JPS61206563A - Horizontal welding method for steel materials - Google Patents
Horizontal welding method for steel materialsInfo
- Publication number
- JPS61206563A JPS61206563A JP4466885A JP4466885A JPS61206563A JP S61206563 A JPS61206563 A JP S61206563A JP 4466885 A JP4466885 A JP 4466885A JP 4466885 A JP4466885 A JP 4466885A JP S61206563 A JPS61206563 A JP S61206563A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- electrode
- electrodes
- leading
- gap
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000003466 welding Methods 0.000 title claims abstract description 63
- 238000000034 method Methods 0.000 title claims description 20
- 239000000463 material Substances 0.000 title claims description 11
- 229910000831 Steel Inorganic materials 0.000 title claims description 9
- 239000010959 steel Substances 0.000 title claims description 9
- 239000002184 metal Substances 0.000 abstract description 8
- 229910052751 metal Inorganic materials 0.000 abstract description 8
- 230000002250 progressing effect Effects 0.000 abstract 2
- 230000035515 penetration Effects 0.000 description 16
- 239000011324 bead Substances 0.000 description 8
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005336 cracking Methods 0.000 description 2
- 210000001503 joint Anatomy 0.000 description 2
- 238000007711 solidification Methods 0.000 description 2
- 230000008023 solidification Effects 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 239000010953 base metal Substances 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
Landscapes
- Butt Welding And Welding Of Specific Article (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は、完全溶込みを必要とする鋼材の横向突合せ
継手において、溶接部の表、裏両面上シ電極を対向させ
て同時に溶接を行なう両面同時横向溶接法に関するもの
である。[Detailed Description of the Invention] (Industrial Application Field) This invention is a horizontal butt joint of steel materials that requires complete penetration, in which welding is performed simultaneously by facing the upper electrodes on both the front and back sides of the welding part. This relates to a double-sided simultaneous horizontal welding method.
(従来の技術)
完全溶込みを必要とする鋼材等の横向溶接においては、
従来第4図に示すごとく溶接継手部の片側の溶接を行な
った後、反対側よシ斜線にて示す部分の裏はつりを実施
して、未溶着ルート部Aを取り除いた後、当該部分の溶
接を実施する方法が一般的である。しかし、この裏はつ
りの実施は、溶接材料費、作業費1期間費の増大′f:
まねき、また両面同時施工による能率向上が望めない事
から裏はつシをなくすことが要求されていた。(Conventional technology) In horizontal welding of steel materials that require complete penetration,
Conventionally, as shown in Fig. 4, after welding one side of the welded joint, welded the part shown in diagonal lines on the other side, removed the unwelded root part A, and then welded that part. A common method is to implement However, this back chiseling increases welding material costs, work costs, and period costs'f:
There was a demand for the elimination of the backing, as there was no hope of improving efficiency by simultaneously constructing both sides.
このため両面同時横向溶接を実現する丸めに第5図に示
すごとく開先ルート部AKすき間を設けて裏波溶接を可
能としルート部Aの溶込みを確保する方法、あるいは第
6図に示すごとく片側からの溶接後、反対側からの溶込
みが十分大きく安定してラップ可能な様に片側の溶接部
の溶接金属Uが凝固後、まだ高温である間に反対側から
溶接金属12を溶接する方法(特開昭57−13946
8号公報)などが採用されてきた。For this purpose, there is a method of providing a gap at the groove root part AK in the rounding to realize simultaneous horizontal welding on both sides as shown in Fig. 5 to enable Uranami welding and ensure penetration of the root part A, or as shown in Fig. 6. After welding from one side, weld metal 12 is welded from the opposite side while the weld metal U in the weld on one side is still at a high temperature after it has solidified so that the penetration from the other side is large enough to enable stable lapping. Method (Japanese Unexamined Patent Publication No. 57-13946
Publication No. 8) etc. have been adopted.
しかし、開先ルート部Aにすき間を設けて裏波溶接を実
施する場合、ルート間隔の変動に対し非常に敏感であ夛
、ルート間隔を一定範囲内に保持する必要がある。つま
り、ルート間隔が大き過ぎるとルート部Aの溶は落ちを
生じ、ルート間隔が小さ過ぎると裏波溶接が不可能とな
り、このため反対側からの溶接において十分な溶込みが
得られない。さらにこのルート間隔を適正範囲に保持す
る事は大型鋼構造物では非常に困難である。However, when performing Uranami welding with a gap provided in the groove root portion A, the welding is very sensitive to variations in the root spacing, and it is necessary to maintain the root spacing within a certain range. In other words, if the root spacing is too large, welding in the root portion A will drop, and if the root spacing is too small, it will be impossible to carry out Uranami welding, and therefore sufficient penetration will not be obtained when welding from the opposite side. Furthermore, it is extremely difficult to maintain this root spacing within an appropriate range for large steel structures.
