[go: up one dir, main page]

JPS61220481A - Manufacturing method of semiconductor photodetector - Google Patents

Manufacturing method of semiconductor photodetector

Info

Publication number
JPS61220481A
JPS61220481A JP60062447A JP6244785A JPS61220481A JP S61220481 A JPS61220481 A JP S61220481A JP 60062447 A JP60062447 A JP 60062447A JP 6244785 A JP6244785 A JP 6244785A JP S61220481 A JPS61220481 A JP S61220481A
Authority
JP
Japan
Prior art keywords
semiconductor layer
type
layer
impurity concentration
semiconductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60062447A
Other languages
Japanese (ja)
Inventor
Masahiro Kobayashi
正宏 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP60062447A priority Critical patent/JPS61220481A/en
Publication of JPS61220481A publication Critical patent/JPS61220481A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10FINORGANIC SEMICONDUCTOR DEVICES SENSITIVE TO INFRARED RADIATION, LIGHT, ELECTROMAGNETIC RADIATION OF SHORTER WAVELENGTH OR CORPUSCULAR RADIATION
    • H10F30/00Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors
    • H10F30/20Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors
    • H10F30/21Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation
    • H10F30/22Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes
    • H10F30/225Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier working in avalanche mode, e.g. avalanche photodiodes
    • H10F30/2255Individual radiation-sensitive semiconductor devices in which radiation controls the flow of current through the devices, e.g. photodetectors the devices having potential barriers, e.g. phototransistors the devices being sensitive to infrared, visible or ultraviolet radiation the devices having only one potential barrier, e.g. photodiodes the potential barrier working in avalanche mode, e.g. avalanche photodiodes in which the active layers form heterostructures, e.g. SAM structures

Landscapes

  • Light Receiving Elements (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は半導体受光装置の製造方法、特になだれ増倍層
より低不純物濃度の半導体層にガードリングが形成され
る化合物半導体アバランシホトダイオードの製造方法の
改善に関する。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing a semiconductor light receiving device, and particularly to a method for manufacturing a compound semiconductor avalanche photodiode in which a guard ring is formed in a semiconductor layer with a lower impurity concentration than an avalanche multiplication layer. Concerning method improvements.

光を情報信号の媒体とする光通信等において、光電流が
なだれ降伏によって増倍されるアバランシホトダイオー
ド(以下APDと略称する)は、光検知器の信号対雑音
比を改善する効果が大きい。
In optical communications where light is used as an information signal medium, avalanche photodiodes (hereinafter abbreviated as APDs), whose photocurrent is multiplied by avalanche breakdown, are highly effective in improving the signal-to-noise ratio of photodetectors.

特に石莢系ファイバによる光通信システムには、インジ
ウム燐/インジウムガリウム砒素(燐)(InP/Ga
1nAs(P))系等の化合物半導体へPDが重要であ
り、この^PDでは受光部外の降伏を防止するためのガ
ードリングを、なだれ降伏層より低不純物濃度の埋め込
み成長した半導体層に形成することが多い。しかしなが
ら従来のこの構造の八PDでは目的とするガードリング
効果が得られないことがしばしばあり、その改善が必要
とされている。
In particular, in optical communication systems using stone capsule fibers, indium phosphorus/indium gallium arsenide (phosphorus) (InP/Ga
PD is important for compound semiconductors such as 1nAs(P) system, and in this PD, a guard ring to prevent breakdown outside the light receiving area is formed in a buried semiconductor layer with a lower impurity concentration than the avalanche breakdown layer. There are many things to do. However, with the conventional 8PD of this structure, the desired guard ring effect is often not obtained, and an improvement is needed.

〔従来の技術〕[Conventional technology]

埋め込み構造のInP/Ga1nAs(P)系APDの
半導体基体は例えば第2図(a)の模式側断面図に示す
如き構造を有する。同図において、1はn十型InP基
板、2はn型層aEnAs光吸収層、3はn型InPな
だれ増倍層、4はn−型1nP層、5はr型受光領域、
6はp型ガードリング領域である。
A semiconductor substrate of an InP/Ga1nAs(P)-based APD having a buried structure has a structure as shown in the schematic side sectional view of FIG. 2(a), for example. In the figure, 1 is an n-type InP substrate, 2 is an n-type aEnAs light absorption layer, 3 is an n-type InP avalanche multiplication layer, 4 is an n-type 1nP layer, 5 is an r-type light receiving region,
6 is a p-type guard ring region.

