JP2747584B2 - Hard film coated member - Google Patents
Hard film coated memberInfo
- Publication number
- JP2747584B2 JP2747584B2 JP62241764A JP24176487A JP2747584B2 JP 2747584 B2 JP2747584 B2 JP 2747584B2 JP 62241764 A JP62241764 A JP 62241764A JP 24176487 A JP24176487 A JP 24176487A JP 2747584 B2 JP2747584 B2 JP 2747584B2
- Authority
- JP
- Japan
- Prior art keywords
- film
- thickness
- hard film
- columnar
- base material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
Landscapes
- Chemical Vapour Deposition (AREA)
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は表面に硬質膜が形成された硬質膜被覆部材に
関し、特に切削工具に有用なA1系化合物が表面に被覆さ
れた部材の改良に関する。
〔背景技術〕
近年、切削工具としてセラミック製母材あるいは超硬
合金から成る母材表面に化学気相法等の手段によって耐
摩耗性、耐欠損性に優れた硬質膜を形成し、切削能を高
めたものが注目されている。このような切削工具によれ
ば、通常、硬質膜としてはAl酸化物あるいは酸窒化物等
のAl系化合物が用いられている。
〔発明が解決しようとする問題点〕
しかし乍ら、従来のCVD法によって設けられるAl酸化
物あるいはAl酸窒化物から成る膜は、連続的結晶成長に
よって柱状晶組織から成る。上記のAl系化合物はそれ自
体、耐熱性、耐摩耗性に優れるものの、柱状晶組織では
膜自体の靭性が低く、耐衝撃性、耐熱亀裂性に劣る。こ
のような膜を靭性のある母材表面に設けた場合、膜厚が
大きいと母材の靭性まで損なうため、1〜4μmの薄い
膜でしか設けることができず、十分な耐摩耗性が得られ
ない。よって、このような硬質膜被覆部材を切削工具に
用いると、耐摩耗性、耐欠損性が不十分で工具の長寿命
化が達成されなうという欠点を有していた。
〔発明の目的〕
本発明は如上の問題点を解決することを主たる目的と
するもので、具体的にはAl酸化物または酸窒化物の膜の
強度および靭性を高め、耐摩耗性、耐欠損性に優れた長
寿命の切削工具を提供することを目的とする。
〔問題点を解決するための手段〕
本発明者は上記問題点について研究を重ねた結果、母
材の被覆層としてAlの酸化物あるいは酸窒化物組織を柱
状晶組織とは異なる微細な結晶粒が凝集して成る非柱状
晶組織によって構成することにより、Al酸化物あるいは
酸窒化物の有する耐摩耗性を損なうことなく膜の靭性を
向上させることができ、それによって耐摩耗性、耐欠損
性に優れた長寿命の切削工具が得られることを知見し
た。
以下、本発明を図面を参照して説明する。
通常、気相成長法によってAl酸化物(以下、Al2O3と
称す)あるいはAl酸窒化物(以下、AlONと称す)を形成
させる場合、まず膜を形成させようとする表面にAl2O3
あるいはAlONの無数の核が発生するとともに核が成長
し、全体として膜となる。
その後膜厚が厚くなると結晶粒子は基板に対し垂直方
向に成長し、最終的には第4図の顕微鏡写真に示すよう
な、柱状晶の結晶膜となる。
本発明はこのような膜生成過程において柱状晶化する
ことなく第3図の顕微鏡写真に示すような微細な結晶粒
が凝集した非柱状晶組織に成長させるものである。
そこで、本発明の構成による効果を第1図、第2図を
もとに説明する。第1図はAl2O3の膜厚とフランク摩耗
量との関係、第2図はAl2O3の膜厚と欠損率との関係を
示したもので、それぞれ柱状晶組織と本発明における非
柱状晶組織とを比較したものである。
第1図によれば、フランク摩耗に関しては柱状晶組織
では膜厚4〜5μmで最も耐摩耗性に優れ、摩耗量が0.
