[go: up one dir, main page]

JPS6120628B2 - - Google Patents

Info

Publication number
JPS6120628B2
JPS6120628B2 JP6528279A JP6528279A JPS6120628B2 JP S6120628 B2 JPS6120628 B2 JP S6120628B2 JP 6528279 A JP6528279 A JP 6528279A JP 6528279 A JP6528279 A JP 6528279A JP S6120628 B2 JPS6120628 B2 JP S6120628B2
Authority
JP
Japan
Prior art keywords
base material
double
cemented carbide
group
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP6528279A
Other languages
Japanese (ja)
Other versions
JPS55158269A (en
Inventor
Masaaki Tobioka
Masaya Myake
Takeshi Asai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP6528279A priority Critical patent/JPS55158269A/en
Publication of JPS55158269A publication Critical patent/JPS55158269A/en
Publication of JPS6120628B2 publication Critical patent/JPS6120628B2/ja
Granted legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)
  • Powder Metallurgy (AREA)

Description

【発明の詳細な説明】 本発明生は切削工具用材料としてその性能を一
段と改善した被覆超硬合金部品に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a coated cemented carbide component whose performance as a cutting tool material is further improved.

近年、WCを主成分とし、さらに必要に応じて
Ti,Nb,TaおよびWの複炭化物を加えた硬質物
質を、主としてCoで結合した超硬合金部品を基
材とし、その表面により耐摩耗性を有するTiCな
どを1〜20μ薄層被覆せしめた被覆超硬合金部品
が、基材の強靭性と表面の耐摩耗性を兼ね備えて
いることから、すぐれた切削工具材料として従来
の超硬合金部品に代つて広く実用に供せられてい
る。
In recent years, WC has been used as the main component, and if necessary,
The base material is a cemented carbide component in which a hard material containing multiple carbides of Ti, Nb, Ta, and W is bonded mainly with Co, and the surface is coated with a 1-20μ thin layer of wear-resistant TiC etc. Since coated cemented carbide parts have both the toughness of the base material and the wear resistance of the surface, they are widely used as an excellent cutting tool material in place of conventional cemented carbide parts.

また一方、近年世界的に非鉄金属資源の枯渇が
問題化され、超硬合金部品のの原材料の一つであ
るWも資源的に乏しいことから、如何にして脱W
をはかるということが超硬合金部品製造業界にお
いて非常に大きな検討課題となつている。
On the other hand, in recent years, the depletion of nonferrous metal resources has become a problem worldwide, and W, which is one of the raw materials for cemented carbide parts, is a scarce resource.
Measuring this has become a very important consideration in the cemented carbide parts manufacturing industry.

このような観点からWと同じ周期律表第a族
に属し、しかもWよりは資源的に恵まれている
MoでWの一部又は全部を置き換えることについ
て既に研究が行われ、特開昭51−146303号におい
てもそれが提案されている。
From this point of view, it belongs to Group A of the periodic table, the same as W, and is more endowed with resources than W.
Research has already been conducted on replacing part or all of W with Mo, and this was also proposed in Japanese Patent Application Laid-Open No. 146303/1983.

而して、この提案の趣旨は、従来のWの炭化物
がWCという化学式で表わされるモノカーバイド
であるのに対して、Moの炭化物はMo2Cという化
学式で表わされる低級カーバイドであつて常温で
は安定であるが、WCと比べると硬度,弾性率,
熱伝導率などに劣るため、超硬合金部品の硬質物
質としては適さないこと、そこでWCのWの一部
をMoで置換した(MoxW1-x)C(但しxは0<
x<1)という化学式で表わされるモノカーバイ
ドを合成するならば、このモノカーバイドは結晶
構造がWCと同じなのでMo2Cと異なり超硬合金
部品の硬質物質として適するのはないかというも
のである。
The gist of this proposal is that while the conventional carbide of W is a monocarbide represented by the chemical formula WC, the carbide of Mo is a lower carbide represented by the chemical formula Mo 2 C. It is stable, but compared to WC, hardness, elastic modulus,
Because of its poor thermal conductivity, it is not suitable as a hard material for cemented carbide parts, so some of the W in WC was replaced with Mo (Mo x W 1-x )C (where x is 0<
If we were to synthesize a monocarbide represented by the chemical formula x < 1), this monocarbide would have the same crystal structure as WC, so unlike Mo 2 C, would it be suitable as a hard substance for cemented carbide parts? .