一方、反対側からの溶込みが十分大きく安定してラップ
可能表様に片側の溶接部の溶接金属が凝固後まだ高温で
ある間に反対側から溶接する方法においても、ルート間
隔の変動に対し敏感であり。On the other hand, the penetration from the opposite side is large enough to allow stable lapping. Even in a method in which welding is performed from the opposite side while the weld metal on one side is still hot after solidification, it is difficult to prevent fluctuations in the root spacing. Be sensitive.
ルート間隔を一定範囲に保持する必要がある。また、こ
の方法においてはルート部人の溶込みを完全に確保する
ために、溶込みの形状全制御する必要があシ、このため
に精密な開先ならいのための設備が必要となシ、そのた
めに設備費がかさむなどの欠点を有している。さらに、
この溶接法においては十分大きな溶込みを確保するため
に大電流を必要とし、電流容置の大きな溶接電源を必要
としさらに設備費の増大を来たすなどの問題を有してい
た。Route spacing must be kept within a certain range. In addition, in this method, in order to ensure complete penetration of the root part, it is necessary to control the shape of the penetration completely, which requires equipment for precise groove tracing. Therefore, it has drawbacks such as high equipment costs. moreover,
This welding method requires a large current to ensure a sufficiently large penetration, requires a welding power source with a large current capacity, and has problems such as increased equipment costs.
(発明が解決しようとする問題点)
本発明の目的とするところは、溶接前ルート間隔精度確
保のためのギャップの調整及び溶接後の裏はつりなどの
特別な作業が不要で、精密な開先ならいのための設備費
および十分大きな溶込み全確保するための特別の犬容f
fi電源を必要としない安価で安定性のある鋼材の横向
溶接法を提供しようとするものである。(Problems to be Solved by the Invention) The purpose of the present invention is to eliminate the need for special operations such as adjusting the gap to ensure the precision of the route spacing before welding and chiseling the back side after welding, and to form a precise groove. Equipment costs for tracing and special dog capacity to ensure a sufficiently large penetration
The present invention aims to provide an inexpensive and stable horizontal welding method for steel materials that does not require a fi power source.
(問題点を解決するだめの手段) 本発明の要旨とするところは下記のとおりでちる。(Failure to solve the problem) The gist of the present invention is as follows.
(1)溶接継手部の表、裏両面に電極を対向配置させて
溶接する多電極両面同時横向溶接法の初層溶接において
1表、裏それぞれの先行電極相互の進行方向における間
隔を30〜80露とし1表、裏それぞれの先行電極と次
の後行電極との間隔f、50〜150mとして溶接する
事′t−特徴とする鋼材の横向き溶接方法。(1) In the first layer welding of the multi-electrode double-sided simultaneous horizontal welding method, in which electrodes are arranged facing each other on both the front and back sides of the weld joint, the distance between the leading electrodes on each of the front and back sides in the direction of movement is 30 to 80. 1. A horizontal welding method for steel materials characterized by welding with a distance f of 50 to 150 m between the leading electrode and the trailing electrode on each of the front and back sides.
(2)上記1)において表裏それぞれの先行電極のうち
最も進行方向の前方に位置する電極の溶接電流を対向側
先行電極の溶接電流と同一またはそれよpも低くして溶
接することを特徴とする横向き溶接方法。(2) In 1) above, welding is performed by setting the welding current of the electrode located furthest forward in the direction of movement among the leading electrodes on the front and back sides to be the same as or lower than the welding current of the leading electrode on the opposite side. horizontal welding method.
本発明の構成の詳細を第1図によシ説明する。The details of the configuration of the present invention will be explained with reference to FIG.
1、rは横向突合せ継手における母材を示している。2
は表側の先行電極、3は裏側の先行電極である。また4
は表側の後行電極、5は裏側の後行電極である。これら
の各々の電極にはここでは■示しない溶接電源よシミ力
を供給する。溶接用のワイヤは溶接電源よシミ力を供給
され母材とワイヤ間に発生するアークによりアーク溶接
される。1, r indicates the base material in the lateral butt joint. 2
is the leading electrode on the front side, and 3 is the leading electrode on the back side. Also 4
5 is a trailing electrode on the front side, and 5 is a trailing electrode on the back side. A staining force is supplied to each of these electrodes by a welding power source (not shown here). The welding wire is arc welded by the arc generated between the base metal and the wire when a staining force is supplied from the welding power source.