このAPDに1型InP基板lを正、V型受光領域5を
負の極性とする高い逆バイアス電圧を印加して、GaI
nAs光吸収層2内で入力信号光によって励起された正
札を一次キャリアとするなだれ降伏を、禁制帯幅がGa
InAs光吸収N2より大きいInPなだれ増倍層3で
発生させる。前記なだれ降伏より低い電圧でり型受光領
域5の周辺で降伏が発生することを防止するために、p
型ガードリング領域6が通常円形であるr型受光領域5
の外周に接して形成されている。
A high reverse bias voltage is applied to this APD, with the 1-type InP substrate 1 having positive polarity and the V-type light receiving region 5 having negative polarity.
The avalanche breakdown in which the authentic tag excited by the input signal light is used as the primary carrier in the nAs optical absorption layer 2 is performed when the forbidden band width is Ga.
It is generated in the InP avalanche multiplier layer 3, which has a larger InAs light absorption than N2. In order to prevent breakdown from occurring around the avalanche type light receiving region 5 at a voltage lower than the avalanche breakdown, p
r-type light-receiving region 5 in which the type guard ring region 6 is usually circular;
is formed in contact with the outer periphery of the

この従来例は例えば下記の様に製造される。This conventional example is manufactured, for example, as follows.

すなわち通常液相エピタキシ中ル成長方法により、n十
型InP基板1上にn型Ga1nAs光吸収層2とn型
rnPなだれ増倍層3とを成長し、この層3上に例えば
厚さ0.1乃至0.2μm程度のマスクを設けて、メル
トバック等によりn型1nPなだれ増倍層3を例えば深
さ2乃至3ptn程度に選択的に除去し、ここになだれ
増倍層3より低不純物濃度のn−型In2層4を埋め込
み成長して半導体基体を形成している。
That is, an n-type Ga1nAs light absorption layer 2 and an n-type rnP avalanche multiplication layer 3 are grown on an n-type InP substrate 1 by a normal liquid phase epitaxy medium growth method, and a layer 3 is formed on this layer 3 to a thickness of, for example, 0. A mask of about 1 to 0.2 μm is provided, and the n-type 1nP avalanche multiplier layer 3 is selectively removed to a depth of, for example, about 2 to 3 ptn by meltback or the like, and an impurity concentration lower than that of the avalanche multiplier layer 3 is added here. An n-type In2 layer 4 is buried and grown to form a semiconductor substrate.

この半導体基体に、例えばカドミウム(Cd)を深さl
乃至2J1m程度に拡散して、f型受光領域5をn型1
nPなだれ増倍層3から「型In2層4にわたって形成
し、例えばベリリウム(Be)を1型InP層4にイオ
ン注入し活性化熱処理を施して、pn接合がなだらかな
p型ガードリング領域6を形成する。
For example, cadmium (Cd) is deposited on this semiconductor substrate to a depth of l.
The f-type light-receiving area 5 is diffused to about 2J1m to the n-type 1
A p-type guard ring region 6 with a gentle p-n junction is formed by ion-implanting beryllium (Be) into the type-1 InP layer 4 and performing activation heat treatment. Form.

この製造方法において、n型1nPなだれ増倍層3の選
択的除去と1型1nP層4の埋め込み成長とに共用され
るマスクがもし脆弱であるならば、製造プロセス中にマ
スクの端部の欠けなどを生じ、選択埋め込み成長界面に
乱れを生ずる。
In this manufacturing method, if the mask used for the selective removal of the n-type 1nP avalanche multiplier layer 3 and the buried growth of the 1-type 1nP layer 4 is fragile, the edges of the mask may be chipped during the manufacturing process. etc., resulting in disturbances at the selectively buried growth interface.