一方本発明者らは被覆超硬合金部品の切削現象
につき詳細な検討を行つた結果、被覆超硬合金部
品を実際に切削する際の工具摩耗の第一要因は、
工具刃先の塑性変形によること、そして工具刃先
の損傷(いわゆるチツピング)の第一要因は工具
内に発生した温度勾配に起因する熱応力によつて
発生する熱亀裂であるとの知見を得た。
On the other hand, the present inventors conducted a detailed study on the cutting phenomena of coated cemented carbide parts, and found that the primary cause of tool wear when actually cutting coated cemented carbide parts is:
We obtained the knowledge that this is due to plastic deformation of the tool cutting edge, and that the primary cause of damage to the tool cutting edge (so-called chipping) is thermal cracking caused by thermal stress caused by the temperature gradient generated within the tool.

従つて被覆超硬合金部品基材としては、塑性変
形を少なくするために高温での硬度が高く、弾性
率が高いこと、さらに工具内に温度勾配ができな
いようにするために熱伝導率が高いこと、の2点
が満足されればよいことが理解できる。
Therefore, as a base material for coated cemented carbide parts, it must have high hardness at high temperatures and high elastic modulus to reduce plastic deformation, and high thermal conductivity to prevent temperature gradients from forming inside the tool. It can be understood that the following two points need to be satisfied.

従つて前述のMoとWの複炭化物を硬質物質と
した超硬合金部品(以下Mo基超硬と略称する)
は被覆超硬合金部品の基材として十分に実用に耐
え得ると考えられ、特開昭51−146306号にも同様
の内容が開示されている。
Therefore, a cemented carbide part made of the above-mentioned double carbide of Mo and W as a hard substance (hereinafter abbreviated as Mo-based cemented carbide)
is considered to be sufficiently practical as a base material for coated cemented carbide parts, and the same content is disclosed in JP-A-51-146306.

しかしながら、本発明者らが実際にこの考えに
したがつてMo基超硬を基材としてTiCl4,CH4
H2の混合気流中で約1000℃にてTiCの5μ被覆を
行つたところ、該基材表面より約30μの深さまで
は(MoxW1-x2C相と思われる低級カーバイドが
多量に析出し、このことはこの被覆超硬合金部品
を実際に切削したところTiC被覆層が直ちに剥離
してしまい、著しく切削特性を損ねることから立
証された。
However, the present inventors actually followed this idea and used Mo-based carbide as a base material to produce TiCl 4 , CH 4 ,
When TiC was coated with 5 μm of TiC at approximately 1000°C in a mixed gas flow of H 2 , a large amount of lower carbide, which was thought to be the (Mo x W 1-x ) 2 C phase, was found up to a depth of approximately 30 μ from the surface of the substrate. This was proven by the fact that when this coated cemented carbide part was actually cut, the TiC coating layer immediately peeled off, significantly impairing the cutting properties.

これはTiCを形成する際にCを気相より得るよ
りも基材中の(MoxW1-x)が次式 2(MoxW1-x)C→(MoxW1-x2C+C ……(1) のように分解するときに発生するCを主に消費す
るためを考えられる。
This is because (Mo x W 1-x ) in the base material is obtained from the gas phase when forming TiC, but the (Mo x W 1-x ) in the base material is expressed as follows: 2 (Mo x W 1-x )C→(Mo x W 1-x ) 2 C+C ……(1) This is thought to be because C generated during decomposition is mainly consumed.

この現象はWCを硬質物質とする超硬合金部品
を基材とした際にも 3WC+3Co→W3Co3C+2C ……(2) のような反応によるCをTiC形成に消費すること
によつて基材界面にη相と呼ばれるWとCoとの
複炭化物を生じ、このη相が非常に脆くかつ結合
相金属であるCoを消費することによつて著しく
靭性を損なうことが知られており、超硬合金業界
ではこのη相の形成を如何にして防止するかがす
ぐれた被覆超硬合金部品製造の際の最大の要点と
すらされているのである。
This phenomenon also occurs when cemented carbide parts with WC as a hard substance are used as a base material, as 3WC + 3Co → W 3 Co 3 C + 2C ...(2) is caused by consuming C in the formation of TiC. It is known that a double carbide of W and Co called the η phase is formed at the material interface, and this η phase is extremely brittle and consumes the binder phase metal Co, which significantly impairs toughness. In the hard metal industry, how to prevent the formation of this η phase is even considered to be the most important point in producing coated cemented carbide parts.

