1
〜2〔μm〕程度に形成する。尚、絶縁膜8としてはZ
nSを用いても良い。By applying the ur deposition (CVD) method, the insulating film 8 made of SiO2 is deposited to a thickness of approximately 1 mm.
It is formed to a thickness of about 2 [μm]. Incidentally, as the insulating film 8, Z
nS may also be used.
(111) 通常のフォト・リソグラフィ技術を適用
することに依り、絶縁膜8のパターニングを行い、電極
コンタクト窓を形成する。(111) By applying ordinary photolithography technology, the insulating film 8 is patterned to form electrode contact windows.
(f) 例えば蒸着法を適用することに依り、インジ
ウム(In)からなる電極材料膜を形成し、例えばハイ
ブリッド型の場合、電極材料膜をパターニングしてバン
プ電極9を形成する。(f) For example, by applying a vapor deposition method, an electrode material film made of indium (In) is formed, and in the case of a hybrid type, for example, the bump electrode 9 is formed by patterning the electrode material film.
このようにして作成されたpv型赤外線検知素子では、
pn接合ダイオードの周辺部分、即ち、ダイオード部分
7が組成変動領域3のX値が大きい部分に存在している
ので、このpn接合ダイオードの表面リーク電流はプレ
ーナ型のものに比較して低減される。In the PV type infrared sensing element created in this way,
Since the peripheral portion of the pn junction diode, that is, the diode portion 7 exists in the portion of the composition variation region 3 where the X value is large, the surface leakage current of this pn junction diode is reduced compared to that of the planar type. .
第3図は本発明のPV型型外外線検知素子アレイにした
場合の実施例を解説する為の要部切断側面図であり、第
1図に於いて用いた記号と同記号は同部分を表すか或い
は同じ意味を持つも・のとする。FIG. 3 is a cutaway side view of essential parts for explaining an embodiment of the PV type external ray detection element array of the present invention, and the same symbols as those used in FIG. 1 refer to the same parts. shall represent or have the same meaning.
図に於いて、IRは赤外線を、また、Q内に−を入れた
記号は電子を示している。In the figure, IR indicates infrared rays, and the symbol Q with a minus sign (-) indicates electrons.
この実施例に於いては、赤外線検知素子間にX値が大き
いHg、、Cd、Te結晶層2が存在しているのみであ
るから、その部分では赤外線は吸収されずに透過してし
まい、従って、電荷も発生しないから、隣接する赤外検
知素子に電荷が流れてクロス・トークを発生するような
虞が皆無になる。In this example, since there is only a Hg, Cd, Te crystal layer 2 with a large X value between the infrared detecting elements, infrared rays are transmitted without being absorbed in that part. Therefore, since no charges are generated, there is no possibility that charges will flow to adjacent infrared detection elements and cause cross talk.
本発明のpv型赤外線検知素子では、CdTe結晶基板
上にエピタキシャル成長されたHgl−xCd、Te結
晶層の表面から界面近傍のX値が大きい部分に達するま
でエツチングして形成されたメサ部分と、該メサ部分及
びその周辺に於いて前記CdTe結晶基板に到達しない
深さに形成されたpn接合とを備えた構成を採っている
。The PV-type infrared sensing element of the present invention includes a mesa portion formed by etching from the surface of the Hgl-xCd, Te crystal layer epitaxially grown on a CdTe crystal substrate until reaching a portion with a large X value near the interface; The structure includes a mesa portion and a pn junction formed at a depth that does not reach the CdTe crystal substrate in the vicinity thereof.
このような構成になっている為、pv型赤外線検知素子
をなすダイオードの周辺部分はHgl−*CdxTe結
晶層の特にX値が大きい部分に存在している為、その部
分での表面リーク電流は小さく、従って、熱雑音を低減
することができる。Due to this structure, the area around the diode that forms the PV-type infrared sensing element exists in the area of the Hgl-*CdxTe crystal layer where the X value is particularly large, so the surface leakage current in that area is small, and therefore can reduce thermal noise.
