JPS61232232A - Silica glass manufacturing method - Google Patents
Silica glass manufacturing methodInfo
- Publication number
- JPS61232232A JPS61232232A JP7370785A JP7370785A JPS61232232A JP S61232232 A JPS61232232 A JP S61232232A JP 7370785 A JP7370785 A JP 7370785A JP 7370785 A JP7370785 A JP 7370785A JP S61232232 A JPS61232232 A JP S61232232A
- Authority
- JP
- Japan
- Prior art keywords
- filter
- sol
- clogging
- pore size
- filtration
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 title claims abstract description 25
- 238000004519 manufacturing process Methods 0.000 title claims description 7
- 238000001914 filtration Methods 0.000 claims abstract description 15
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 8
- 238000000034 method Methods 0.000 claims abstract description 7
- 238000003980 solgel method Methods 0.000 claims abstract description 7
- -1 alkyl silicate Chemical compound 0.000 claims abstract description 5
- 238000002360 preparation method Methods 0.000 claims abstract description 4
- 239000011148 porous material Substances 0.000 claims description 9
- 238000011282 treatment Methods 0.000 claims description 4
- 239000002994 raw material Substances 0.000 claims description 3
- 239000011362 coarse particle Substances 0.000 abstract description 5
- 239000000843 powder Substances 0.000 abstract description 2
- 239000011521 glass Substances 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 2
- 238000000862 absorption spectrum Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000000428 dust Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910002012 Aerosil® Inorganic materials 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 239000005350 fused silica glass Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000013307 optical fiber Substances 0.000 description 1
- 238000007500 overflow downdraw method Methods 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C1/00—Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels
- C03C1/006—Ingredients generally applicable to manufacture of glasses, glazes, or vitreous enamels to produce glass through wet route
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Silicon Compounds (AREA)
- Glass Melting And Manufacturing (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は、ゾル−ゲル法による石英ガラスの製造方法に
関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a method for producing quartz glass by a sol-gel method.
本発明は、ゾル−ゲル法による石英ガラスの製造方法に
おいて、ゾル調製r過プロセス中、最終所望フィルター
の孔径よりかなり大きな孔径(10μm以上)のフィル
ターを用いることにより、r過プロセスの使用フィルタ
ーの目詰まりと軽減し、フィルターの長寿命化および、
該ゾル濾過の円滑化を可能にしたものである。The present invention provides a method for producing quartz glass using the sol-gel method, by using a filter with a considerably larger pore size (10 μm or more) than the final desired filter during the sol-preparation process. Reduces clogging, extends filter life, and
This enables smooth sol filtration.
従来のアルキルシリケー)>よび超微粒子シリカを主原
料として用いるゾル−ゲル法による石英ガラス製造にお
いては、調製ゾル中に存在する微粉末シリカの粗大粒子
ならびにゴミ等の異物の除去を目的とするr過プロセス
での使用フィルターは、孔径10μm 以下であった。In the production of quartz glass by the sol-gel method using conventional alkyl silica) and ultrafine silica as the main raw materials, the purpose is to remove foreign substances such as coarse particles of fine powder silica and dust that are present in the prepared sol. The filter used in the filtration process had a pore size of 10 μm or less.
〔発明が解決しようとする問題点及び目的〕しかし、前
述の従来技術では、濾過プロセス中の使用フィルターの
孔径が最大のものでも10μm以下であるために、フィ
ルターの目詰まシが著しくフィルター寿命が短かく高コ
ストであり、また、目詰まシのために、ゾル入圧が上昇
し、濾過精度のバラツキの幅もかなシ大きなものになり
、大量処理が困難であるという問題点を有する。[Problems and Objectives to be Solved by the Invention] However, in the prior art described above, the maximum pore diameter of the filter used during the filtration process is 10 μm or less, so the filter becomes clogged and the life of the filter is shortened. It is short and expensive, and due to clogging, the sol input pressure increases, the variation in filtration accuracy becomes large, and large-scale processing is difficult.