Mo基超硬を基材とした場合、(MoxW1-x2Cは
硬さが(MoxW1-x)Cの半分と軟らかいこと、
また(MoxW1-x2Cを形成する際に結合相金属を
一切消費しないため、一見従来の超硬合金部品を
基材とした場合よりも靭性の低下は少ないと考え
られるが、実際には熱力学的にみると、化学蒸着
法にてTiCを被覆する1000℃程度の高温では(1)の
反応は非常に起り易いと考えられ、Mo基超硬基
材の界面から30μぐらいの内部に含まれる
(MoxW1-x)Cは殆んど全て(MoxW1-x2Cに分
解してしまうと考えられる。
When Mo-based carbide is used as a base material, (Mo x W 1-x ) 2 C is soft, half the hardness of (Mo x W 1-x )C,
Furthermore, since no binder phase metal is consumed when forming (Mo x W 1-x ) 2 C, at first glance it seems that the decrease in toughness is less than when conventional cemented carbide parts are used as the base material. In fact, from a thermodynamic point of view, the reaction (1) is considered to occur very easily at the high temperature of about 1000℃ when coating TiC by chemical vapor deposition, and the It is thought that almost all of the (M x W 1-x )C contained within is decomposed into (M x W 1-x ) 2 C.

従つて、この(MoxW1-x2Cのみの基材界面近
くとそれ以外の部分との機械的特性に差が大きす
ぎるため、実際にこの被覆超硬合金部品にて切削
した場合には、(MoxW1-x2C富化層とその他の
部分との境界近くで壊換現象が生じ、結果として
TiC被覆層が剥離するものと考えられる。
Therefore, the difference in mechanical properties between the (Mo x W 1-x ) 2 C-only part near the base material interface and the other parts is too large, so when actually cutting with this coated cemented carbide part, In the (Mo x W 1-x ) 2 C-enriched layer, a collapse phenomenon occurs near the boundary with other parts, and as a result,
It is thought that the TiC coating layer peeled off.

このためMo基超硬を基材とした被覆超硬合金
部品を製造するには、基材界面に析出する
(MoxW1-x2Cの量を如何にして抑えるかにある
と考えられる。
Therefore, in order to manufacture coated cemented carbide parts using Mo-based carbide as a base material, it is important to find a way to suppress the amount of (Mo x W 1-x ) 2 C that precipitates at the interface of the base material. It will be done.

従来からWCを硬質物質とする超硬合金部品に
おいては、このような問題の最も簡単な解決法と
して周期律表第a族遷移金属元素の窒化物を被
覆することによつて基材表面の脆化を防ぐことが
知られている。
Conventionally, in cemented carbide parts that use WC as a hard material, the simplest solution to this problem is to reduce the brittleness of the base material surface by coating it with a nitride of a transition metal element in group a of the periodic table. It is known to prevent

しかし、このような周期律表第a族遷移金属
元素の窒化物を被覆した被覆超硬合金部品は被覆
膜の形成に基材中のCが殆んど関与しないので、
被覆膜と基材との接着強度が劣るため、窒化物が
有するすぐれた耐クレータ性にも拘らず殆んど実
用化されず現実的にはTiCを超硬合金部品基材に
直接被覆したのち、TiNを被覆するか、或いはそ
の中間にTi(CN)を被覆するといつた方法が行
われている。
However, in coated cemented carbide parts coated with nitrides of transition metal elements of Group A of the Periodic Table, C in the base material hardly participates in the formation of the coating film.
Due to the poor adhesion strength between the coating film and the base material, nitrides are rarely put into practical use despite their excellent crater resistance, and in reality TiC is coated directly onto the base material of cemented carbide parts. Later, methods were used in which TiN was coated or Ti(CN) was coated in between.

化学蒸着法はH2,CH4などの爆発性気体、
TiCl4のような腐蝕性物質を取扱うため、その製
造設備は必然的にかつ高価なものとなるが、
TiN/TiCの二重被覆或いはTiN/Ti(CN)/
TiCの三重被覆を行うにはより一層複雑かつ高価
なものとなることは明らかである。
Chemical vapor deposition uses explosive gases such as H 2 and CH 4 ,
Since the process involves handling corrosive substances such as TiCl 4 , the manufacturing equipment is necessarily expensive.
Double coating of TiN/TiC or TiN/Ti(CN)/
It is clear that a triple coating of TiC would be much more complex and expensive to perform.

そこで本発明者らはMo基超硬において、先に
示した(1)式の反応が従来のWCを硬質物質とした
超硬合金部品に比べて非常に起り易いという知見
から、Mo基超硬を基材とし、その表面に化学蒸
着法にて周期律表第a族遷移金属元素を被覆す
るらならば、Mo基超硬基材の界面近くの少量の
(MoxW1-x)Cはさきの(1)式に従つて分解し、そ
の結果生じたCが被覆膜の形成に消費される。
Therefore, based on the knowledge that the reaction of formula (1) shown above is much more likely to occur in Mo-based carbide than in cemented carbide parts using conventional WC as a hard material, the present inventors If the surface of the base material is coated with a transition metal element of group a of the periodic table by chemical vapor deposition, a small amount of (Mo x W 1-x )C near the interface of the Mo-based carbide base material. It decomposes according to Equation (1) of Hasaki, and the resulting C is consumed in forming the coating film.