この様な障害を防止するためにこのマスクに例えば窒化
シリコン(StJ*)または二酸化シリコン(Sing
)等の硬い材料が使用されるが、選択埋め込み成長の際
に半導体基体の段差部分の成長速度が平坦部分よりも大
きいことなどの理由により、第2図(b)の部分拡大模
式側断面図に示す如く、埋め込み成長したn−型InP
ii4にマスクの端で制限された段差4Aを生ずる。
In order to prevent such troubles, this mask is made of silicon nitride (StJ*) or silicon dioxide (Sing), for example.
), but for reasons such as the fact that the growth rate of stepped portions of the semiconductor substrate is faster than that of flat portions during selective implantation growth, the partially enlarged schematic side sectional view of Fig. 2(b) As shown in FIG.
A step 4A limited at the edge of the mask is produced at ii4.

n−型InPIi4に生じたこの段差は前記のCd拡散
によるり型受光領域5に反映してそのpn接合面に湾曲
部5Aが形成され、pn接合に高い逆バイアス電圧を印
加した際にここに電界集中を生ずる。この湾曲部5Aは
なだれ増倍層3より低不純物濃度の1型InP層4内に
形成されるが、なだれ降伏より低電圧で降伏する場合が
ある。
This step formed in the n-type InPIi4 is reflected in the rectangular light-receiving region 5 due to the above-mentioned Cd diffusion, and a curved part 5A is formed on the pn junction surface, and when a high reverse bias voltage is applied to the pn junction, the curved part 5A is Causes electric field concentration. Although this curved portion 5A is formed in the type 1 InP layer 4 having a lower impurity concentration than the avalanche multiplication layer 3, it may break down at a lower voltage than the avalanche breakdown.

〔発明が解決しようとする問題点3 以上説明した如く埋め込み構造のAPDでは、埋め込み
成長層内に生ずるp十型領域のpn接合の湾曲部が降伏
の弱点となるが、なだれ増倍が安定に得られる条件が未
だ確立されず、その早期解決が要望されている。
[Problem to be solved by the invention 3 As explained above, in the buried structure APD, the curved part of the p-n junction in the p-type region that occurs in the buried growth layer becomes a weak point for breakdown, but the avalanche multiplication becomes stable. The conditions under which this can be obtained have not yet been established, and an early solution is desired.

〔問題点を解決するための手段〕[Means for solving problems]

前記問題点は、半導体基板上に光電変換を行う第1の半
導体層と、該第1の半導体層より禁制帯幅が大きい第1
の導電型の第2の半導体層とを成長し、該第2の半導体
層を選択的に除去して第1の温電型の第3の半導体層を
埋め込み成長し、該第2及び該第3の半導体層との間に
pn接合を形成する第2導電型の受光領域と、該受光領
域の外周で該第3の半導体層との間にpn接合を形成す
る第2導電型のガードリング領域とを形成するに際して
、該第3の半導体層の不純物濃度の該第2の半導体層の
不純物濃度に対する比を3対4以下とし、かつ該不純物
濃度比3対4において1.2μ、1対2において1.5
um、 1対4において2.0Im、 1対5において
2.3μmを結ぶ値以下で0 、2 am以上の範囲内
で、該第3の半導体層の頂面を該第2の半導体層の上面
より高くする本発明による半導体受光装置の製造方法に
より解決される。
The problem is that there is a first semiconductor layer that performs photoelectric conversion on a semiconductor substrate, and a first semiconductor layer that has a larger forbidden band width than the first semiconductor layer.
a second semiconductor layer of a conductivity type, the second semiconductor layer is selectively removed and a third semiconductor layer of the first hot conductivity type is buried and grown; a second conductivity type light receiving region forming a pn junction with the third semiconductor layer; and a second conductivity type guard ring forming a pn junction with the third semiconductor layer at the outer periphery of the light receiving region. When forming a region, the ratio of the impurity concentration of the third semiconductor layer to the impurity concentration of the second semiconductor layer is 3 to 4 or less, and the impurity concentration ratio of 3 to 4 is 1.2 μ, 1 to 1. 1.5 in 2
um, the top surface of the third semiconductor layer is the top surface of the second semiconductor layer within a range of 0.0 am or less, 2.0 Im for 1:4, and 2.3 μm for 1:5. This problem is solved by the method of manufacturing a semiconductor light receiving device according to the present invention, which increases the cost.

上述の半導体層の高さの差、すなわち埋、め込み層の盛
り上がり量の範囲の不純物濃度比との相関を図示すれば
第1図の通りである。
The correlation between the difference in the height of the semiconductor layer described above, that is, the impurity concentration ratio in the range of the amount of swelling of the buried layer and the amount of swelling of the buried layer is shown in FIG.