そこで本発明はこのような問題点を解決するもので、そ
の目的とするところは、従来技術に前処理工程を加える
ことによる濾過プロセスの円滑化および低コスト化が可
能となるゾル−ゲル法による石英ガラスの製造方法を提
供するところにある。Therefore, the present invention is intended to solve these problems, and its purpose is to use the sol-gel method, which makes it possible to simplify the filtration process and reduce costs by adding a pretreatment step to the conventional technology. The purpose of the present invention is to provide a method for manufacturing quartz glass.
本発明の方法は、アルキルシリケートおよび超微粒子シ
リカを主原料として用いるゾル−ゲル法による石英ガラ
スの製造において、ゾル調製濾過プロセス中に従来技術
に加えて前処理工程を有することを特徴とする。The method of the present invention is characterized in that it includes a pretreatment step in addition to the conventional technology during the sol preparation filtration process in the production of quartz glass by the sol-gel method using alkyl silicate and ultrafine silica as main raw materials.
本発明によれば、調製ゾル中の分散不充分および凝集し
た特に粗大な粒子や、ゲル化し、フィルターの目詰まり
の原因となる固形物の特に大き彦ものを従来の濾過プロ
セス以前に分離するため、フィルターの目詰まりの緩和
による長寿命化、入圧上昇の緩和による濾過精度の向上
が可能である。According to the present invention, insufficiently dispersed and agglomerated particularly coarse particles in the prepared sol, as well as particularly large solids that gel and cause filter clogging, can be separated prior to the conventional filtration process. It is possible to extend the life of the filter by alleviating clogging of the filter, and improve filtration accuracy by alleviating the increase in input pressure.
(1) 市販のエチルシリケート28 (Si(OE
t)4)152t、 1g I NHOt 108L
および超微粒子シリカ(商品名:アエロジルoxso
(デグサ社))451’yを同時に混合し、ディシルバ
ー(攪拌分散装置)にて攪拌を4時間行ない、エチルシ
リケートの加水分解反応ならびに超微粒子シリカのある
程度分散したゾルを調製し、この後さらに分散性を向上
させるため該分散溶液に、超音波照射(攪拌併用)を5
時間行なった。なお、この際、超音波照射による該ゾル
温度の上昇を防ぐため、冷却装置によシ該ゾル温度を一
定に保持した。(1) Commercially available ethyl silicate 28 (Si(OE
t)4) 152t, 1g I NHOt 108L
and ultrafine silica (product name: Aerosil oxso
(Degussa)) 451'y was mixed at the same time and stirred for 4 hours using a disilver (stirring and dispersing device) to prepare a sol in which ethyl silicate was hydrolyzed and ultrafine silica was dispersed to some extent. Ultrasonic irradiation (combined with stirring) was applied to the dispersion solution for 55 minutes to improve dispersibility.
I did it for an hour. At this time, in order to prevent the sol temperature from increasing due to ultrasonic irradiation, the sol temperature was kept constant using a cooling device.
次工程として、該ゾル中の半ゲル化ゼリー状物や、不純
物含有粗大粒子およびゴiなどを除去するため該ゾルに
対し遠心分離処理(3000rpm。As the next step, the sol is centrifuged (3000 rpm) to remove semi-gelled jelly-like substances, coarse particles containing impurities, and dirt in the sol.
50−)を加えた。50-) was added.
この後の濾過プロセスは以下のような構成で行なった。The subsequent filtration process was performed with the following configuration.
先ず該ゾルを孔径20〜50μmのフィルターを通過さ
せ続いて、10μm、 5μm、 1μmの各フィルタ
ーを通過させる従来通シの濾過を行なった。この際、従
来の濾過の場合、該ゾル全てを処理するのに各孔径のフ
ィルターが5本以上必要であシ、また目詰まりのために
入圧が2.5匂Aノ以上になったのに対し、10μm
だけ2本使用し、5μm、 1μmは各1本で全量を処
理でき、しかも、入圧はα5 陣/cd以下であった。First, the sol was passed through a filter with a pore size of 20 to 50 μm, and then subjected to conventional filtration in which the sol was passed through filters with pore sizes of 10 μm, 5 μm, and 1 μm. In this case, in the case of conventional filtration, five or more filters of each pore size are required to treat all of the sol, and the input pressure becomes more than 2.5 oA due to clogging. However, 10μm
Two tubes were used, one each for 5 μm and 1 μm, and the entire amount could be processed, and the input pressure was less than α5 groups/cd.