即ち基材に直接接する部分の被覆膜は、自動的
にTiCもしくはTi(CN)となり、かつTiCもし
くはTi(CN)中のCの拡散速度は結合相金属中
と比べると非常に遅いため一定の厚さ以上では
TiNが被覆されることによつて単一工程でTiN/
Ti(CN)および/またはTiN/TiC二重被覆を
実現しうると考え本発生に至つたのである。
In other words, the coating film in the part that is in direct contact with the base material automatically becomes TiC or Ti(CN), and the diffusion rate of C in TiC or Ti(CN) is very slow compared to that in the binder phase metal, so it remains constant. Above the thickness of
By coating TiN, TiN/
We came up with the idea that it would be possible to realize a Ti(CN) and/or TiN/TiC double coating.

またこのような場合TiCを形成する際に問題と
なる基材界面近くにおける(MoxW1-x2Cの多量
の析出がかなり縮減され、Mo基超硬合金基材界
面にて(MoxW1-x2Cの量が他の部分より若干富
化されるにすぎず、この(MoxW1-x2C富化層は
他の部分より硬度は低いが、被覆超硬合金部品に
おいて基材表面より10〜200μの深さにおける硬
さをピツカース硬度で2〜20%低めると切削特性
が飛躍的に向上するとの提案(特開昭52−110209
号)からみても若干の(MoxW1-x2Cの富化は却
つて好ましいものと考えられる。このような考え
に従つて本発明者らにおいて実際に試作したとこ
ろ予想した通りの効果が認められた。
In addition, in this case , the large amount of precipitation of (Mo The amount of ( Mo x W 1-x ) 2 C is only slightly enriched compared to other parts, and this (Mo x W 1-x ) 2 C-enriched layer has lower hardness than other parts, but the coating super A proposal was made that cutting characteristics would be dramatically improved if the hardness of hard metal parts at a depth of 10 to 200μ below the base material surface was reduced by 2 to 20% in terms of Pickers hardness (Japanese Patent Laid-Open No. 52-110209
Considering the above (No. 1), a slight enrichment of (Mo x W 1-x ) 2 C is considered to be preferable. Based on this idea, the present inventors actually produced a prototype, and the expected effects were observed.

なお、TiN等の窒化物を被覆した場合にはTiC
等の炭化物のそれより若干耐フランク摩耗特性に
劣るが、これはTiNとTiCとの高温硬度の差によ
るものであるから、TiN被覆の上にTiCより高温
硬度の高いAl2O3および/またはZrO2を0.1〜10
μ被覆してやればよく、この範囲は0.1μ以下で
は効果が得られにくく、また10μ以上では靭性の
低下の点から好ましいものである。
Note that when coated with nitride such as TiN, TiC
The flank wear resistance is slightly inferior to that of carbides such as TiC, but this is due to the difference in high temperature hardness between TiN and TiC . ZrO2 0.1~10
If it is less than 0.1μ, it is difficult to obtain an effect, and if it is more than 10μ, it is preferable from the viewpoint of deterioration of toughness.

しかしてTiNなど窒化物の被覆膜厚は1μ以下
では被覆の効果が乏しく、20μ以上では被覆膜中
の窒化物と炭化物の比が著しく窒化物に片寄るた
め二重被覆の効果が乏しくなることから1〜20μ
が好ましい。
However, if the coating thickness of a nitride such as TiN is less than 1 μm, the coating effect will be poor, and if it is more than 20 μm, the ratio of nitrides to carbides in the coating film will be significantly biased towards nitrides, resulting in poor double coating effect. Therefore, 1 to 20μ
is preferred.

またMo基超硬合金としてはMoとWの複炭化物
以外にMoとWの複炭窒化物を硬質物質とするほ
か、必要に応じて周期律表第a族,第a族,
第a族の遷移金属元素の1種以上の炭化物およ
び/または炭窒化物を併用することも効果があ
る。
In addition, as Mo-based cemented carbides, in addition to double carbides of Mo and W, double carbonitrides of Mo and W are used as hard substances, and as necessary, groups a, group a of the periodic table, etc.
It is also effective to use in combination one or more carbides and/or carbonitrides of transition metal elements of group a.