溶接部の大気からのシールドはシールドガスを用いても
フラックスを用いてもよい。A shielding gas or flux may be used to shield the welding area from the atmosphere.
(発明の作用)
従来5表、裏両面より電極を対向させて横向溶接する場
合、初層部では先行して進行する表裏の電極の進行方向
の間隔が短かい場合、つまシ第1図において表側先行電
極2と裏側先行電極3との間隔がθ〜30露の場合では
電極2と電極3の6各の電極による溶接金属が溶融状態
あるいは半溶融状態で接する、このため表側先行電極2
と裏側先行電極3で生ずるアーク力の差によ)第3図に
示すように片方の開先側へ溶融状態の溶接金属が吹き飛
ばされてしまい両面が同時に仕上がらない。(Function of the invention) Conventionally, when performing horizontal welding with electrodes facing each other from both the front and back surfaces, if the distance between the front and back electrodes in the advancing direction is short in the initial layer, the welding in the mating section shown in FIG. When the distance between the front side leading electrode 2 and the back side leading electrode 3 is θ~30 dew, the weld metals from each of the six electrodes, electrode 2 and electrode 3, come into contact in a molten or semi-molten state.
As shown in FIG. 3, the molten weld metal is blown away to one side of the groove (due to the difference in arc force generated between the front electrode and the back side leading electrode 3), and both sides cannot be finished at the same time.
さて、溶接金属を開先中央部で安定して形成させる条件
としては1表、裏それぞれの先行電極相互の進行方向に
おける間隔を30〜80.mとして、最先端の電極で開
先内をシール溶接し1反対側の先行電極で開先中央部を
溶融させる。この時、30−未満では反対側が溶融状態
なので、−緒に溶は落ちてしまい、iた80鱈を超える
と予熱効果が低くなりルート部が溶けにくくなる。この
時、最先端にある電極の電流値は反対側の先行電極の電
流値と同一かまたは低くすることにより最先端電極によ
る裏面への吹き抜けを防止する。また、このときのルー
ト部の溶込み確保のための必要電流は、45”のに型開
先において最先端電極による予熱効果から、それぞれ3
50A以下でよく、従来法で450A程度必要としてい
たものに比較し電流を低くでき、かつ汎用電源使用によ
る溶接電源のコスト低減が計れる利点がある6また。特
に精度の高いならいは必要なく、0〜3mのルート間隔
において溶接可能である。表側および裏側の先行電極だ
けによる初層部の溶込みは第2図(畠)に示すごとく高
温割れを生じ易い形状となる事から第2図(b) K示
す様に表側および裏側にそれぞれ設けた後行電極によシ
溶接ビードを形成する事によシ凝固方向を変化させ高温
割れを防止する。そのためには、先行電極と次の後行電
極との距離を50〜150mとするのが良(−50mよ
り短かいと先行ビードが溶融または半溶融状態にあシ、
かえって割れを助長することになシ、また反対に150
■を超えると後行電極によるビードが形成される前に割
れが発生する。この後行電極は表裏それぞれ一電極であ
る必要はなく、それ以上でもかまわない。この後行電極
によシ、溶接能率の向上がはかれる事は言うまでもない
事である。Now, as a condition for stably forming weld metal at the center of the groove, the distance between the leading electrodes on each of the front and back sides in the direction of movement is 30 to 80. As m, seal weld the inside of the groove with the most advanced electrode, and melt the center part of the groove with the leading electrode on the opposite side. At this time, if it is less than 30 degrees, the opposite side will be in a molten state, so the melt will drop off at the end, and if it exceeds 80 degrees, the preheating effect will be low and the root part will be difficult to melt. At this time, the current value of the most advanced electrode is set to be the same as or lower than the current value of the preceding electrode on the opposite side, thereby preventing the most recent electrode from blowing through to the back surface. In addition, the required current to ensure penetration of the root section at this time is 3.5 mm each due to the preheating effect of the cutting edge electrode at the 45" mold groove.
