[go: up one dir, main page]

JPS61232066A - Narrow gap submerged arc welding method - Google Patents

Narrow gap submerged arc welding method

Info

Publication number
JPS61232066A
JPS61232066A JP7102385A JP7102385A JPS61232066A JP S61232066 A JPS61232066 A JP S61232066A JP 7102385 A JP7102385 A JP 7102385A JP 7102385 A JP7102385 A JP 7102385A JP S61232066 A JPS61232066 A JP S61232066A
Authority
JP
Japan
Prior art keywords
welding
groove
electrode
submerged arc
trailing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7102385A
Other languages
Japanese (ja)
Inventor
Akitomo Sueda
明知 末田
Isao Sugioka
杉岡 勲
Masao Kamata
政男 鎌田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7102385A priority Critical patent/JPS61232066A/en
Publication of JPS61232066A publication Critical patent/JPS61232066A/en
Pending legal-status Critical Current

Links

Landscapes

  • Arc Welding In General (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、板厚30〜120fi程度の鋼板を両側から
多層溶接する場合において、溶接施工時間の短縮、溶接
材料の節減を可能とし、もって高能率化、省力化を実現
する狭開先潜弧溶接法に関するものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention enables shortening of welding time and saving of welding materials when multi-layer welding steel plates with a thickness of approximately 30 to 120 fi from both sides. This article relates to a narrow gap submerged arc welding method that achieves high efficiency and labor savings.

(従来の技術) 狭開先潜弧溶接法は、能率および経済性のすぐれた溶接
施工法として近来注目されて来ており、実際の溶接施工
にも積極的に採り入れられている。
(Prior Art) Narrow gap submerged arc welding has recently been attracting attention as a highly efficient and economical welding method, and has been actively adopted in actual welding.

しかしながら、これら狭開先溶接法はU型開光を用いる
関係上、極厚鋼の溶接の場合には、開先断面積の減少に
よる溶接材料、工数の節減効果が太きいが、板厚120
1111!以下の中程度の厚板の場合には、開先加工費
が高価な割に、開先断面積の減少量が少な(、狭開先化
の効果が不十分であった。
However, since these narrow gap welding methods use a U-shaped beam opening, when welding extra-thick steel, the reduction in welding material and man-hours due to the reduction in the groove cross-sectional area is significant;
1111! In the case of the following medium-thick plates, the amount of decrease in the groove cross-sectional area was small (the effect of narrowing the groove was insufficient) although the groove processing cost was high.

また、これらは狭い開先内での溶接であり、入熱量の限
定された溶接条件となるため溶は込みが浅≦フイニツシ
ングパス(以下FPとい5)側の溶接に際しては、裏は
つりを行う必要があった。
In addition, these welds are performed within a narrow groove, and the welding conditions are limited to the amount of heat input. It needed to be done.

一般に、溶接施工における裏はつり作業は、溶接とは別
のラインで実施されることが多く、裏はつり自体に工数
を要することに加え、玉掛作業やクレーン待ちに要する
時間も、かなりなものと考えねばならない。
In general, the back chisel work in welding construction is often carried out on a separate line from the welding process, and in addition to the man-hours required for the back chisel itself, the time required for sling work and waiting for the crane is considered to be considerable. Must be.

また、裏はつりをアークエアガウジングにより行う場合
には、その後のグラインダ一作業をも含めて騒音や粉塵
の発生が多(、作業環境上も問題視され、裏はつりをし
なくてもよい狭開先潜弧溶接法が望まれていた。
In addition, when back lifting is performed using arc air gouging, the subsequent work with the grinder also generates a lot of noise and dust. Pre-submerged arc welding was desired.

このような観点から、本発明者らは先に特開昭57−5
8982号公報において、開先加工が容易なXあるいは
Y型開先を用いる中厚鋼板向きの狭開先潜弧溶接法につ
いて提案を行ったが、これはバッキングパス(以下BP
という)側溶接金属の底部に形成される未溶融部を、裏
はつりによって除去する必要があるため、前述のように
、それに時間と費用を要するばかりでなく、開先断面積
をも大きくする結果となっていた。
From this point of view, the present inventors have previously
In Publication No. 8982, we proposed a narrow-gap submerged arc welding method for medium-thickness steel plates using an X- or Y-shaped groove that is easy to process.
It is necessary to remove the unfused part that forms at the bottom of the side weld metal (referred to as ``groove welding'') by back lifting, which not only requires time and expense, but also increases the cross-sectional area of the groove. It became.

またこの提案では、裏はつりを行わずに、BP側溶接金
属底部の未溶融部を、FP側溶接金属の溶は込みによっ
て、溶融除去することが可能であるが、反面この場合に
は、ルートフェース部が、BP側に偏ったX型開先や、
FP側に開先を採らないY型やY型開先を用いる関係上
、板厚の割に開先断面積が大きくなるばかりでな(、B
P側に偏った溶接−ミス数となるため、溶接歪みが太き
(なるなどの問題点があった。
In addition, in this proposal, it is possible to melt and remove the unmelted part at the bottom of the BP side weld metal by welding in the FP side weld metal without performing back lifting. An X-shaped groove where the face part is biased towards the BP side,
Due to the use of a Y-shaped groove or a Y-shaped groove without a groove on the FP side, the groove cross-sectional area becomes large compared to the plate thickness (, B
Since the number of welding errors was biased towards the P side, there were problems such as large welding distortions.