また結合相金属としてはCr,Mo,W,Fe,
Co,Niからなる群より選んだ1種以上を主成分
とするものを用いればよい。被覆物質としては周
期律表第a族遷移金属元素の1種以上の窒化物
のほかにも例えばTaNやSi3N4など各種の遷移金
属元素の窒化物でも効果は同様である。
In addition, the binder phase metals include Cr, Mo, W, Fe,
A material whose main component is one or more selected from the group consisting of Co and Ni may be used. As the coating material, in addition to nitrides of one or more transition metal elements of group a of the periodic table, nitrides of various transition metal elements such as TaN and Si 3 N 4 can be used with similar effects.

以下本発明を実施例により詳細説明する。 The present invention will be explained in detail below using examples.

実施例 1 (Mo0.7W0.3)C92重量%(但しMoとWの比は
原子比)とNi4重量%,Co4重量%を秤取し、通
常の粉末冶金法によつて型番SNMG432ENZのチ
ツプを作成した。このチツプに通常の化学蒸着法
にてTiCl4,N2,H2の混合気流中950℃にて被覆
を行つた。
Example 1 (Mo 0.7 W 0.3 ) C92 weight % ( however, the ratio of Mo and W is the atomic ratio ) , Ni 4 weight %, and Co 4 weight % were weighed out and made into a product with model number SNMG432ENZ using a normal powder metallurgy method. created a chip. This chip was coated with TiCl 4 , N 2 , and H 2 at 950° C. using a conventional chemical vapor deposition method.

冷却後チツプを切断して金属顕微鏡にて調べた
ところ、被覆膜は外側にTiNが約3μ,内側に
TiCと思われる層が3μ計6μが被覆され、基材
界面より約30μはその他の部分よりも
(MoxW1-x2Cが若干富化していることがわかつ
た。このチツプをAとし、比較のため全く同じ基
材にTiCを6μ被覆したものをB、市販のK−10
超硬合金部品にTiNを6μ被覆したものをC、
TiNを3μ、TiCを3μ被覆したものをD、TiC
を6μ被覆したものをEとしてこれらを 被削材 S50C鍛造材(50mmφ×300mm
) 切削速度 120m/min 送り 0.28mm/rev 切り込み 1mm〜3mm の切削条件(1)にて切削試験を行つたところ Aは34本切削出来たのに比べてBは被覆層剥離に
よる刃先チツピングのため僅か2本、Cも同じく
12本しか切削できず、Dは33本切削可能、Eはク
レータ摩耗により25本しか切削出来なかつた。ま
た上記AからEまでのチツプについて 被削材 FC25 切削速度 200m/min 送り 0.36mm/rev 切り込み 2mm 切削時間 5分 の切削条件(2)にて切削試験を行つたところAは
0.19mm、Dも0.19mm、Eは0.15mmの正常フランク
摩耗を示したのに対し、Bチツプは刃先チツピン
グが激しく0.82mmもの最大フランク摩耗を、Cは
同じく0.49mmの最大フランク摩耗を示した。
After cooling, the chip was cut and examined with a metallurgical microscope, and the coating film contained approximately 3μ of TiN on the outside and about 3 μm of TiN on the inside.
It was found that the layer thought to be TiC was coated with a total thickness of 3μ and 6μ, and that about 30μ from the base material interface was slightly enriched in (M x W 1-x ) 2 C than the other parts. This chip is referred to as A, and for comparison, the same substrate coated with 6μ of TiC is referred to as B, a commercially available K-10.
C, which is a cemented carbide part coated with 6 μm of TiN.
D, TiC coated with 3μ of TiN and 3μ of TiC
These are the workpiece material S50C forged material (50mmφ×300mm
) Cutting speed: 120 m/min Feed: 0.28 mm/rev Cutting depth: 1 mm to 3 mm When cutting tests were conducted under cutting conditions (1) of 1 mm to 3 mm, A was able to cut 34 pieces, whereas B was due to chipping of the cutting edge due to peeling of the coating layer. Only 2, same as C
Only 12 pieces could be cut, D could cut 33 pieces, and E could only cut 25 pieces due to crater wear. In addition, cutting tests were conducted on chips A to E above under cutting conditions (2): work material: FC25, cutting speed: 200 m/min, feed: 0.36 mm/rev, depth of cut: 2 mm, cutting time: 5 minutes.
0.19mm, D also showed normal flank wear of 0.19mm, and E showed normal flank wear of 0.15mm, whereas B chip had severe tipping at the cutting edge and had a maximum flank wear of 0.82mm, and C also showed maximum flank wear of 0.49mm. .