It requires less than 50A, which allows the current to be lower than the conventional method, which requires about 450A, and has the advantage of reducing the cost of the welding power source by using a general-purpose power source.6. There is no need for particularly precise tracing, and welding can be performed at root spacings of 0 to 3 m. Penetration of the initial layer by only the leading electrodes on the front and back sides creates a shape that is prone to high-temperature cracking as shown in Figure 2 (Hata). By forming a weld bead on the trailing electrode, the direction of solidification is changed and hot cracking is prevented. For this purpose, it is best to set the distance between the leading electrode and the next trailing electrode to 50 to 150 m (if it is shorter than -50 m, the leading bead may be melted or semi-molten;
On the contrary, 150
If (2) is exceeded, cracks will occur before a bead is formed by the trailing electrode. The trailing electrodes do not need to be one electrode on each of the front and back sides, and may be more than one electrode. It goes without saying that this trailing electrode can improve welding efficiency.
この時1表、裏先行電極および後行電極それぞれの電源
特性、ワイヤ径、極性は同一にした方が制御性が良い。At this time, controllability is better if the power supply characteristics, wire diameter, and polarity of the front, back, leading electrodes, and trailing electrodes are made the same.
(実施例)
高炉設備の熱風炉本体(5M50C材、板厚32日)を
本発明に従って横向溶接を実施した。その際の初層溶接
時の条件を第1表に示す。初層溶接後に仕上溶接を行な
って得られた溶接部の溶込み状態を第7図に模式的に示
す。溶接部だおける溶着金属の溶込み状態、ビード形状
及び作業能率とも、従来の横向溶接法等をはるかにしの
ぐ優れた成果が得られた。(Example) A hot blast furnace body (5M50C material, plate thickness 32 days) of blast furnace equipment was horizontally welded according to the present invention. Table 1 shows the conditions for welding the first layer at that time. FIG. 7 schematically shows the penetration state of the welded part obtained by performing finish welding after the first layer welding. Excellent results were obtained in terms of penetration of the deposited metal in the weld zone, bead shape, and work efficiency, far exceeding those of conventional horizontal welding methods.
第 1 表
先行−後行電極間隔:100露
先行電極相互の進行方向における間隔=50■(発明の
効果)
以上の様に本発明によれば、溶接前のルート間隔精度確
保のためのギャップの調整及び溶接後の裏はクシなどの
特別な作業が不要で精密な開先ならいのための設備費お
よび、十分大きな溶込みを確保するための特別の大容量
電源を必要としない安価で安定性のある鋼材の横向溶接
が実施できるので、産業上稗益するところが極めて大で
ある。Table 1 Leading-to-trailing electrode spacing: 100 spacing between leading electrodes in the advancing direction = 50 ■ (Effects of the invention) As described above, according to the present invention, the distance between the leading electrodes and the trailing electrodes before welding is The back side after adjustment and welding does not require special work such as combs, and is inexpensive and stable as it does not require equipment costs for precise bevel tracing or a special large-capacity power supply to ensure sufficient penetration. Since horizontal welding of certain steel materials can be carried out, the industrial advantage is extremely large.
第1図は本発明を実施する溶接装置の概要を示す図、第
2図(a)は本発明による表側および裏側先行電極によ
シ得られる溶接ビードを示す図、第2図(b)は(、)
にさらに重ねて表側および裏側後行電極によシ溶接ビー
ドを積層した場合に得られる溶接ビードを示す図、第3
図は第1図の装置において表側先行電極と裏側先行電極
に大きなアーク力の差が生じた時に生じる不良ビードを
示す図、第4図は従来の片面からのみ溶接を実施する横
向溶接法の溶接要領を示す説明図、第5図は従来の横向
溶接法の要領を示す説明図、第6図は従来の横向溶接法
の要領を示す説明図、第7図は実施例によシ得られた横
向溶接部の溶込状態を示す模式図(斜線部は初層を示す
)である。
第1図
(&)
(b)
第3図 第4図
第5図 第6図FIG. 1 is a diagram showing an outline of a welding apparatus for carrying out the present invention, FIG. 2(a) is a diagram showing a weld bead obtained by the front side and back side leading electrodes according to the present invention, and FIG. (,)
Figure 3 shows the weld bead obtained when the weld bead is further stacked on the front side and back side trailing electrodes.