濾過後の該ゾルに対し、この後、pH値の調整(pH=
5〜6)、再遠心分離、再デ過などの処理を施し、大き
さ36X24X12(創〕のポリプロピレン製の容器に
各600g、400個に投入し密閉状態にてゲル化させ
、この後、収縮が始まった時点で、容器のフタを乾燥速
度調節のため穴のあいた所定の開孔率のものに変え、乾
燥機に入れ、室温から昇温速度5℃/n″rで60〜8
0℃に加熱し、以後この温度に保持し、10〜15日間
で大きさ25.3X15.8XQ、5(α〕の乾燥ゲル
を得た。これらの乾燥ゲルを焼結炉に投入し所定の昇温
方法によシ加熱焼結し、1300〜1450℃にて透明
なガラス体を得た、このガラスの太きさは1 a8X
11.5X135 (m:)で重量は180g前後であ
った。以上のようにして得たガラスと、光学顕微使、集
光ランプなどで観察したところ、ガラス中の異物に、各
ガラスによる差がほとんど認められず、どれも、1μm
以上のものはほとんどなく、それ以下のものもわずかで
ちゃ、従来に比べ非常にバラツキが少なくなった。また
、このガラスに関する諸物性分析の結果は、ビッカース
硬度、比重、熱膨張係数、赤外吸収スペクトル、近赤外
吸収スペクトル、屈折率など溶融石英ガラスと一致した
。The sol after filtration is then subjected to pH adjustment (pH=
5-6), subjected to treatments such as recentrifugation and redefiltration, and placed in 400 pieces of 600g each into polypropylene containers of size 36 x 24 x 12 (wound) to gel in a sealed state, and then shrink. When drying starts, change the lid of the container to one with holes of a specified porosity to adjust the drying speed, put it in a dryer, and heat it from room temperature to 60~8℃ at a heating rate of 5℃/n''r.
The gel was heated to 0°C and maintained at this temperature for 10 to 15 days to obtain a dried gel with a size of 25.3 x 15.8 A transparent glass body was obtained by heating and sintering at 1300 to 1450°C using a heating method. The thickness of this glass was 1 a8X.
The dimensions were 11.5 x 135 (m:) and the weight was around 180 g. When the glass obtained as described above was observed using an optical microscope and a condensing lamp, there was almost no difference in the foreign matter in the glass depending on the glass.
There are almost no more than that, and there are only a few things less than that, so there is much less variation than before. Furthermore, the results of various physical property analyzes regarding this glass were consistent with those of fused silica glass, including Vickers hardness, specific gravity, coefficient of thermal expansion, infrared absorption spectrum, near-infrared absorption spectrum, and refractive index.
(2)実施例1と同様に調製したゾルを遠心分離処理(
3000rpm、30sim)した後、従来の1過プロ
セス前に、先ず孔径20〜50μmのフィルターを通過
させ、欣フィルターを、流量5t7=で20〇−程度循
環させた、この後、従来のフィルターと通過させたとこ
ろ、全く目詰まシなく、各1本で全量を処理することが
できた。この後の該ゾルの処理は実施例1と全く同様で
あり、得られたガラス間の品質のバラツキは更に少なく
なった。(2) Centrifugation treatment of the sol prepared in the same manner as in Example 1 (
3000rpm, 30sim), and before the conventional one-pass process, it was first passed through a filter with a pore size of 20 to 50μm, and the Shin filter was circulated for about 200 minutes at a flow rate of 5t7.After this, it was passed through a conventional filter. As a result, there was no clogging at all, and the entire amount could be processed with one tube of each type. The subsequent treatment of the sol was exactly the same as in Example 1, and the variation in quality among the obtained glasses was further reduced.
