JPS61206564A - Three o'clock welding of steel material - Google Patents
Three o'clock welding of steel materialInfo
- Publication number
- JPS61206564A JPS61206564A JP4466985A JP4466985A JPS61206564A JP S61206564 A JPS61206564 A JP S61206564A JP 4466985 A JP4466985 A JP 4466985A JP 4466985 A JP4466985 A JP 4466985A JP S61206564 A JPS61206564 A JP S61206564A
- Authority
- JP
- Japan
- Prior art keywords
- welding
- electrodes
- difference
- electrode
- power source
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Butt Welding And Welding Of Specific Article (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
この発明は完全溶込みを必要とする横向突合せ継手にお
いて、溶接部の表、裏両面よ多電極を対向させて同時に
溶接を行なう鋼材の両面同時横向溶接法に関するもので
ある。Detailed Description of the Invention (Industrial Field of Application) This invention is applied to horizontal butt joints that require complete penetration, in which multiple electrodes are placed facing each other on both sides of the welded part to simultaneously weld both sides of the steel material. This relates to a simultaneous lateral welding method.
(従来の技術)
完全溶込みを必要とする横向き溶接においては第4図に
示すごと〈従来溶接部の片側の溶接を行ない、その溶接
部の反対側よシ斜線にて示す部分の裏はつシを実施して
、ルート部の部分Atjl)除いた後、当該部分の溶接
を実施する方法が知られている。しかし、この裏はつシ
の実施は、溶接材料費9作業費1期間費の増大をまねく
事から裏はつりをなくすことが要求されていた。このた
め両面同時横向き溶接を実現するために第5図に示すご
とく開先ルート部Aにすき間を設けて裏波溶接を可能と
しルート部人の溶込みを確保する方法、あるいは%開昭
57−139468号公報に示されている如く片側から
の溶接後、反対側からの沼込みが十分大きく、安定して
ラップ可能な様に片側のm接部の浴接金属11が凝固後
まだ高温である間に反対側から溶接金属12を浴接する
方法(第6図参照)などが採用されてきた。(Prior art) In horizontal welding that requires complete penetration, as shown in Fig. 4, conventional welding is carried out on one side of the weld, and the back welding is performed on the opposite side of the weld, indicated by diagonal lines. A method is known in which the root portion (Atjl) is removed by welding the root portion and then welding the root portion. However, implementation of this back hole increases the welding material cost, work cost, and period cost, so it has been required to eliminate the back hole. Therefore, in order to realize simultaneous horizontal welding on both sides, a method is proposed in which a gap is provided in the groove root part A as shown in Fig. 5 to enable back wave welding and ensure penetration of the root part. As shown in Japanese Patent No. 139468, after welding from one side, the welding from the other side is sufficiently large, and the bath metal 11 of the m-joint on one side is still at a high temperature after solidification so that stable lapping can be performed. A method has been adopted in which the weld metal 12 is bath-welded from the opposite side during the process (see FIG. 6).
しかし開先ルート部人にすき間を設けて裏波浴接を実施
する場合、ルート間隔の変動に対し非常に敏感でありル
ート間隔を一定範囲内に保持する必要がある。つまり、
ルート間隔が大き過ぎるとルート部Aの溶は落ちを生じ
、ルート間隔が小さ過ぎると裏波溶接が不可能となり、
このため反対側からの溶接において十分な溶込みが得ら
れない。However, when performing uranaba bathing with a gap provided between the groove root sections, it is very sensitive to variations in the root spacing, and it is necessary to maintain the root spacing within a certain range. In other words,
If the root spacing is too large, the welding in root part A will drop, and if the root spacing is too small, uranami welding will be impossible.
For this reason, sufficient penetration cannot be obtained when welding from the opposite side.
さらK、このルート間隔を適正範囲に保持する事は大型
構造物では非常に困難である。Furthermore, it is extremely difficult to maintain this root spacing within an appropriate range for large structures.
一方、反対側からの溶込みが十分大きく安定してラップ
可能な様に片側の溶接部の溶接金属が凝固後まだ高温で
ある間に反対側から溶接する方法においても、ルート間
隔の変動罠対し敏感であシ、ルート間隔を一定範囲に保
持する必要がある。また、この方法においてはルート部
Aの溶込みを完全に確保するために、浴込みの形状をコ
ントロールする必要があり、このために、精密な開先な
らいのための設備が必要となり、そのために設備費がか
さむなどの欠点を有している。さらにこの溶接法におい
ては十分大きな溶込みを確保するために大電流を必要と
し、電流容量の大きな溶接電源を必要とし、さらに設備
費の増大をきたすなどの問題を有してい友。On the other hand, in a method in which welding is performed from the opposite side while the weld metal on one side is still hot after solidification so that the penetration from the opposite side is large enough to enable stable lapping, there is a method to prevent fluctuations in root spacing. Sensitive, root spacing must be kept within a certain range. In addition, in this method, it is necessary to control the shape of the bath in order to ensure complete penetration of the root part A, which requires equipment for precise groove tracing. It has drawbacks such as high equipment costs. Furthermore, this welding method requires a large current to ensure a sufficiently large penetration, requires a welding power source with a large current capacity, and has problems such as increased equipment costs.