実施例 2 実施例1で作成したチツプAに化学蒸着法にて
Al2O3を1μ被覆し、実施例1の切削条件(2)にて
20分間切削したところ0.21mmの正常フランク摩耗
を示した。
Example 2 Chip A prepared in Example 1 was coated with chemical vapor deposition.
Covered with 1μ of Al 2 O 3 and cut under the cutting conditions (2) of Example 1.
After cutting for 20 minutes, normal flank wear was 0.21 mm.

実施例 3 実施例1のチツプAに化学蒸着法によつて
ZrO2を2μ被覆したものをF,5μ被覆したも
のをG,12μをHとし、実施例1の切削条件(2)に
て10分間切削を行つたところFは0.14mmの正常フ
ランク摩耗を示したのに比して、Gは若干刃先チ
ツピング気味で0.31mmの最大フランク摩耗を示
し、Hは刃先損傷で19秒間しか切削できなかつ
た。
Example 3 Chip A of Example 1 was coated by chemical vapor deposition.
F was coated with 2 μ of ZrO 2 , G was coated with 5 μ, and H was coated with 12 μ. Cutting was performed for 10 minutes under the cutting conditions (2) of Example 1, and F showed normal flank wear of 0.14 mm. In comparison, G exhibited a slight chipping of the cutting edge and maximum flank wear of 0.31 mm, and H could only cut for 19 seconds due to damage to the cutting edge.

実施例 4 (Mo0.7W0.3)C82重量%、(Ti,Nb,Ta,
W)(CN)10重量%,Ni4重量%,Co4重量%を
秤取し、通常の粉末冶金法にて型番
TNMG432ENZを作成した。
Example 4 (Mo 0.7 W 0.3 ) C82% by weight , (Ti, Nb, Ta,
Weigh out 10% by weight of W) (CN), 4% by weight of Ni, and 4% by weight of Co, and use the normal powder metallurgy method to create a model number.
Created TNMG432ENZ.

このチツプにTiCl4,N2,H2の混合気流中で
980℃にて10時間,5時間,2時間の3種被覆し
た。冷却後β−スコープ(フイシヤー社製被覆膜
厚測定器の商品名)にて被覆膜厚を測定したとこ
ろ、夫々22μ,14μ,7μとなり、これらを切削
条件(3) 被削材 SCM3板材(50mm×150mm×450
mm) 切削速度 120m/min 送り 0.22mm/rev 切り込み 2mm にて切削テストを行つた結果、7μ被覆のものは
5分間切削しても切刃に損傷はなかつたが、14μ
のものは若干刃先にチツピングが認められ、22μ
被覆したものは刃先チツピングのため23秒間しか
切削できなかつた。
This chip was heated in a mixed gas flow of TiCl 4 , N 2 , and H 2 .
Three types of coating were performed at 980°C for 10 hours, 5 hours, and 2 hours. After cooling, the coating thickness was measured using a β-scope (trade name of a coating thickness measuring device manufactured by Fischer) and found to be 22μ, 14μ, and 7μ, respectively. Cutting conditions (3) Work material SCM3 plate material (50mm×150mm×450
mm) Cutting speed: 120m/min, feed: 0.22mm/rev, depth of cut: 2mm As a result of cutting tests, the cutting edge of the 7μ coated one was not damaged even after cutting for 5 minutes, but the 14μ
There is some chipping on the cutting edge of the 22μ
The coated material could only be cut for 23 seconds due to tipping.

実施例 5 実施例4と全く同じ基材にZrCl4,N2,H2の混
合気流中、1020℃にて5μ被覆したものをI,
HfCl4,N2,H2混合気流中1030℃にて5μ被覆し
たものをJとし、比較のためTiCを5μ被覆せる
ものをKとして、これら3者を実施例4の切削条
件(3)にて切削テストを行つた結果I,Jは何れも
3分間切削可能であつたが、Kは1分12秒間にて
刃先チツピングのため切削不能となつた。
Example 5 The same base material as in Example 4 was coated with 5μ of ZrCl 4 , N 2 , and H 2 at 1020°C in a mixed gas flow.
J is the one coated with 5μ of HfCl 4 , N 2 , H 2 at 1030°C in a mixed gas flow, and K is the one coated with 5μ of TiC for comparison, and these three were subjected to the cutting conditions (3) of Example 4. As a result of a cutting test, both I and J could be cut for 3 minutes, but K could not be cut after 1 minute and 12 seconds due to tipping.