25mmであるのに対し、本発明の非柱状晶組織では膜厚9
〜11μmで摩耗量は小さくなり、しかも摩耗量が0.15mm
と極めて優れた耐摩耗性を示す。さらに、良好な耐摩耗
性を示す膜厚は広範囲であり、その膜厚がおよそ4乃至
15μmの範囲では従来の柱状晶組織における耐摩耗性よ
りもさらに優れた耐摩耗性が得られる。
一方、第2図によれば欠損率に関しては柱状晶組織で
はおよそ2μmを超えると急激に欠損率が増加して、7
μmを超えると実験では100%近くが欠損するのに対
し、本発明の非柱状晶組織では、10μmの膜厚でも欠損
率は30%と低く、15μm以下では70%以下の欠損率が得
られる。この結果から、本発明の非柱状晶組織が従来の
柱状晶組織に比べ極めて靭性に優れることを意味するも
のである。
このように非柱状晶組織のAl2O3膜は耐摩耗性、耐欠
損性に優れ、しかも膜厚が大きい場合でもその性質がか
わらないことから、切削工具として被覆層の膜厚を大き
くすることができ、それによって切削工具の長寿命化を
図ることができる。本発明によれば、非柱状晶組織のAl
2O3あるいはAlONは柱状晶組織と比較して、微細な結晶
粒から構成されており、従来柱状晶組織では平均粒子径
が3〜8μm程度であるのに対し、非柱状晶組織では1
〜4μmの平均粒子径である。
また、従来の柱状晶組織は表面に露出している結晶の
成長起点が基板との界面にあるのがほとんどである。こ
れに対し、本発明の結晶組織は表面露出の結晶の成長起
点が膜中に存在していることも大きな特徴である。
本発明に用いられる工具母材としては従来から公知の
ものを使用でき、例えばSi3N4質焼結体、SiC質焼結体及
び超硬合金等が使用できるが、これらの中でも超硬合金
が最も望ましい。用いられる超硬合金としては周期律表
第4a,5aおよび6a族金属の炭化物、窒化物、炭窒化物か
ら選ばれる1種または2種以上から成る硬質相成分をF
e,Co,Ni等の鉄族金属にて結合したもので、硬質相成分
は全体の90乃至95重量%を示めるものである。
このような超硬合金表面にAl酸化物あるいは酸窒化物
を設ける場合には、Al酸化物あるいは酸窒化物の膜生成
時に反応ガス、例えばCO2等の酸素が母材中に拡散し悪
影響を及ぼす可能性があるため、周期律表第4a,5a,6a族
の金属の炭化物、窒化物、炭窒化物から選ばれる1種ま
たは2種以上から成る中間層を母材とAl系化合物層との
間に介在させることが望ましい。この場合、中間層は3
〜8μmの膜厚で設けられ、被覆層全体としては7〜23
μmの膜厚に調整される。
本発明の硬質膜被覆部材の製造に際しては、Alの酸化
物あるいは酸窒化物を化学気相法に従って形成する。従
来、前述したように核生成から膜成長まで同一条件で連
続的に成長させると、柱状晶組織を形成する。本発明で
はAl化合物膜が成長する過程において、新たなAl化合物
の核を発生させる工程を1回以上繰り返すことにより、
結晶が柱状化するのを防止する。即ち、核生成後、柱状
化しない膜厚まで成長させた後、一旦膜生成を中断し、
反応炉内にHCl及びH2Oガスを導入して生成膜を10〜30分
間エッチングする。その後、初期の条件に設定し、膜生
成を行うと、Al化合物の新たな核が発生し、膜が生成さ
れる。このような工程を繰り返し行い最終的に所望の膜
厚のAl酸化物あるいは酸窒化物の膜を得る。
また、他の方法としては、エッチングを行う代わり
に、TiC,TiCN,TiN等の第2成分の化合物を表面に少量分
散させる方法が挙げられる。即ち、第2成分の化合物を
数分間生成させ、Al化合物膜の表面に膜化しない範囲で
生成分散した後、初期条件に設定してAl化合物の膜を得
る場合でもAl化合物の新たな核を発生させることができ
るとともに、粒成長を抑制させることができる。
以下、本発明を次の例で説明する。
実施例1
母材として、ISO P−30(超硬合金製)(型番CNMG43
2)を用い公知のCDV法にて温度1020℃でH292%,TiCl44
%,CH44%の混合気流中でTiCを5μm被覆した。これに
対し、下記の方法で2種の試料を作成した。
反応温度1000℃でH292%、AlCl33%、CO25%の混合気
流中でAl2O3膜を生成し、膜厚が2,4,7,10,14μmのサン
プルを作成した。このサンプルについてAl2O3膜の組織
を顕微鏡にて確認したところ平均粒子径3〜8μmの柱
状晶組織であった。
なお、Al2O3膜4μmのサンプルの顕微鏡写真を第4
図に示した。と同一条件でAl2O3膜の膜厚が2,4,5,10,14,18μ
mのサンプルを作成したが、この際、約2μm厚みのAl
2O3膜が成長する毎に、成膜を中断し、H270%,HCl30%
の混合気流中で30分間Al2O3膜表面のエッチングを行っ
た。このサンプルの組織を確認したところ、平均粒子径
1〜4μmの非柱状晶組織であった。なおAl2O3膜5μ
mのサンプルの顕微鏡写真を第3図に示した。
上記で得られた各サンプルに対し、下記の条件で切削
試験を行った。
摩耗テスト
被削材 FC−25
速度 150m/min
送り 0.3mm/rev
切込み 2mm
時間 15分
上記条件で切削後、フランク摩耗量を測定し、各サン
プルでの膜厚とフランク摩耗量との関係を第1図に示し
た。
耐欠損性テスト
被削材 S45C(10mm巾の溝が4本入ったもの)
速度 100m/min
送り 0.3mm/rev
切込み 2mm
衝撃回数 約500回
上記条件で切削後、各サンプル(それぞれ20〜30個)
について切削後、欠損した割合(欠損率)を求めた。そ
して、膜厚と欠損率との関係を第2図に示した。
第1図、第2図の結果によれば前述したように本発明
の被覆部材は膜厚4乃至15μmの範囲で優れた耐欠損
性、耐衝撃性を示し、特に4乃至10μmの範囲でさらに
優れた性能を示した。
実施例2
実施例1のにおいて約2μmの厚みのAl2O3膜が成
長する毎に成膜を中断し、H291%、TiCl45%,CH44%を
炉に導入して5分間TiCを生成させた後、再度Al化合物
の膜を被覆しこれを繰り返し最終的に8μmのAl2O3膜
を設けた。膜は非柱状晶組織であった。この被覆部材に
対して、実施例1と同様な摩耗テスト、耐欠損性テスト
を行ったところフランク摩耗量0.21mm,欠損率25%であ
り、優れた性能を示した。
実施例3
実施例1で用いたものと同じTiCコート母材に対し、1
000℃H285%,AlCl33%,CO25%,N210%の混合気流中でAl
酸窒化物の成膜を行い約2μmの厚みの成膜後、H270
%,HCl30%の混合気流中で、30分間表面のエッチングを
行い、この成膜とエッチングの操作を繰り返し、最終的
に6μmのAl酸窒化物膜を得た。なおこの膜組織は平均
粒子径2μmの非柱状晶組織であった。
このサンプルに対し、実施例1と同様の摩耗テストお
よび耐欠損性テストを行ったところ、フランク摩耗量0.
24mm欠損率32%の優れた切削性能を示した。
〔発明の効果〕
以上、詳述した通り、本発明によれば、Alの酸化物あ
るいは酸窒化物を硬質膜として母材上に設ける場合、そ
の硬質膜を微細な結晶粒が凝集した結晶組織から構成す
ると、従来の柱状晶組織のものと比較して、硬質膜の靭
性を顕著に向上させることができ、それにより高靭性母
材上に被覆する場合でも、母材の靭性を損なうことな
く、膜厚を大きくすることができるとともに、耐欠損性
は勿論の事、耐摩耗性までも改善することができる。
よってこの硬質膜被覆部材を切削工具として用いた場
合、切削安定性および長寿命化を達成することができ