〔作 用〕[For production]

本発明の製造方法によれば、なだれ増倍領域及びこれと
反対導電型の受光領域とする前記第2の半導体層の上面
に対して、ガードリング領域とする前記第3の半導体層
の頂面が0.2−以上盛り上がる形状とする。これは半
導体層のマスクの端に当たる部分に未成長ピットができ
、これにより局所的な降伏を生ずることを防止するため
である。
According to the manufacturing method of the present invention, the top surface of the third semiconductor layer, which is to be a guard ring region, is opposite to the top surface of the second semiconductor layer, which is to be an avalanche multiplication region and a light-receiving region of the opposite conductivity type. The shape is such that it swells by 0.2 or more. This is to prevent ungrown pits from forming in the portion of the semiconductor layer that corresponds to the edge of the mask, thereby preventing local breakdown.

また低不純物濃度の半導体層を埋め込む効果は、第3の
半導体層の不純物濃度の第2の半導体層の不純物濃度に
対する比が3対4以下であるときに明らかとなり、p+
領領域湾曲部分における局所的な降伏は、湾曲部分の曲
率すなわち盛り上がり部分の高さと第3の半導体層の不
純物濃度とに依存するが、前記高さの差の上限を、この
不純物濃度比3対4において1.2Ilrn、1対2に
おいて1.5fm、1対4において2.0μm、1対5
において2.3−の点を結ぶ曲線とすることにより、第
3の半導体層の不純物濃度が比較的に高いときにはpn
接合の湾曲の曲率が小さく抑制され、またpn接合の湾
曲の曲率が比較的に大きいときには不純物濃度が抑制さ
れているために、なだれ降伏より低電圧で降伏を生ぜず
ガードリング効果が確保される。
The effect of embedding a semiconductor layer with a low impurity concentration becomes obvious when the ratio of the impurity concentration of the third semiconductor layer to the impurity concentration of the second semiconductor layer is 3:4 or less, and p+
The local breakdown in the curved portion of the region depends on the curvature of the curved portion, that is, the height of the raised portion, and the impurity concentration of the third semiconductor layer. 1.2 Ilrn in 4, 1.5 fm in 1 to 2, 2.0 μm in 1 to 4, 1 to 5
When the impurity concentration of the third semiconductor layer is relatively high, pn
Since the curvature of the junction is kept small and the impurity concentration is suppressed when the curvature of the pn junction is relatively large, breakdown does not occur at voltages lower than avalanche breakdown and the guard ring effect is ensured. .

〔実施例〕〔Example〕

以下本発明を実施例により具体的に説明する。 The present invention will be specifically explained below using examples.

先に第2図(a)、(b)に示したAPDと同様に、1
型InP基板1上に液相エピタキシャル成長方法により
、不純物濃度約I XIO”cm−”、厚さ約2−のn
型層aInAs光吸収層2と不純物濃度約2XIQ”c
+a−’、厚さ約3 μmのn型InPなだれ増倍層3
とを成長し、この層3上に5iJ4により厚さ約0.1
511mのマスクを設けて、メルトバックによりn型I
nPなだれ増倍層3を例えば深さ約2.51m程度選択
的に除去し、ココに不純物濃度約I XIQ”cm−’
のn−型InP層4を、その盛り上がりの頂面をなだれ
増倍N3の上面より約1 、5 tttm高く埋め込み
成長して半導体基体を形成している。
Similar to the APD shown in FIGS. 2(a) and (b), 1
An impurity concentration of about IXIO"cm-" and a thickness of about 2-cm is grown on an InP type InP substrate 1 by a liquid phase epitaxial growth method.
Type layer aInAs light absorption layer 2 and impurity concentration approximately 2XIQ"c
+a-', n-type InP avalanche multiplier layer 3 with a thickness of about 3 μm
on this layer 3 to a thickness of about 0.1 with 5iJ4.
A 511m mask was installed, and the n-type I
For example, the nP avalanche multiplication layer 3 is selectively removed to a depth of approximately 2.51 m, and the impurity concentration is approximately IXIQ"cm-' here.
The n-type InP layer 4 is buried and grown so that the top surface of the bulge is about 1.5 tttm higher than the upper surface of the avalanche multiplier N3 to form a semiconductor substrate.