(発明が解決しようとする問題点)
本発明の目的とするところは、ルート間隔精度確保のた
めの特別な裏はつり作業が不要で、精密な開先ならいの
ための設備費および十分大きな溶込みを確保するための
特別の大容量電源を必要としない安価で安定性のある鋼
材の横向溶接法を提供しようとするものである。(Problems to be Solved by the Invention) The purpose of the present invention is to eliminate the need for special chiseling work to ensure root spacing accuracy, reduce equipment costs for precise groove tracing, and provide a sufficiently large penetration depth. The purpose of this project is to provide an inexpensive and stable horizontal welding method for steel materials that does not require a special large-capacity power source to ensure this.
(問題点を解決するための手段)
本発明は溶接継手部の表裏両面に電極を対向配置させて
溶接する多電極両面同時横向溶接法の初層溶接において
、表、裏それぞれの先行電極の電源特性、極性、および
ワイヤ径を同一とし、先行電極相互の進行方向における
電極間隔を0〜50mとし、先行電極相互間の溶接電流
差を10チ以内、溶接電圧差を2俤以内として溶接する
ことを特徴とする鋼材の横向溶接方法を要旨とする。(Means for Solving the Problems) The present invention provides a power source for the front and rear leading electrodes in the first layer welding of the multi-electrode double-sided simultaneous horizontal welding method in which electrodes are arranged opposite to each other on both the front and back sides of a weld joint. The characteristics, polarity, and wire diameter should be the same, the distance between the leading electrodes in the direction of movement should be 0 to 50 m, and the welding current difference between the leading electrodes should be within 10 inches, and the welding voltage difference should be within 2 inches. The gist of this paper is a horizontal welding method for steel materials, which is characterized by the following.
本発明の構成の詳細を第1図(a) (b)によシ説明
する。図において1,1′は横向き突合せ継手における
母材、2は表側の先行電極、3Fi裏側の先行電極、4
は表側の後行電極、5は裏側の後行電極である。これら
の各々の電極にはここでは図示しない溶接電源よシミ力
が供給される。溶接用のワイヤ6は溶接電源より電力を
供給され、母材1.11とワイヤ間に発生するアークに
よシアーク溶接される。The details of the configuration of the present invention will be explained with reference to FIGS. 1(a) and 1(b). In the figure, 1 and 1' are base materials in the horizontal butt joint, 2 is the leading electrode on the front side, 3 is the leading electrode on the back side, 4
5 is a trailing electrode on the front side, and 5 is a trailing electrode on the back side. A staining force is supplied to each of these electrodes by a welding power source (not shown). The welding wire 6 is supplied with electric power from a welding power source, and shear arc welding is performed by an arc generated between the base material 1.11 and the wire.
溶接部の大気からのシールドはシールドガスを用いても
フラックスを用いてもよい・
(発明の作用)
従来、表裏両面よ多電極を対向させて横向溶接する場合
、初鳴部では先行して進行する表、裏の電極の進行方向
の間隔が短かい場合、つまシ第1図において表側先行電
極2と裏側先行電極3との間隔が0〜50■の場合では
電極2と電極3の各々の電極による溶接金属が溶融状態
あるいは半溶融状類で接する。このため表側先行電極2
と裏側先行電極3で生じるアーク力の差によシ第3図に
示すように片方の開先側へ溶融状態の溶接金属が吹き飛
ばされてしまい両面が同時に仕上がらない。Shielding the welding area from the atmosphere can be done by using a shielding gas or a flux. (Function of the invention) Conventionally, when welding horizontally with multiple electrodes facing each other on both the front and back sides, welding progresses first at the initial welding part. When the distance between the front and back electrodes in the direction of movement is short, if the distance between the front side leading electrode 2 and the back side leading electrode 3 is 0 to 50 cm in Figure 1, each of the electrodes 2 and 3 The metal welded by the electrode comes into contact in a molten or semi-molten state. For this reason, the front side leading electrode 2
Due to the difference in arc force generated between the front electrode 3 and the back side leading electrode 3, the molten weld metal is blown off to one side of the groove, as shown in FIG. 3, and both sides cannot be finished at the same time.
このためこの様に表側先行電極2と裏側先行電極30間
隔が0〜50■での溶接の笑用化は行なわれずにきた。For this reason, it has not been possible to commercialize welding where the distance between the front side leading electrode 2 and the back side leading electrode 30 is 0 to 50 cm.