(発明が解決しようとする問題点) 本発明の目的は、開先加工費の安価なX型開先を用いる
狭開先潜弧溶接法における以上のような問題点を解消し
、裏はつりすることなく、FP側の溶接が可能で、より
経済的、能率的な狭開先潜弧溶接方法を提供することに
ある。
(Problems to be Solved by the Invention) The purpose of the present invention is to solve the above-mentioned problems in the narrow-gap submerged arc welding method using an X-shaped groove, which requires low groove processing costs, and to remove the back side. It is an object of the present invention to provide a more economical and efficient narrow gap submerged arc welding method that enables welding on the FP side without any problems.

(問題点を解決するための手段) 本発明の要旨とするところは、X型開先を用いて、裏は
つりすることなく行う厚鋼板の突合せ多層盛潜弧溶接す
るに際し、バッキング/ミス側開先角度30〜50°、
フイニツシングパス側開先角度45〜60°、ルートフ
ェイス511aR以下として、電極間距離を40〜80
rrr!nの2電極で、先行電極および後行電極の電流
、電圧を下記の条件にし、溶接速度30〜60ω1/c
m、溶接入熱量をバッキング側30〜50KJ/a!I
&、フイニツシングパス側40〜60KJ10fnなる
溶接条件で、少なくともバッキングパス側およびフイニ
ツシングパス側の各々第1層目の溶接をすることを特徴
とする狭開先潜弧溶接方法にある。
(Means for Solving the Problems) The gist of the present invention is that when performing butt multilayer latent arc welding of thick steel plates using an Tip angle 30~50°,
The groove angle on the finishing path side is 45 to 60 degrees, the root face is 511aR or less, and the distance between electrodes is 40 to 80 degrees.
rrr! With two electrodes of n, the current and voltage of the leading electrode and trailing electrode are set to the following conditions, and the welding speed is 30 to 60 ω1/c.
m, the welding heat input is 30 to 50 KJ/a on the backing side! I
A narrow gap latent arc welding method is characterized in that at least the first layer on each of the backing pass side and the finishing pass side is welded under welding conditions of 40 to 60KJ10fn on the finishing pass side.

(1) AL = (125・D+250)±150(
2J AL −AT =100〜250(3)VL<2
9 (4)VT<31 (5)  VL+VT = 48〜56但し AL:先行電極電流(アンペア) D :先行電極使用ワイヤ径(叫) AT:後行電極電流 VL:先行電極電圧(ボルト) ■T:後行電極電圧 本発明は、前記問題点を解決するためBP側および裏は
つりを行うことなく、FP側の溶接が可能となるように
、各々第1層目の溶接条件について詳細に検討した。
(1) AL = (125・D+250)±150(
2J AL -AT = 100~250 (3) VL<2
9 (4) VT<31 (5) VL+VT = 48~56 However, AL: Leading electrode current (ampere) D: Leading electrode used wire diameter (scream) AT: Trailing electrode current VL: Leading electrode voltage (volt) ■T : Trailing electrode voltage In order to solve the above-mentioned problems, the present invention has examined in detail the welding conditions for each first layer so that welding on the FP side can be performed without performing reversing on the BP side and the back side. .

従来X型開先の多層盛溶接では、一般的にBP側第1層
目に生ずる高温割れを防ぐため、広い開先でかつ低電流
、低速度で能率を犠牲にした単電極溶接が行なわれてい
る。
In conventional multi-layer welding with an X-shaped groove, in order to prevent hot cracking that occurs in the first layer on the BP side, single-electrode welding is performed with a wide groove, low current, and low speed, sacrificing efficiency. ing.

さらにFP側の溶接に際しては、BP側の溶は込み深さ
が、低電流、低速度の溶接条件のため浅くなり、BP側
開先底部程度まで裏はつりする必要があるため、前述の
ように、それに時間と費用を要するばかりでなく、さら
に開先断面積をも大きくする結果となっていた。
Furthermore, when welding the FP side, the penetration depth on the BP side becomes shallow due to the low current and low speed welding conditions, and it is necessary to lift the back side to the bottom of the groove on the BP side, so as mentioned above, This not only requires time and cost, but also results in an increase in the cross-sectional area of the groove.

本発明者らは、まず、開先角度を狭くして単電極で検討
した結果、従来性なわれていた低電流、低速度の条件で
は、溶接金属が開先底部までとどかず、未溶融部ができ
ることから、融合不良が生じることがわかった。比較的
高電流にすると、ビード形状が凸状となるとともに、高
温割れが発生した。
The inventors first investigated using a single electrode with a narrow groove angle, and found that under the conventional low current and low speed conditions, the weld metal did not reach the bottom of the groove, and the unfused area It was found that poor fusion occurs due to the formation of When a relatively high current was used, the bead shape became convex and hot cracking occurred.