The figure shows a defective bead that occurs when there is a large difference in arc force between the front side leading electrode and the back side leading electrode in the device shown in Figure 1. Figure 4 shows welding using the conventional horizontal welding method in which welding is performed only from one side. Fig. 5 is an explanatory drawing showing the main points of the conventional horizontal welding method, Fig. 6 is an explanatory drawing showing the main points of the conventional horizontal welding method, and Fig. 7 is an explanatory drawing showing the main points of the conventional horizontal welding method. FIG. 2 is a schematic diagram showing the state of penetration of a horizontal weld (the shaded area indicates the initial layer). Figure 1 (&) (b) Figure 3 Figure 4 Figure 5 Figure 6
Claims (2)
溶接する多電極両面同時横向溶接法の初層溶接において
、表、裏それぞれの先行電極相互の進行方向における間
隔を30〜80mmとし、表、裏それぞれの先行電極と
次の後行電極との間隔を50〜150mmとして溶接す
る事を特徴とする鋼材の横向溶接方法。(1) In the first layer welding of the multi-electrode double-sided simultaneous horizontal welding method, in which electrodes are arranged facing each other on both the front and back sides of a welded joint, the spacing in the advancing direction between the leading electrodes on each of the front and back sides should be 30 to 80 mm. A lateral welding method for steel materials, characterized in that the welding is performed with the distance between the leading electrode and the following trailing electrode on each of the front and back sides being 50 to 150 mm.
前方に位置する電極の溶接電流を、対向面側先行電極の
溶接電流と同一またはそれよりも低くして溶接すること
を特徴とする特許請求の範囲第1項記載の鋼材の横向溶
接方法(2) Welding is performed by setting the welding current of the electrode located furthest forward in the direction of movement among the leading electrodes on the front and back sides to be the same as or lower than the welding current of the leading electrode on the opposing surface. Lateral welding method for steel materials according to claim 1
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4466885A JPS61206563A (en) | 1985-03-08 | 1985-03-08 | Horizontal welding method for steel materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4466885A JPS61206563A (en) | 1985-03-08 | 1985-03-08 | Horizontal welding method for steel materials |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61206563A true JPS61206563A (en) | 1986-09-12 |
Family
ID=12697823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4466885A Pending JPS61206563A (en) | 1985-03-08 | 1985-03-08 | Horizontal welding method for steel materials |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61206563A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016208131A1 (en) * | 2015-06-22 | 2016-12-29 | 川崎重工業株式会社 | Double-side submerged arc welding method |
-
1985
- 1985-03-08 JP JP4466885A patent/JPS61206563A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2016208131A1 (en) * | 2015-06-22 | 2016-12-29 | 川崎重工業株式会社 | Double-side submerged arc welding method |
TWI629134B (en) * | 2015-06-22 | 2018-07-11 | 川崎重工業股份有限公司 | Submerged arc welding method on both sides |
AU2016282010B2 (en) * | 2015-06-22 | 2018-12-06 | Kawasaki Jukogyo Kabushiki Kaisha | Double-side submerged arc welding method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS58119481A (en) | Laser beam melting welding method | |
US3171944A (en) | Method of submerged arc welding of fillet welds | |
CA1118056A (en) | Method for electroslag welding of metals | |
JPS61206563A (en) | Horizontal welding method for steel materials | |
CN106001867B (en) | Multi-electrode single-surface single-layer submerged arc soldering method | |
JPH0994658A (en) | One side butt welding method | |
JPS6448678A (en) | Method and equipment for narrow gap welding | |
JP4707949B2 (en) | Multi-electrode single-sided submerged arc welding method | |
US3566069A (en) | Cutting and gouging metal by air carbon-arc process | |
EP4501513A1 (en) | Narrow gap gas-shielded arc welding method and welding apparatus for narrow gap gas-shielded arc welding | |
JP6607677B2 (en) | Four-electrode single-sided single-layer submerged arc welding method | |
JP2646388B2 (en) | Gas shielded arc welding method | |
JPS61222683A (en) | Narrow gap submerged arc welding method | |
JP2001334377A (en) | Method of butt welding using laser beam and arc | |
JPS61266185A (en) | 2-electrode MIG welding method | |
US20240181553A1 (en) | Welding torch with wire electrode guide | |
SU1593851A1 (en) | Method of electroslag welding with consumable nozzle | |
JPS6335352B2 (en) | ||
JPS61206564A (en) | Three o'clock welding of steel material | |
JPH0263683A (en) | Mag welding method | |
JPS5976665A (en) | Gas cutting method of thin steel material | |
SU450670A1 (en) | The method of electroslag welding by melting the mouthpiece | |
JPS61232066A (en) | Narrow gap submerged arc welding method | |
JPH0215313B2 (en) | ||
SU1052356A1 (en) | Method of electroslag welding |