さて溶接金属を開先中央部で安定して形成させる条件と
しては表側先行電極と裏側先行電極の溶接時のアーク力
をほぼ同一にすれば良い。アーク溶接におけるアーク力
およびアーク圧力分布はワイヤ径、突出長さ、シールド
ガスあるいはフラックスを一定とすれば電流および電圧
が一定であれば同一となる。Now, as a condition for stably forming weld metal at the center of the groove, it is sufficient to make the arc force during welding of the front side leading electrode and the back side leading electrode almost the same. The arc force and arc pressure distribution in arc welding will be the same if the wire diameter, protrusion length, shielding gas, or flux are constant, and if the current and voltage are constant.
この様にアーク力のバランスを取って溶接金属を開先中
央部で安定して形成させるためには表側先行電極2と裏
側先行電極3の溶接用電源は同相とする必要がある。In order to balance the arc force in this way and stably form weld metal at the center of the groove, the welding power sources for the front side leading electrode 2 and the back side leading electrode 3 need to be in phase.
溶接金属の開先中央部での形成のための条件範囲は表側
先行電極と裏側先行電極で溶接電流で10%以内、溶接
電圧で2チ以内の差まで許容でき、第2図(、)に示す
ビード形状を得る事ができる。The range of conditions for forming weld metal at the center of the groove is that a difference of within 10% in welding current and within 2 inches in welding voltage can be tolerated between the leading electrode on the front side and the leading electrode on the back side, as shown in Figure 2 (,). The bead shape shown can be obtained.
また、このときのルート部の溶込み確保のための必要電
流は、45°のに型開先において表側先行電極と裏側先
行電極のアーク干渉効果によシ350八以上であpこの
際特に精度の高いならいは必要なく、0〜3mのルート
間隔にて溶接可能である。In addition, the required current to ensure penetration of the root part at this time is 3508 or more due to the arc interference effect of the front side leading electrode and the back side leading electrode at the 45° mold groove. There is no need for high tracing, and welding can be performed at a root spacing of 0 to 3 m.
本発明によれば従来法で450A程度必要としていたも
のに比較し電流を低くでき、かつ汎用電源使用による溶
接電源のコスト低下が計れる利点がある。According to the present invention, the current can be lowered compared to the conventional method, which requires about 450 A, and there is an advantage that the cost of the welding power source can be reduced by using a general-purpose power source.
表側および裏側電極による初層部の溶込みは第2図(&
)に示すごとく高温割れを生じ易い形状となる事から第
2図6)に示す様に表側および裏側にそれぞれ設けた後
行電極により溶接ビードを形成する事により凝固方向を
変化させ高温割れを防止する。この後行電極は片側−電
極である必要はなく、それ以上でもかまわない。この後
行電極にニジ、溶接能率の向上かにかれる事は言うまで
もない事である。The penetration of the initial layer by the front and back electrodes is shown in Figure 2 (&
) As shown in Figure 2, the shape is prone to hot cracking, so by forming weld beads using trailing electrodes on the front and back sides, as shown in Figure 2 (6), the direction of solidification is changed and hot cracking is prevented. do. This trailing electrode does not need to be a one-sided electrode, and may be more than one electrode. It goes without saying that this trailing electrode will greatly improve welding efficiency.
(実施例)
第1図に示す構成の装置により板厚19■の鋼材(8M
50C)の横向突合せ溶接を第1表に示す東件で笑施し
、第7図に模式的に示す如く充分良好な溶は込み及びi
−ド形状を得ることができた。(Example) A steel material with a thickness of 19mm (8M
Lateral butt welding of 50C) was carried out on the test case shown in Table 1, and as shown schematically in Figure 7, sufficient penetration and i
- It was possible to obtain a curved shape.
第 1 表
(発明の効果)
以上の様に本発明によれば、溶接前のルート間隔精度確
保のためのギャップ調整及び溶接後の裏はつりなどの特
別な作業が不要で精密な開先ならいのための設備費およ
び、十分大きな溶込みを確保するための特別の大容量電
源を必要としないため安価で安定性のある横向溶接が実
施でき、大きな経済的効果が得られるなどの極めて優れ
た効果を有する。Table 1 (Effects of the Invention) As described above, according to the present invention, there is no need for special operations such as gap adjustment to ensure root spacing accuracy before welding and chiseling after welding, and it is possible to form a precise groove profile. Since there is no need for equipment costs for this process or a special large-capacity power source to ensure a sufficiently large penetration, it is possible to perform horizontal welding at low cost and stability, resulting in extremely excellent effects such as large economic effects. has.