ビード形状を良好とし、高温割れを防ぐため、高電圧と
するとスラグはく離性が悪くなるとともに、溶接金属が
開先底部までとどかず未溶融部ができることから、融合
不良が生じた。また比較的低電流で低電圧にすると、融
合不良は生じないもののビード形状が凸状となり、これ
による高温割れが発生するなどの問題があることがわか
った。
In order to obtain a good bead shape and prevent high-temperature cracking, high voltage was applied, which resulted in poor slag removal and the formation of an unfused area as the weld metal did not reach the bottom of the groove, resulting in poor fusion. It has also been found that when a relatively low current and low voltage is used, although no fusion failure occurs, the bead shape becomes convex, which causes problems such as high-temperature cracking.

そこで、電極数を2電極とし、先行電極で発生した高温
割れを、後行電極で再溶融して消すと同時に、スラグは
く離性が良好で、かつ溶は込み深さが大きく、融合不良
が生じない溶接方法について種々検討した。
Therefore, the number of electrodes was changed to two, and the hot cracks that occurred at the leading electrode were remelted and erased at the trailing electrode. At the same time, the slag removability was good, and the penetration depth was large, resulting in poor fusion. Various welding methods were investigated.

その結果、まず電極間距離を、60#程度とすること、
そして先行電極電流(以下ALという)を、先行電極使
用ワイヤ径(以下りという)により決定し、後行電極電
流(以下ATという)を、ALより200A程度低(す
ること、また特に両極の電圧を、従来性なわれていた電
圧より大幅に低くすること、および溶接速度、溶接入熱
量をある範囲とすることにより、ビード形状、スラグは
く離性が良好で、高温割れのない第1層目の溶接が可能
となった。
As a result, first, the distance between the electrodes was set to about 60#,
Then, the leading electrode current (hereinafter referred to as AL) is determined by the diameter of the wire used in the leading electrode (hereinafter referred to as RI), and the trailing electrode current (hereinafter referred to as AT) is determined to be approximately 200 A lower than AL. By lowering the welding voltage significantly lower than conventionally used voltage, and by setting the welding speed and welding heat input within a certain range, the first layer has a good bead shape, good slag releasability, and no hot cracking. Welding is now possible.

さらに、ルートフェイスは融合不良が生じないよう小さ
い方が良い。ただし、BP側開先角度が広すぎ、また溶
接入熱量が高すぎると、溶接金属が溶は落ちるので、B
P側開先角度は狭くするとともに、溶接入熱量をある範
囲とし、溶接金属が開先底部先端までの溶は込み量とな
るようにする必要がある。
Furthermore, the root face should be small to avoid fusion failure. However, if the groove angle on the BP side is too wide or the welding heat input is too high, the weld metal will melt and the B
It is necessary to narrow the P-side groove angle, keep the welding heat input within a certain range, and ensure that the weld metal penetrates to the bottom tip of the groove.

FP側開先角度は、ルートフェイスを完全に溶かす必要
があるため、開先断面積を太きくしない程度に、BP側
開先角度より広くする必要がある。
Since it is necessary to completely melt the root face, the FP side groove angle needs to be wider than the BP side groove angle so as not to increase the groove cross-sectional area.

また溶接入熱量も、ルートフェイスを完全に溶かすよ5
BP側溶接人熱量より高目とする必要がある。
Also, the amount of welding heat input will completely melt the root face5.
It is necessary to set the amount of heat higher than that of the welder on the BP side.

以上の要件を満たすことにより、融合不良を生ずること
なく、BP側およびFP側第1層目の溶接が可能な方法
を見い出し、本発明をなしたものである。
By satisfying the above requirements, we have found a method that allows welding of the first layer on the BP side and the FP side without causing fusion failure, and have accomplished the present invention.

(作用) 以下に本発明について詳細に説明する。(effect) The present invention will be explained in detail below.

開先形状をX型開先としたのは、開先加工が容易である
ことと、YもしくはV型の開先では、板厚の割に開先断
面積が太き(なるばかりでなく、BP側に偏った溶接パ
ス数となり、歪が大きくなることによる。
The reason why the groove shape is an X-shaped groove is that it is easy to process the groove, and with a Y or V-shaped groove, the cross-sectional area of the groove is large (not only large) in relation to the plate thickness. This is because the number of welding passes is biased toward the BP side, resulting in increased distortion.

BP側開先角度については、30°未満では、開先底部
までの溶は込みを得るのが困難となる。逆に50°を超
えた場合には、開先断面積が大きくなり、狭開先化によ
る経済的効果が減少し、さらに溶接金属が溶は落ちる。
Regarding the BP side groove angle, if it is less than 30°, it will be difficult to obtain melt penetration to the bottom of the groove. On the other hand, if the angle exceeds 50°, the groove cross-sectional area becomes large, the economic effect of narrowing the groove decreases, and furthermore, the weld metal melts.