る。Description: TECHNICAL FIELD The present invention relates to a hard film-coated member having a hard film formed on a surface, and more particularly to an improvement of a member having a surface coated with an A1 compound useful for a cutting tool. . [Background Art] In recent years, as a cutting tool, a hard film with excellent wear resistance and fracture resistance is formed on the surface of a ceramic base material or a base material made of a cemented carbide by means of a chemical vapor deposition method or the like, thereby improving cutting performance. Things that have been raised are attracting attention. According to such a cutting tool, an Al-based compound such as Al oxide or oxynitride is usually used as the hard film. [Problems to be Solved by the Invention] However, a film made of Al oxide or Al oxynitride provided by a conventional CVD method has a columnar crystal structure by continuous crystal growth. Although the above Al-based compound is excellent in heat resistance and abrasion resistance itself, the toughness of the film itself is low in the columnar crystal structure, and the impact resistance and the heat crack resistance are poor. When such a film is provided on the surface of a tough base material, if the film thickness is large, the toughness of the base material is impaired. Therefore, only a thin film having a thickness of 1 to 4 μm can be provided, and sufficient wear resistance can be obtained. I can't. Therefore, when such a hard film-coated member is used for a cutting tool, there is a drawback that the wear resistance and the chipping resistance are insufficient and the life of the tool cannot be extended. [Objects of the Invention] The present invention has a main object of solving the above problems, and specifically, enhances the strength and toughness of a film of Al oxide or oxynitride, and has abrasion resistance and fracture resistance. An object of the present invention is to provide a long-lasting cutting tool having excellent durability. [Means for Solving the Problems] As a result of repeated studies on the above problems, the present inventors have found that the oxide or oxynitride structure of Al By using a non-columnar structure composed of agglomerates, the toughness of the film can be improved without impairing the abrasion resistance of Al oxide or oxynitride, thereby improving the abrasion resistance and fracture resistance. It has been found that a cutting tool with excellent long life can be obtained. Hereinafter, the present invention will be described with reference to the drawings. Normally, when Al oxide (hereinafter, referred to as Al 2 O 3 ) or Al oxynitride (hereinafter, referred to as AlON) is formed by a vapor phase growth method, first, Al 2 O is formed on a surface on which a film is to be formed. Three
Alternatively, innumerable nuclei of AlON are generated and the nuclei grow to form a film as a whole. When the film thickness subsequently increases, the crystal grains grow in the direction perpendicular to the substrate, and eventually form a columnar crystal film as shown in the micrograph of FIG. The present invention is to grow a non-columnar crystal structure in which fine crystal grains are aggregated as shown in the micrograph of FIG. 3 without forming a columnar crystal in such a film forming process. Therefore, the effects of the configuration of the present invention will be described with reference to FIGS. FIG. 1 shows the relationship between the thickness of Al 2 O 3 and the amount of flank wear, and FIG. 2 shows the relationship between the thickness of Al 2 O 3 and the defect rate. It is a comparison with a non-columnar crystal structure. According to FIG. 1, regarding the flank wear, in the columnar crystal structure, when the film thickness is 4 to 5 μm, the wear resistance is most excellent, and the wear amount is 0.