とのよえにして、本発明によシ製造される石英ガラスは
、前述のようなf過プロセスを構成するため、製品間の
品質のバラツキが著しく小さく、フィルターの使用量も
激減し低コストとなる、また品質も、e適時の入圧上昇
がないためr過精度が高く、調製ゾル中の、焼結後のガ
ラス中の異物の原因となる粗大粒子、ゴミなどをほぼ完
全に除去するため、かなシハイレベルのものである。On the other hand, since the quartz glass manufactured according to the present invention uses the above-mentioned f-filtering process, the variation in quality between products is extremely small, the amount of filters used is drastically reduced, and the cost is low. In addition, the quality is also high because there is no timely increase in input pressure, and coarse particles and dust that cause foreign matter in the glass after sintering are almost completely removed from the prepared sol. , which is at a high level.
このように、溶融法などに比べ低コストであるなどの利
点を有する上に、非常に高品質な石英ガラスが容易に大
量製造可能で、あシ、これまで石英ガラスを使用してい
た分野ではもちろんのこと、工C用フォトマスク基板、
光フアイバー用母材など種々の分野に応用が広がるもの
と考える。In this way, in addition to having the advantage of being lower cost than the fusion method, it is also possible to easily mass-produce extremely high-quality quartz glass. Of course, photomask substrate for engineering C,
We believe that its application will expand to various fields such as base materials for optical fibers.
以 上that's all
Claims (1)
料として用いるゾル−ゲル法による石英ガラスの製造に
おいて、ゾル調製濾過プロセス中に以下の処理方法を有
することを特徴とする石英ガラスの製造方法。 a)最終所望フィルターの孔径よりかなり大きな孔径(
10μm以上)のフィルターを通過させる、 b)a)記載のフィルターを2回以上通過させるかある
いは、所定時間、循環させる。(1) A method for producing quartz glass by a sol-gel method using alkyl silicate and ultrafine silica as main raw materials, which includes the following treatment method during the sol preparation filtration process. a) Pore size significantly larger than the final desired filter pore size (
b) pass through the filter described in a) two or more times, or circulate for a predetermined period of time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7370785A JPS61232232A (en) | 1985-04-08 | 1985-04-08 | Silica glass manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7370785A JPS61232232A (en) | 1985-04-08 | 1985-04-08 | Silica glass manufacturing method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61232232A true JPS61232232A (en) | 1986-10-16 |
Family
ID=13525954
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7370785A Pending JPS61232232A (en) | 1985-04-08 | 1985-04-08 | Silica glass manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61232232A (en) |
-
1985
- 1985-04-08 JP JP7370785A patent/JPS61232232A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5202104A (en) | Process for preparing silica having a low silanol content | |
JPS61232232A (en) | Silica glass manufacturing method | |
JPS59131538A (en) | Silica glass manufacturing method | |
JPS61168541A (en) | Production of quartz glass | |
JPS61232231A (en) | Silica glass manufacturing method | |
JPS60239329A (en) | Manufacture of quartz glass | |
JPS62207723A (en) | Glass manufacturing method | |
JPS6291428A (en) | Glass manufacturing method | |
JPS60108324A (en) | Production of quartz glass | |
JPS6158818A (en) | Silica glass manufacturing method | |
JPS6065735A (en) | Production of quartz glass | |
JPH0348140B2 (en) | ||
JPS6086037A (en) | Production of quartz glass | |
JPS63291824A (en) | Production of quartz glass transmitting short wavelength laser light | |
JPS6140825A (en) | Preparation of quartz glass | |
JPH01203229A (en) | Production of glass | |
JPH04144911A (en) | Production of doping silica particle | |
JPS61256927A (en) | Production of quartz glass | |
JPS62246827A (en) | Production of glass | |
JPS63107821A (en) | Production of glass | |
JPS63291822A (en) | Manufacturing method for large lump glass | |
JPS63297226A (en) | Method for producing short-wavelength laser light-transmissive quartz glass | |
JPS62278135A (en) | Production of glass | |
JPS6217027A (en) | Preparation of quartz glass | |
JPH03228839A (en) | Production of synthetic quartz powder |