FP側開先角度については、FP側溶接においては、ル
ート部に融合不良を生じさせないよ5、BP側よりさら
に深い溶は込みを確保するため、BP側開先角度より広
い45〜60’の範囲とする必要がある。
Regarding the FP side groove angle, in FP side welding, in order to avoid fusion failure at the root part 5, and to ensure deeper weld penetration than the BP side, the groove angle is 45 to 60' wider than the BP side groove angle. It needs to be within the range.

すなわち、FP側開先角度が、45°未満ではFP側と
して、必要な深い溶は込みが得られず、逆に60°を超
えた場合には、開先断面積が大きくなりすぎ、狭開先溶
接としての特徴を失うことによる。ルートフェイスの寸
法については、58以下とする必要がある。5Wanを
超えると融合不良が生じろ。
In other words, if the groove angle on the FP side is less than 45°, it will not be possible to achieve the deep penetration necessary for the FP side, and if it exceeds 60°, the cross-sectional area of the groove will become too large, resulting in a narrow opening. This is due to the loss of the characteristics of pre-welding. The dimension of the root face must be 58 or less. If it exceeds 5Wan, poor fusion will occur.

次に、電極間距離を40〜80閣とした点であるが、こ
れは先行電極による溶接金属が、凝固する直前の位置に
後行電極を配置し、先行電極により発生した高温割れを
、後行電極で再溶融除去して消して行くとともに、後行
電極により形成されたビード自体にも、高温割れを発生
させず、アークを安定に保ち、ビード形状を良好にする
ための必要条件となる。
Next, the distance between the electrodes was set to 40 to 80 degrees. This is because the trailing electrode is placed just before the weld metal solidified by the leading electrode, and the hot cracks caused by the leading electrode are removed after the weld metal is solidified. In addition to being remelted and removed by the row electrode, the bead itself formed by the trailing electrode does not generate hot cracks, which is a necessary condition for keeping the arc stable and improving the bead shape. .

電極間距離が40ffll11未満であると、溶融プー
ルが1プールとなり、凝固後の柱状晶が1つになること
から、単電極で溶接した場合と同様、高温割れが発生子
る。逆に80113を超えると、溶融プールが2プール
となり、後行電極による溶は込みが浅(なることにより
、先行電極で発生した高温割れを後行電極で再溶融除去
し消して行くことが出来なくなるとともに、先行電極に
より生成されたスラグが固化し始めるので、後行電極の
アークが不安定となり、スラグ巻込み欠陥も発生する。
If the distance between the electrodes is less than 40 ffll11, there will be one molten pool and one columnar crystal after solidification, so hot cracking will occur as in the case of welding with a single electrode. On the other hand, when it exceeds 80113, there are two molten pools, and the weld penetration by the trailing electrode becomes shallow (as a result, the hot cracks that occurred in the leading electrode can be remelted and removed by the trailing electrode and eliminated). As the slag disappears, the slag generated by the leading electrode begins to solidify, making the arc of the trailing electrode unstable and causing slag entrainment defects.

また、ALを使用ワイヤ径により、(125・D+25
0)±150としたのは、DおよびALを種々かえて、
実験的に得られられたものである。すなわち、AL<(
125・D+250)−150となると、溶は込み深さ
が浅くなり、BP側では未溶融部が残り、FP側ではル
ートフェイスを溶かしきらず、融合不良が生じる。逆に
AL>(125・D+250)+150となると、高温
割れの深さが大きくなり、後行電極により再溶融し、消
すことができなくなる。
Also, depending on the wire diameter used with AL, (125・D+25
0) ±150 was achieved by changing D and AL variously.
This was obtained experimentally. That is, AL<(
125·D+250)-150, the melt penetration depth becomes shallow, an unmelted part remains on the BP side, and the root face is not completely melted on the FP side, resulting in poor fusion. On the other hand, when AL>(125·D+250)+150, the depth of the hot crack increases, it is remelted by the trailing electrode, and cannot be erased.

先行電極使用ワイヤ径に対するALを示すと、次表のよ
うになる。
The following table shows the AL for the diameter of the wire used in the preceding electrode.

なお、先行電極使用ワイヤ径は、3.2〜4.8間が好
ましい。3.2m1未満であると、深い溶は込みは得ら
れるものの、高温割れの深さも大きくなり、後行電極に
より再溶融して消すことができない場合がある。4.8
間を超えると、アークが開先側壁との間で発生し、開先
底部まで溶接金属がとどかず、BP側では未溶融部が残
り、FP側ではルートフェイスを溶かしきらず、融合不
良を生じる。
Note that the diameter of the wire used in the preceding electrode is preferably between 3.2 and 4.8. If it is less than 3.2 m1, deep melt penetration can be obtained, but the depth of hot cracks also becomes large, and it may not be possible to erase them by remelting with the trailing electrode. 4.8
If the gap is exceeded, an arc will occur between the groove sidewalls, the weld metal will not reach the bottom of the groove, an unmelted part will remain on the BP side, and the root face will not be completely melted on the FP side, resulting in poor fusion.