次いで、例えばカドミウム(Cd)を温度約2×10′
(「3、深さ約1.5μm程度に拡散して、p十型受光
領域5をn型1nPなだれ増倍層3からイ型1nP層4
にわたって形成し、更に例えばベリリウム(Be)をエ
ネルギー140keV、ドーズ量5 Xl013cn+
−”程度にイ型1nP層4にイオン注入し、例えば温度
700℃、時間20分間程度の活性化熱処理を施して、
p型ガードリング領域6を形成する。
Then, for example, cadmium (Cd) is heated to a temperature of about 2×10'
(3. Diffusion to a depth of about 1.5 μm to change the p-type 10-type light-receiving region 5 from the n-type 1nP avalanche multiplication layer 3 to the i-type 1nP layer 4.
For example, beryllium (Be) is formed at an energy of 140 keV and a dose of 5 Xl013cn+.
-'', ions are implanted into the A-type 1nP layer 4, and an activation heat treatment is performed at a temperature of, for example, 700°C for about 20 minutes.
A p-type guard ring region 6 is formed.

この半導体基体に保護絶縁膜及びp、n両側の電極を形
成した本実施例について、波長1.3μmの光を入射し
たときの最大増倍率は30倍が得られており、第1図の
範囲に該当しない従来仕様の埋め込み形APDの最大増
倍率が高々10倍程度であるのに比較して顕著な効果が
得られている。
In this example, in which a protective insulating film and electrodes on both p and n sides were formed on this semiconductor substrate, a maximum multiplication factor of 30 times was obtained when light with a wavelength of 1.3 μm was incident, and the range shown in FIG. This is a remarkable effect compared to the maximum multiplication factor of conventional embedded type APDs that do not fall under the above criteria, which is about 10 times at most.

〔発明の効果〕〔Effect of the invention〕

以上説明した如く本発明によれば、なだれ降伏領域外に
おける弱点の発生が十分に抑制され、なだれ増倍が設計
意図通りに実現されて、良好な特性のAPDを優れた歩
留りで製造することが可能となる。
As explained above, according to the present invention, the occurrence of weak points outside the avalanche breakdown region is sufficiently suppressed, avalanche multiplication is realized as designed, and APDs with good characteristics can be manufactured at an excellent yield. It becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は埋め込み層の盛り上がり量の範囲の不純物濃度
比との相関を示す図、 第2図(a)は埋め込み構造のAPDの半導体基体の例
を示す模式側断面図、 第2図(b)はその部分拡大図である。 図において、 1は♂型1nP基板、 2はn型Ga1nAs光吸収層、 3はn型1nPなだれ増倍層、 4はn−型InP層、 4Aはその段差、 5はp+型型光光領域 5^はそのpn接合面の湾曲部 6はp型ガードリング領域である。
Figure 1 is a diagram showing the correlation between the amount of protrusion of the buried layer and the impurity concentration ratio, Figure 2 (a) is a schematic side sectional view showing an example of a semiconductor substrate of an APD with a buried structure, Figure 2 (b) ) is a partially enlarged view. In the figure, 1 is a male-type 1nP substrate, 2 is an n-type Ga1nAs light absorption layer, 3 is an n-type 1nP avalanche multiplication layer, 4 is an n-type InP layer, 4A is a step thereof, and 5 is a p+ type optical region. 5^, the curved portion 6 of the pn junction surface is a p-type guard ring region.

Claims (1)