Claims (1)

【特許請求の範囲】 1 MoとWの複炭化物および/または複炭窒化
物を硬質物質とし、Cr、Mo、W、Fe、Co、Niか
らなる群より選んだ1種以上の遷移金属元素にて
結合した超硬合金部品を基材とし、該超硬合金部
品基材はその表面から10〜200μの深さにおいて
はMoとWの複炭化物および/または複炭窒化物
のなかで(MoxW1-x)C2および/または
(MoxW1-x2(CN)(但しxは0<x<1)の量
が、該基材のその他の部分より大であり、該基材
の表面に周期律表第a族遷移金属元素の1種以
上の窒化物を化学蒸着法にて1〜20μ被覆し、該
被覆層の外部よりも内部の方の炭素含有量を大と
したことを特徴とする被覆超硬合金部品。 2 MoとWの複炭化物および/または複炭窒化
物を硬質物質とし、Cr、Mo、W、Fe、Co、Niか
らなる群より選んだ1種以上の遷移金属元素にて
結合した超硬合金部品を基材とし、該超硬合金部
品基材はその表面から10〜200μの深さにおいて
はMoとWの複炭化物および/または複炭窒化物
のなかで(MoxW1-x2および/または
(MoxW1-x2(CN)(但し0<x<1)の量が、
該基材のその他の部分より大であり、該基材の表
面に周期律表第a族遷移金属元素の1種以上の
窒化物を化学蒸着法にて1〜20μ被覆したのち、
さらにその表面に0.1〜10μのAl2O3および/また
はZrO2被覆を施したことを特徴とする被覆超硬
合金部品。 3 MoとWとの複炭化物および/または複炭窒
化物と周期律表第a族、第a族、第a族遷
移金属元素の1種以上の炭化物および/または炭
窒化物を硬質物質とし、Cr、Mo、W、Fe、Co、
Niからなる群より選んだ1種以上の遷移金属元
素にて結合した超硬合金部品を基材とし、該超硬
合金部品基材はその表面から10〜200μの深さに
おいてはMoとWの複炭化物および/または複炭
窒化物のなかで(MoxW1-x2Cおよび/または
(MoxW1-x2(CN)(但し0<x<1)の量が、
該基材のその他の部分より大であり、該基材の表
面に周期律表第a族遷移金属元素の1種以上の
窒化物を化学蒸着法にて1〜20μ被覆し、該被覆
層の外部よりも内部の方の炭素含有量を大とした
ことを特徴とする被覆超硬合金部品。 4 MoとWの複炭化物および/または複炭窒化
物と、周期律表第a族、第a族、第a族遷
移金属元素の1種以上の炭化物および/または炭
窒化物を硬質物質とし、Cr、Mo、W、Fe、Co、
Niからなる群より選んだ1種以上の遷移金属元
素にて結合した超硬合金部品を基材とし、該超硬
合金部品基材はその表面から10〜200μの深さに
おいてはMoとWの複炭化物および/または複炭
窒化物のなかで(MoxW1-x2Cおよび/または
(MoxW1-x2(CN)(但しxは0<x<1)の量
が、該基材のその他の部分より大であり、該基材
の表面に周期律表第a群遷移金属元素の1種以
上の窒化物を化学蒸着法にて1〜20μ被覆したの
ち、さらにその表面に0.1〜10μのAl2O3および/
またはZrO2被覆を施したことを特徴とする被覆
超硬合金部品。
[Claims] 1 Mo and W double carbides and/or double carbonitrides are used as hard substances, and one or more transition metal elements selected from the group consisting of Cr, Mo, W, Fe, Co, and Ni The base material is a cemented carbide component bonded by a method of bonding, and the cemented carbide component base material is composed of Mo and W double carbides and/or double carbonitrides (Mo x The amount of W 1-x ) C 2 and/or (Mo x W 1-x ) 2 (CN) (where x is 0<x<1) is larger than that in other parts of the base material, and the amount of The surface of the material is coated with 1 to 20μ of one or more nitrides of Group A transition metal elements of the periodic table by chemical vapor deposition, and the carbon content inside the coating layer is higher than the outside. A coated cemented carbide part characterized by: 2. A cemented carbide made of Mo and W double carbide and/or double carbonitride as a hard substance, combined with one or more transition metal elements selected from the group consisting of Cr, Mo, W, Fe, Co, and Ni. The cemented carbide component base material contains Mo and W double carbides and/or double carbonitrides (Mo x W 1-x ) 2 at a depth of 10 to 200 μ from the surface. and/or the amount of (Mo x W 1-x ) 2 (CN) (where 0<x<1) is
larger than the other parts of the base material, and after coating the surface of the base material with 1 to 20 μm of nitride of one or more transition metal elements of group a of the periodic table by chemical vapor deposition,
A coated cemented carbide part characterized in that the surface thereof is further coated with 0.1 to 10μ of Al 2 O 3 and/or ZrO 2 . 3. A double carbide and/or double carbonitride of Mo and W and one or more carbides and/or carbonitrides of Group A, Group A, and Group A transition metal elements of the periodic table are used as hard substances, Cr, Mo, W, Fe, Co,
The base material is a cemented carbide component bonded with one or more transition metal elements selected from the group consisting of Ni, and the cemented carbide component base material contains Mo and W at a depth of 10 to 200 μ from the surface. Among double carbides and/or double carbonitrides, the amount of (Mo x W 1-x ) 2 C and/or (Mo x W 1-x ) 2 (CN) (0<x<1) is
The surface of the substrate is coated with 1 to 20μ of one or more nitrides of Group A transition metal elements of the periodic table by chemical vapor deposition, and the coating layer is larger than other parts of the substrate. A coated cemented carbide part characterized by having a higher carbon content on the inside than on the outside. 4. A double carbide and/or double carbonitride of Mo and W, and one or more carbides and/or carbonitrides of Group A, Group A, and Group A transition metal elements of the periodic table as hard substances, Cr, Mo, W, Fe, Co,
The base material is a cemented carbide component bonded with one or more transition metal elements selected from the group consisting of Ni, and the cemented carbide component base material contains Mo and W at a depth of 10 to 200 μ from the surface. Among double carbides and/or double carbonitrides, the amount of (Mo x W 1-x ) 2 C and/or (Mo x W 1-x ) 2 (CN) (where x is 0<x<1) is , which is larger than other parts of the base material, and after coating the surface of the base material with 1 to 20μ of nitride of one or more transition metal elements of group A of the periodic table by chemical vapor deposition, 0.1~10μ of Al 2 O 3 and/or on the surface
or coated cemented carbide parts characterized by being coated with ZrO2 .
JP6528279A 1979-05-26 1979-05-26 Coated super hard alloy parts Granted JPS55158269A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6528279A JPS55158269A (en) 1979-05-26 1979-05-26 Coated super hard alloy parts