AL−AT=100〜250としたのは、100未満で
あると、ATが高すぎ先行電極により発生した高温割れ
は再溶融され消えるものの、後行電極による高温割れが
発生する。250を超えるとATが低くすぎ、先行電極
により発生した高温割れを再溶融して消すことができな
い。
The reason for setting AL-AT to 100 to 250 is that when AT is less than 100, the AT is too high and hot cracks generated by the leading electrode are remelted and disappear, but hot cracking occurs by the trailing electrode. If it exceeds 250, the AT is too low and the hot cracks generated by the preceding electrode cannot be removed by remelting.

さらに、先行電極電圧(以下VLという)および後行電
極電圧(以下VTという)を、従来性なわれていた電圧
より大幅に下げたVL<29、V+ <31としたのは
、まずVL>29となると、溶は込み深さが浅くなり、
BP側では溶接金属が直光底部までとどかず未溶融部が
残り、FP側ではルートフェイスを溶かしきらず融合不
良が生じる。VT > 31となると、スラグ量が多(
なるとともに、アンダーカットが発生口、スラグはく離
性が不良となる。
Furthermore, the reason why we set the leading electrode voltage (hereinafter referred to as VL) and the trailing electrode voltage (hereinafter referred to as VT) to VL<29 and V+<31, which are significantly lower than the conventional voltages, is because VL>29 Therefore, the penetration depth of the melt becomes shallow,
On the BP side, the weld metal does not reach the bottom of the direct light, leaving an unmelted part, and on the FP side, the root face is not completely melted, resulting in poor fusion. When VT > 31, the amount of slag is large (
At the same time, the undercut becomes a generation hole and the slag removability becomes poor.

VL+VT=48〜56としたのは、48未満テハビー
ドが凸状となり、これによる高温割れが発生する。56
を超えると、スラグ量が多くなることと、アンダーカッ
トが発生することにより、スラグはく離性が悪(なると
ともに、BP側では未溶融部が残り、FP側ではルート
フェイスを溶かしきらず融合不良が生じる。
The reason why VL+VT=48 to 56 is that a Teja bead of less than 48 becomes convex, which causes hot cracking. 56
If this value is exceeded, the amount of slag will increase and undercuts will occur, resulting in poor slag removal properties (as well as unmelted parts remaining on the BP side and failure to melt the root face on the FP side, resulting in poor fusion). .

溶接速度は30〜60(至)7膳である必要がある。The welding speed must be 30 to 60 (up to) 7 times.

30 tjfn/m未満であると、先行電極による溶融
金属が溶−液通行方向に先行し、アークがその溶融金属
上に発生することから、溶は込み深さが得られず、BP
側では未溶融部が残り、FP側ではルートフェイスを溶
かしきらず融合不良が生じる。60η1を超えると、後
行電極により形成されたビードに高温割れが発生する。
If it is less than 30 tjfn/m, the molten metal caused by the leading electrode will advance in the direction of solution flow, and an arc will be generated on the molten metal, making it impossible to obtain a sufficient penetration depth, resulting in BP
An unfused portion remains on the side, and the root face is not completely melted on the FP side, resulting in poor fusion. If it exceeds 60η1, hot cracking will occur in the bead formed by the trailing electrode.

溶接入熱量は、先行電極と後行電極の合計で、BP側は
30〜50 KJ/ayb 、 F P側は40〜60
KJ/eである必要がある。BP側溶接人熱量が30 
KJ10In未満であると、アークが開先底部までとど
かず、未溶融部が残る。50 KJloRを超えると、
溶接金属が溶は落ちる。またCu板等の真当材で溶は落
ち防止をしても、スラグ量が多くなるとともに、アンダ
ーカットが発生し、スラグはく離性が不良となる。
The welding heat input is the total of the leading electrode and trailing electrode, and is 30 to 50 KJ/ayb on the BP side and 40 to 60 KJ/ayb on the FP side.
Must be KJ/e. The heat value of the welder on the BP side is 30
If KJ is less than 10 In, the arc will not reach the bottom of the groove, leaving an unfused portion. If you exceed 50 KJloR,
The weld metal will melt. Further, even if the melt is prevented from falling off using a backing material such as a Cu plate, the amount of slag increases and undercuts occur, resulting in poor slag removability.

PP側大人熱量40 KJ/e未満であると、ルートフ
ェイスを溶かしきらず融合不良が生じる。60KJ /
anを超えると、スラグ量が多くなるとともに、アンダ
ーカットが発生し、スラグはく離性が不良となる。
If the adult heat value on the PP side is less than 40 KJ/e, the root face will not be completely melted and poor fusion will occur. 60KJ/
If it exceeds an, the amount of slag increases and undercuts occur, resulting in poor slag releasability.