【特許請求の範囲】 半導体基板上に光電変換を行う第1の半導体層と、該第
1の半導体層より禁制帯幅が大きい第1の導電型の第2
の半導体層とを成長し、該第2の半導体層を選択的に除
去して第1の導電型の第3の半導体層を埋め込み成長し
、該第2及び該第3の半導体層との間にpn接合を形成
する第2導電型の受光領域と、該受光領域の外周で該第
3の半導体層との間にpn接合を形成する第2導電型の
ガードリング領域とを形成するに際して、該第3の半導
体層の不純物濃度の該第2の半導体層の不純物濃度に対
する比を3対4以下とし、かつ該不純物濃度比3対4に
おいて1.2μm、1対2において1. 5μm、1対4において2.0μm、1対5において2
. 3μmを結ぶ値以下で0.2μm以上の範囲内で、該第
3の半導体層の頂面を該第2の半導体層の上面より高く
することを特徴とする半導体受光装置の製造方法。
[Claims] A first semiconductor layer that performs photoelectric conversion on a semiconductor substrate, and a second semiconductor layer of a first conductivity type having a larger forbidden band width than the first semiconductor layer.
a third semiconductor layer of the first conductivity type is grown by selectively removing the second semiconductor layer, and growing a third semiconductor layer of the first conductivity type, between the second and third semiconductor layers. In forming a second conductivity type light-receiving region forming a p-n junction in the light-receiving region and a second conductivity-type guard ring region forming a p-n junction between the third semiconductor layer and the third semiconductor layer at the outer periphery of the light-receiving region, The ratio of the impurity concentration of the third semiconductor layer to the impurity concentration of the second semiconductor layer is 3:4 or less, and when the impurity concentration ratio is 3:4, it is 1.2 μm, and when the impurity concentration ratio is 1:2, it is 1.2 μm. 5 μm, 2.0 μm in 1 to 4, 2 in 1 to 5
.. A method for manufacturing a semiconductor light-receiving device, characterized in that the top surface of the third semiconductor layer is made higher than the top surface of the second semiconductor layer within a range of not more than 3 μm and not less than 0.2 μm.
JP60062447A 1985-03-27 1985-03-27 Manufacturing method of semiconductor photodetector Pending JPS61220481A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60062447A JPS61220481A (en) 1985-03-27 1985-03-27 Manufacturing method of semiconductor photodetector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60062447A JPS61220481A (en) 1985-03-27 1985-03-27 Manufacturing method of semiconductor photodetector

Publications (1)

Publication Number Publication Date
JPS61220481A true JPS61220481A (en) 1986-09-30

Family

ID=13200469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60062447A Pending JPS61220481A (en) 1985-03-27 1985-03-27 Manufacturing method of semiconductor photodetector

Country Status (1)

Country Link
JP (1) JPS61220481A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5114866A (en) * 1989-02-10 1992-05-19 Hitachi, Ltd. Fabricating an avalanche photo diode having a step-like distribution
US5144381A (en) * 1988-12-14 1992-09-01 Kabushiki Kaisha Toshiba Semiconductor light detector utilizing an avalanche effect and having an improved guard ring structure
US6492239B2 (en) * 2000-06-29 2002-12-10 Samsung Electronic Co, Ltd Method for fabricating avalanche photodiode

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5144381A (en) * 1988-12-14 1992-09-01 Kabushiki Kaisha Toshiba Semiconductor light detector utilizing an avalanche effect and having an improved guard ring structure
US5114866A (en) * 1989-02-10 1992-05-19 Hitachi, Ltd. Fabricating an avalanche photo diode having a step-like distribution
US6492239B2 (en) * 2000-06-29 2002-12-10 Samsung Electronic Co, Ltd Method for fabricating avalanche photodiode

Similar Documents

Publication Publication Date Title
US7936038B2 (en) Photodiode cell structure of photodiode integrated circuit for optical pickup and method of manufacturing the same
JPS60244078A (en) Back-illuminated photodiode with wide bandgap cap layer
KR100564587B1 (en) Photodiode and its manufacturing method
JPS61220481A (en) Manufacturing method of semiconductor photodetector
US4301463A (en) Demultiplexing photodetector
US6558973B2 (en) Metamorphic long wavelength high-speed photodiode
JPS6269687A (en) Semiconductor photodetector
JPS6032812B2 (en) photodetector
JPH02262379A (en) Semiconductor photodetector and manufacture thereof
JPS61101084A (en) Method for manufacturing compound semiconductor photodetector
JPS6180875A (en) semiconductor equipment
JPS63237484A (en) Semiconductor device
JPS63198383A (en) Semiconductor photodetector and its manufacturing method
JPS59136981A (en) Semiconductor photodetector
JPH01196182A (en) Photodiode
JPS627176A (en) Semiconductor photodetector
JP2004179404A (en) Semiconductor light receiving device and its manufacturing method
JPH0559590B2 (en)
JPS6373676A (en) Semiconductor photodetector
JPS62169376A (en) Photodiode
JPS6331176A (en) Optical semiconductor device
JPS61131572A (en) semiconductor photodetector
JPH0258277A (en) Manufacturing method of semiconductor photodetector
JPS58170073A (en) semiconductor equipment
JPS61102783A (en) Manufacturing method of semiconductor photodetector