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6528279A JPS55158269A (en) 1979-05-26 1979-05-26 Coated super hard alloy parts

Publications (2)

Publication Number Publication Date
JPS55158269A JPS55158269A (en) 1980-12-09
JPS6120628B2 true JPS6120628B2 (en) 1986-05-23

Family

ID=13282409

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6528279A Granted JPS55158269A (en) 1979-05-26 1979-05-26 Coated super hard alloy parts

Country Status (1)

Country Link
JP (1) JPS55158269A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59122870U (en) * 1983-02-07 1984-08-18 手嶋 立男 Ceramic tools
JP6414800B2 (en) 2014-02-26 2018-10-31 三菱マテリアル株式会社 Surface-coated titanium carbonitride-based cermet cutting tool with excellent chipping resistance

Also Published As

Publication number Publication date
JPS55158269A (en) 1980-12-09

Similar Documents

Publication Publication Date Title
US4150195A (en) Surface-coated cemented carbide article and a process for the production thereof
KR100432108B1 (en) Coated turning insert and method of making it
US4268569A (en) Coating underlayers
USRE39884E1 (en) Coated milling insert and method of making it
JPH07103468B2 (en) Coated cemented carbide and method for producing the same
KR20010053280A (en) Coated grooving or parting insert
KR101133476B1 (en) ??? coated cutting tool insert
JPS6353269A (en) Cutting tool tip made of diamond coated tungsten carbide-base sintered hard alloy
JPH0568548B2 (en)
JPH0273946A (en) Sintered hard alloy and duplex coated sintered hard alloy composed by forming film on surface of same alloy
JPS6120628B2 (en)
JPS61163273A (en) coated hard parts
JP3360565B2 (en) Surface coated cemented carbide cutting tool with a hard coating layer exhibiting excellent wear resistance
JP2747584B2 (en) Hard film coated member
JP3314089B2 (en) Coated cemented carbide
JPH02228474A (en) Coated sintered alloy
EP1222316A1 (en) Coated cemented carbide insert
JP2717925B2 (en) Cemented carbide and its manufacturing method
JPH04189401A (en) Hard layer covered tungsten carbide group sintered hard alloy cutting tool
KR830000707B1 (en) Cemented carbide
JPS6345372A (en) Diamond-coated tungsten carbide-based cemented carbide cutting tool tips
KR810001150B1 (en) Surface coared cemented carbide article
JPH0258336B2 (en)
JPH04254584A (en) Coated sintered body
JPS58209554A (en) Multiple coating material and its manufacture