また、当然のことながら、BP側およびFP側第2層目
以後も、第1層目と同一条件で溶接可能であるが、第1
層目のように溶は込み深さを得る必要がないこと、およ
び耐高温割れ性もほとんど考慮する必要がないことより
、従来より行なわれている単電極および2電極の条件で
施工できる。
Naturally, the second and subsequent layers on the BP side and FP side can also be welded under the same conditions as the first layer, but the
Since there is no need to obtain a melt penetration depth like a layer, and there is almost no need to consider hot cracking resistance, construction can be performed under the conventional single-electrode and two-electrode conditions.

なお、ガスシールドアーク溶接あるいは被覆アーク溶接
による仮付溶接をする場合、BP側またはFP側のいず
れか一方に、開先底部より7+mまでなら本発明法を害
することはないが、71Iolを超えると、溶は込み深
さが洩くなり、融合不良を生じるようになる。
In addition, when performing tack welding by gas-shielded arc welding or shielded arc welding, the method of the present invention will not be adversely affected if it is applied up to 7+m from the bottom of the groove on either the BP side or the FP side, but if it exceeds 71 Iol, , the penetration depth of the melt becomes leaky, resulting in poor fusion.

また、本発明法に用いるフラックスとしては、浴接電圧
が低くてもアークが安定することと、ビード形状および
スラグはく離性が良好である必要があり、主成分として
重量%で、5ift : 10〜24チ、A40xおよ
びTi1tの1種又は2種=8〜55チ、金属弗化物:
3〜16%、CaO: 10〜30%、MgO: 15
〜35%、金属粉:15%以下でかつ、とくに低溶接電
圧条件で、アークが安定に保てるよう前記組成の他に、
金属炭酸塩をCO2換算値で3.5〜12%添加されて
いる焼成型7ラツクスであることが好ましい。
In addition, the flux used in the method of the present invention must have a stable arc even when the bath contact voltage is low, and have good bead shape and slag releasability. 24 chi, one or both of A40x and Ti1t = 8 to 55 chi, metal fluoride:
3-16%, CaO: 10-30%, MgO: 15
~35%, metal powder: 15% or less, and in addition to the above composition, in order to keep the arc stable especially under low welding voltage conditions,
Preferably, it is a fired type 7 lux to which 3.5 to 12% of metal carbonate is added in terms of CO2.

(実施例) 以下に本発明を実施例により具体的に説明する。(Example) The present invention will be specifically explained below using examples.

第1表に示すフラックスF−1およびF−2を、第2表
に示すワイヤW−1およびW−2と組合せ、第1図に示
す形状の開先を用いて、第3表に示す板厚501EII
の5M−50B鋼および板厚75+o+1100關のA
316Gr70鋼を、第4表に示すそれぞれの溶接条件
により、BP側およびFP側の第1層目の溶接を行った
By combining fluxes F-1 and F-2 shown in Table 1 with wires W-1 and W-2 shown in Table 2, and using a groove having the shape shown in FIG. Thickness 501EII
5M-50B steel and plate thickness 75+o+1100A
The first layer of 316Gr70 steel on the BP side and the FP side was welded under the respective welding conditions shown in Table 4.

ビード表面に高温割れやアンダーカットがな(、スラグ
はく離性の良好であったものにつき、BP側、FP側の
第2層目以後を、電極間距離10〜8Offl!11の
2電極で、AL : 500〜700A、AT :45
0〜700A%VL:26〜32v1VT:26〜34
V、溶接速度: 40〜60va/= 、 溶接入熱量
・:35〜45 KJ/h11bの溶接条件で、多層盛
溶接し、X線透過試験により、継手の健全性を確認した
For those with no hot cracks or undercuts on the bead surface (and good slag releasability), the second layer and subsequent layers on the BP side and FP side were AL : 500-700A, AT: 45
0~700A%VL:26~32v1VT:26~34
Multilayer welding was performed under welding conditions of V, welding speed: 40 to 60 va/=, welding heat input: 35 to 45 KJ/h11b, and the soundness of the joint was confirmed by an X-ray transmission test.

なお、使用ワイヤ径は先行電極、後行電極とも同一ワイ
ヤ径で実施した。それらの結果を第4表に示す。
Note that the wire diameter used was the same for both the leading electrode and the trailing electrode. The results are shown in Table 4.

すなわち、本発明法に基づく試験例1.2.3.4およ
び5は、高温割れやアンダーカットなど溶接欠陥がなく
、スラグはく離性も良好で融合不良もなく、溶接パス数
も少ないなど、極めて経済的で健全な溶接継手が得られ
た。
In other words, Test Examples 1.2.3.4 and 5 based on the method of the present invention had extremely good results, such as no welding defects such as hot cracking or undercuts, good slag peelability, no fusion defects, and a small number of welding passes. An economical and sound welded joint was obtained.

これに対し、比較例中試朕例6は、BP側の開先角度が
狭いため融合不良が生じた。試験例7は、FP側の開先
角度が狭いため融合不良が生じた。
On the other hand, in Trial Example 6 of the comparative examples, poor fusion occurred because the groove angle on the BP side was narrow. In Test Example 7, poor fusion occurred because the groove angle on the FP side was narrow.