第1図(A)乃至(D)は本発明一実施例を製造する場
合について説明する為の工程要所に於けるpv型赤外線
検知素子の要部切断側面図、第2図はHg r −x
Cd x T a結晶層に於けるX値分布の状態を説明
する為の線図、第3図は本発明一実施例の要部切断側面
図をそれぞれ表している。
特許出願人 富士通株式会社
代理人弁理士 相 谷 昭 司
代理人弁理士 渡 邊 弘 −
(B)
第1図
(C)
(D)
一実施例の製造工程を説明する為の
要部切断側面図
第1図FIGS. 1(A) to (D) are cutaway side views of essential parts of a PV type infrared sensing element at key points in the process for explaining the case of manufacturing an embodiment of the present invention, and FIG. x
FIG. 3 is a diagram for explaining the state of the X-value distribution in the Cd x Ta crystal layer, and FIG. 3 is a cross-sectional side view of an essential part of an embodiment of the present invention. Patent Applicant: Fujitsu Ltd. Representative Patent Attorney: Akira Aitani Representative Patent Attorney: Hiroshi Watanabe - (B) Figure 1 (C) (D) Cutaway side view of essential parts for explaining the manufacturing process of one embodiment Figure 1
Claims (1)
1_−_xCd_xTe結晶層の表面から界面近傍のx
値が大きい部分に達するまでエッチングして形成された
メサ部分と、 該メサ部分及びその周辺に於いて前記CdTe結晶基板
に到達しない深さに形成されたpn接合と を備えてなることを特徴とするPV型赤外線検知素子。[Claims] Hg grown epitaxially on a CdTe crystal substrate
1_-_xCd_xx near the interface from the surface of the Te crystal layer
A mesa portion formed by etching until reaching a portion with a large value, and a pn junction formed in the mesa portion and its surroundings at a depth that does not reach the CdTe crystal substrate. PV type infrared sensing element.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60109429A JPS61268075A (en) | 1985-05-23 | 1985-05-23 | PV type infrared sensing element |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP60109429A JPS61268075A (en) | 1985-05-23 | 1985-05-23 | PV type infrared sensing element |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61268075A true JPS61268075A (en) | 1986-11-27 |
Family
ID=14510018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP60109429A Pending JPS61268075A (en) | 1985-05-23 | 1985-05-23 | PV type infrared sensing element |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61268075A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04318979A (en) * | 1991-04-17 | 1992-11-10 | Nec Corp | Array type infrared ray sensor and manufacture thereof |
-
1985
- 1985-05-23 JP JP60109429A patent/JPS61268075A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04318979A (en) * | 1991-04-17 | 1992-11-10 | Nec Corp | Array type infrared ray sensor and manufacture thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH02159775A (en) | Semiconductor photodetector and its manufacturing method | |
CN108346688B (en) | SiC trench junction barrier Schottky diode with CSL transport layer and method of making the same | |
JP2003318413A (en) | High breakdown voltage silicon carbide diode and manufacturing method therefor | |
CN105789336B (en) | Alpha irradiation scintillator detector based on carborundum PIN diode structure | |
CN106992117A (en) | A kind of preparation method of SiC junction barrel Schottky diode | |
US10768316B2 (en) | Silicon carbide single crystal x-ray detector and preparation method | |
CN102074611B (en) | Beta irradiation detector based on silicon carbide junction field-effect transistor (JFET) | |
JPS61268075A (en) | PV type infrared sensing element | |
JPS5910593B2 (en) | Method of manufacturing photovoltaic device | |
JP2608311B2 (en) | Ionized particle detector | |
CN108493292B (en) | Silicon carbide single crystal-based X-ray detector and preparation method thereof | |
JP2938083B2 (en) | Thin film transistor and optical sensor using the same | |
CN115547828B (en) | A kind of schottky diode and its preparation method | |
JP3620344B2 (en) | Schottky barrier diode and manufacturing method thereof | |
CN116154020A (en) | Two-dimensional material optimized low-gain avalanche multiplication anti-irradiation silicon carbide detector chip and preparation and application thereof | |
JP2675867B2 (en) | Semiconductor light emitting device | |
JPH0273676A (en) | avalanche photodiode | |
JP2798927B2 (en) | Semiconductor light receiving device and method of manufacturing the same | |
CN116093193A (en) | Detector for blocking impurity zone, preparation method thereof and detection system | |
JPH08316455A (en) | Optical trigger thyristor and manufacturing method thereof | |
CN117690992A (en) | Photomultiplier detector and preparation method thereof | |
CN114420777A (en) | Avalanche photodiode and method of making the same | |
JPS5936433B2 (en) | Manufacturing method of thyristor | |
JPH02210882A (en) | Phototransistor and its manufacturing method | |
JPS62194679A (en) | High mobility semiconductor device and its manufacturing method |