第1図(a)は本発明を実施する溶接装置の概要を示す
上面図、第1図伽)は同じく正面図、第2図(a)は本
発明による表側および裏側先行電極にょシ得られる溶接
ビードを示す説明図、第2図(b)は(a)にさらに重
ねて表側および裏側後行電極にょシ溶接ビードを積層し
た場合−得られる溶接ビードを示す説明図、第3図は第
1図の装置において表側先行電極と裏側先行電極に大き
なアーク力の差が生じた時に生じる不良ビードを示す図
、第4図は従来の片面からのみ溶接を実施する横向溶接
法の溶接要領を示す図、第5図は従来の横向溶接法の要
領を示す説明図、第6図は従来の横向き溶接法の要領を
示す説明図、第7図は実施例にょシ得られた横向溶接部
の溶込み状態を示す模式図(斜線部は初層)である。
第1図
(α)
(b)
第31 第4図
第5図 第6図FIG. 1(a) is a top view showing an outline of a welding apparatus for carrying out the present invention, FIG. An explanatory diagram showing a weld bead, Fig. 2(b) is an explanatory diagram showing a weld bead obtained when the front side and back side trailing electrodes are further stacked on top of (a), and Fig. 3 is an explanatory diagram showing the weld bead obtained. A diagram showing a defective bead that occurs when a large difference in arc force occurs between the front leading electrode and the back leading electrode in the device shown in Figure 1. Figure 4 shows the welding procedure of the conventional horizontal welding method in which welding is performed only from one side. Fig. 5 is an explanatory diagram showing the main points of the conventional horizontal welding method, Fig. 6 is an explanatory diagram showing the main points of the conventional horizontal welding method, and Fig. 7 is an explanatory diagram showing the main points of the conventional horizontal welding method. FIG. 2 is a schematic diagram showing a packed state (the shaded area is the first layer). Figure 1 (α) (b) Figure 31 Figure 4 Figure 5 Figure 6
Claims (1)
る多電極両面同時横向溶接法の初層溶接において、表、
裏それぞれの先行電極の電源特性、極性、およびワイヤ
径を同一とし、表、裏先行電極相互の進行方向における
電極間隔を0〜50mmとし、先行電極相互間の溶接電
流差を10%以内、溶接電圧差を2%以内として溶接す
ることを特徴とする鋼材の横向溶接方法。In the first layer welding of the multi-electrode double-sided simultaneous horizontal welding method, in which welding is performed by placing electrodes facing each other on both the front and back surfaces of the weld joint,
The power supply characteristics, polarity, and wire diameter of the leading electrodes on the back side are the same, the electrode interval in the direction of movement between the front and back leading electrodes is 0 to 50 mm, and the welding current difference between the leading electrodes is within 10%. A horizontal welding method for steel materials, characterized by welding with a voltage difference within 2%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4466985A JPS61206564A (en) | 1985-03-08 | 1985-03-08 | Three o'clock welding of steel material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4466985A JPS61206564A (en) | 1985-03-08 | 1985-03-08 | Three o'clock welding of steel material |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61206564A true JPS61206564A (en) | 1986-09-12 |
Family
ID=12697851
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4466985A Pending JPS61206564A (en) | 1985-03-08 | 1985-03-08 | Three o'clock welding of steel material |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61206564A (en) |
-
1985
- 1985-03-08 JP JP4466985A patent/JPS61206564A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US3171944A (en) | Method of submerged arc welding of fillet welds | |
JPS61206564A (en) | Three o'clock welding of steel material | |
GB1039313A (en) | Vertical welding process and apparatus therefor | |
CN203592236U (en) | Laser welding clamp of stainless steel sheet fillet weld | |
JPS5573479A (en) | Tandem system high speed arc welding method | |
SU1320030A1 (en) | Current-conducting nozzle | |
US2741689A (en) | Tungsten back-up bar | |
JPH02187272A (en) | First layer welding method for single-sided welding | |
JPS6245474A (en) | Narrow groove tig welding device | |
JP3256089B2 (en) | Non-consumable nozzle type electroslag welding method | |
JPS61206563A (en) | Horizontal welding method for steel materials | |
JPS5841946B2 (en) | Thick plate welding method in MIG welding | |
JPS61266185A (en) | 2-electrode MIG welding method | |
JPH0292464A (en) | Gas shielded arc high speed welding method | |
CN116960650A (en) | Terminal welding structure and welding process thereof | |
JPS6015068A (en) | Arc welding method | |
JPH01154899A (en) | Arc welding method | |
JPH0215313B2 (en) | ||
SU544526A1 (en) | Arc welding method | |
SU450670A1 (en) | The method of electroslag welding by melting the mouthpiece | |
JPS613667A (en) | Method of starting arc welding | |
JPS6160269A (en) | High speed tack welding | |
JPH04123876A (en) | Plasma keyhole welding method | |
JPH048146B2 (en) | ||
JPS61176475A (en) | Multielectrode submerging arc welding method |