試験例8は、BP側開先角度が広いため、BP側第1層
目で溶接金属が溶は落ちた。
In Test Example 8, since the groove angle on the BP side was wide, the weld metal melted away in the first layer on the BP side.

試験例9は、BP側およびFP側とも開先角度が広いが
、FP側にCu板を当てたため、溶は落ちはなかったも
のの、溶接パス数が多く、能率および経済性が劣る。試
験例10は、ルートフェイスが太きいため、融合不良が
生じた。試験例11は、BP側のALが低いため融合不
良が生じた。試験例12は、FP側のALが高いため、
X線透過試験で高温割れがみられた。
In Test Example 9, the groove angle was wide on both the BP side and the FP side, but since the Cu plate was applied to the FP side, although the melt did not drop, the number of welding passes was large, resulting in poor efficiency and economy. In Test Example 10, the root face was thick, so poor fusion occurred. In Test Example 11, poor fusion occurred because the AL on the BP side was low. Test example 12 has a high AL on the FP side, so
High temperature cracking was observed in the X-ray transmission test.

試験例13は、AL −ATが小さいため、ビード表面
に高温割れが発生した。またVTが高いため、アンダー
カットが発生し、スラグは(離性も不良となった。試験
例14は、FP側のAL −ATが太きいため、X線透
過試験で高温割れが見られた。
In Test Example 13, high-temperature cracking occurred on the bead surface because AL-AT was small. In addition, due to the high VT, undercutting occurred, and the slag had poor release properties.In Test Example 14, because the AL-AT on the FP side was thick, hot cracking was observed in the X-ray transmission test. .

試験例15は、BP側のVLが高いため、融合不良が生
じた。試験例16は、VL + VTが低いためビード
が凸ビードとなり、表面に高温割れも発生した。試験例
17は、VL + VTが高いため、アンダーカットが
発生し、スラグはく離性が不良となった。
In Test Example 15, poor fusion occurred because the VL on the BP side was high. In Test Example 16, the bead became a convex bead due to low VL + VT, and hot cracking also occurred on the surface. In Test Example 17, since VL + VT was high, undercut occurred and the slag releasability was poor.

また溶接速度が早いため、ビード表面に高温割れも発生
した。
Also, because the welding speed was high, hot cracks also occurred on the bead surface.

試験例18は、BP側の溶接速度が遅いため融合不良が
生じた。試験例19は、BP側大人熱量低いため融合不
良が生じた。試験例20は、BP側大入熱量高いためア
ンダーカットが発生し、スラグはく離性が不良となった
。また電極間距離が短かいためビード表面に高温割れも
発生した。
In Test Example 18, poor fusion occurred because the welding speed on the BP side was slow. In Test Example 19, poor fusion occurred due to low adult calorific value on the BP side. In Test Example 20, undercut occurred due to the high heat input on the BP side, resulting in poor slag releasability. Also, because the distance between the electrodes was short, hot cracks also occurred on the bead surface.

試験例21は、FP側大人熱量低いため融合不良が生じ
た。試験例22は、FP側大人熱量高いため、アンダー
カットが発生しスラグはく離性が不良となった。試験例
23は、BPP電極間距離が長いため、後行電極が不安
定となるとともに、X線透過試験で、高温割れおよびス
ラグ巻込みも見られた。
In Test Example 21, poor fusion occurred due to low adult calorific value on the FP side. In Test Example 22, since the adult heat value on the FP side was high, undercutting occurred and the slag releasability was poor. In Test Example 23, since the distance between the BPP electrodes was long, the trailing electrode became unstable, and hot cracking and slag entrainment were also observed in the X-ray transmission test.

第  1  表 第  2  表 第  3  表 (発明の効果) 以上の実施例でも明らかなように、本発明法は溶接欠陥
の発生もなく、溶接パス数の減小、溶接材料の節減が可
能で、溶接コストの大幅な削減が期待でき、本発明の工
業的価値は極めて高いものである。
Table 1 Table 2 Table 3 (Effects of the invention) As is clear from the above examples, the method of the present invention does not cause welding defects, reduces the number of welding passes, and saves welding materials. A significant reduction in welding costs can be expected, and the industrial value of the present invention is extremely high.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は実施例に用いた開先形状を示す説明図である。 t:板厚       θB:BP側開先角度t+:B
P側開先深さ  θF:FP側開先角度tz:FP側開
先深さ R:ルートフエイス
FIG. 1 is an explanatory diagram showing the groove shape used in the example. t: Plate thickness θB: BP side groove angle t+: B
P side groove depth θF: FP side groove angle tz: FP side groove depth R: Root face

Claims (1)

【特許請求の範囲】 X型開先を用いて裏はつりすることなく行う厚鋼板の突
合せ多層盛潜弧溶接するに際し、バッキングパス側開先
角度30〜50°、フイニツシングパス側開先角度45
〜60°、ルートフェイス5mm以下として、電極間距
離を40〜80mmの2電極で、先行電極および後行電
極の電流、電圧を下記の条件にし、溶接速度30〜60
cm/mm、溶接入熱量を、バッキングパス側30〜5
0KJ/cm、フイニツシングパス側40〜60KJ/
cmなる溶接条件で、少なくともバッキングパス側およ
びフイニツシングパス側の各々第1層目の溶接をするこ
とを特徴とする狭開先潜弧溶接方法。 (1)A_L=(125・D+250)±150 (2)A_L−A_T=100〜250 (3)V_L≦29 (4)V_T≦31 (5)V_L+V_T=48〜56 但し A_L:先行電極電流(A) D:先行電極使用ワイヤ径(mm) A_T:後行電極電流 V_L:先行電極電圧(V) V_T:後行電極電圧
[Claims] When performing butt multilayer submerged arc welding of thick steel plates using an X-shaped groove without lifting the back side, a groove angle on the backing pass side is 30 to 50°, and a groove angle on the finishing pass side. 45
~60°, the root face is 5 mm or less, two electrodes with an interelectrode distance of 40 to 80 mm, the current and voltage of the leading and trailing electrodes are as follows, and the welding speed is 30 to 60.
cm/mm, the welding heat input is 30 to 5 on the backing pass side.
0KJ/cm, finishing path side 40~60KJ/
A narrow gap submerged arc welding method characterized by welding at least the first layer on each of the backing pass side and finishing pass side under welding conditions of cm. (1) A_L=(125・D+250)±150 (2) A_L-A_T=100-250 (3) V_L≦29 (4) V_T≦31 (5) V_L+V_T=48-56 However, A_L: Leading electrode current (A ) D: Leading electrode wire diameter (mm) A_T: Trailing electrode current V_L: Leading electrode voltage (V) V_T: Trailing electrode voltage
JP7102385A 1985-04-05 1985-04-05 Narrow gap submerged arc welding method Pending JPS61232066A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7102385A JPS61232066A (en) 1985-04-05 1985-04-05 Narrow gap submerged arc welding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7102385A JPS61232066A (en) 1985-04-05 1985-04-05 Narrow gap submerged arc welding method

Publications (1)

Publication Number Publication Date
JPS61232066A true JPS61232066A (en) 1986-10-16

Family

ID=13448510

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7102385A Pending JPS61232066A (en) 1985-04-05 1985-04-05 Narrow gap submerged arc welding method

Country Status (1)

Country Link
JP (1) JPS61232066A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246403A (en) * 2004-03-02 2005-09-15 Nippon Steel Corp High strength welded steel pipe with excellent weld brittle cracking characteristics
CN104191097A (en) * 2014-08-27 2014-12-10 成都天保重型装备股份有限公司 Back-chipping-free welding process for X-type grooves of plates of moderate thickness

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005246403A (en) * 2004-03-02 2005-09-15 Nippon Steel Corp High strength welded steel pipe with excellent weld brittle cracking characteristics
CN104191097A (en) * 2014-08-27 2014-12-10 成都天保重型装备股份有限公司 Back-chipping-free welding process for X-type grooves of plates of moderate thickness

Similar Documents

Publication Publication Date Title
CN109641306B (en) Vertical narrow groove gas shielded arc welding method
JP3238215B2 (en) Butt welding method for thick plate
JP3189643B2 (en) Single side butt welding method
JPS61232066A (en) Narrow gap submerged arc welding method
JPH01299768A (en) Consumable electrode type rectangular wave ac arc welding method
JP7126080B1 (en) Gas-shielded arc welding method, welded joint, and method for manufacturing the welded joint
JPS61222683A (en) Narrow gap submerged arc welding method
KR101595279B1 (en) Fgb welding method
JP2835277B2 (en) Single-sided submerged arc welding method
JP4319713B2 (en) Multi-electrode gas shield arc single-sided welding method
JP2023023454A (en) Multi-electrode single-sided submerged arc welding method
JP6715682B2 (en) Submerged arc welding method
JPH0985446A (en) Gas shielded arc welding method
JP2581485B2 (en) Termination method for multi-electrode single-sided submerged arc welding
JP2978350B2 (en) Multi-electrode single-sided submerged arc welding
JPS62286675A (en) Multi electrode gas shield arc welding method for strip steel
JP2000288735A (en) Two-electrode vertical electrogas arc welding method excellent in welding workability and appearance of Uranami bead
JP3706892B2 (en) 4-electrode single-sided submerged arc welding method
JP7258110B1 (en) Welding method and groove structure
JPH08174224A (en) Double upper/lower faces simultaneous butt welding
JP7351436B1 (en) Narrow gap gas shielded arc welding method and welding device for narrow gap gas shielded arc welding
US20060027549A1 (en) Buried arc welding of integrally backed square butt joints
JPS6340633B2 (en)
JP2646388B2 (en) Gas shielded arc welding method
JPH0484676A (en) One-side submerged arc welding method at high speed