25 mm, whereas the non-columnar structure of the present invention has a thickness of 9 mm.
~ 11μm, wear amount is small and wear amount is 0.15mm
And extremely excellent wear resistance. Furthermore, the film thickness showing good wear resistance is wide, and the film thickness is about 4 to
In the range of 15 μm, more excellent wear resistance than the conventional columnar crystal structure can be obtained. On the other hand, according to FIG. 2, with respect to the columnar crystal structure, when the columnar crystal structure exceeds about 2 μm, the crystallinity ratio sharply increases.
When the thickness exceeds 10 μm, nearly 100% of the defects are lost in the experiment. On the other hand, in the non-columnar structure of the present invention, the defect rate is as low as 30% even at a film thickness of 10 μm. . This result means that the non-columnar structure of the present invention is much more excellent in toughness than the conventional columnar structure. As described above, since the Al 2 O 3 film having a non-columnar structure has excellent wear resistance and fracture resistance, and its properties do not change even when the film thickness is large, the thickness of the coating layer is increased as a cutting tool. Therefore, the life of the cutting tool can be extended. According to the present invention, non-columnar structure Al
2 O 3 or AlON is composed of fine crystal grains as compared with the columnar crystal structure. The average particle diameter of the conventional columnar crystal structure is about 3 to 8 μm, whereas that of the non-columnar crystal structure is 1 μm.
平均 4 μm. Further, in the conventional columnar crystal structure, the growth starting point of the crystal exposed on the surface is almost always at the interface with the substrate. On the other hand, the crystal structure of the present invention is greatly characterized in that a growth starting point of a crystal having a surface exposed exists in the film. As the tool base material used in the present invention, conventionally known ones can be used.For example, Si 3 N 4 sintered body, SiC sintered body and cemented carbide can be used. Is most desirable. The cemented carbide used is a hard phase component composed of one or more selected from carbides, nitrides and carbonitrides of metals of Groups 4a, 5a and 6a of the Periodic Table.
The hard phase component is bonded by an iron group metal such as e, Co, Ni or the like, and represents 90 to 95% by weight of the whole. When Al oxide or oxynitride is provided on the surface of such a cemented carbide, the reaction gas, for example, oxygen such as CO 2 diffuses into the base material when the Al oxide or oxynitride film is formed, and adverse effects are caused. Since there is a possibility that the intermediate layer may be formed of one or more selected from carbides, nitrides, and carbonitrides of metals belonging to groups 4a, 5a, and 6a of the periodic table, a base material and an Al-based compound layer may be formed. It is desirable to intervene between them. In this case, the middle layer is 3
88 μm, and the entire coating layer has a thickness of 72323 μm.
It is adjusted to a film thickness of μm. In manufacturing the hard film-coated member of the present invention, an oxide or oxynitride of Al is formed by a chemical vapor deposition method. Conventionally, a columnar crystal structure is formed by continuous growth from nucleation to film growth under the same conditions as described above. In the present invention, in the process of growing an Al compound film, a step of generating a nucleus of a new Al compound is repeated once or more,
Prevents crystals from becoming columnar. That is, after nucleation, after growing to a thickness that does not become columnar, film formation is temporarily interrupted,
Introducing HCl and H 2 O gas to etch 10-30 minutes the product film into the reactor. Thereafter, when initial conditions are set and a film is formed, a new nucleus of the Al compound is generated and a film is formed. By repeating these steps, a film of Al oxide or oxynitride having a desired film thickness is finally obtained. As another method, a method of dispersing a small amount of a compound of the second component such as TiC, TiCN, or TiN on the surface instead of performing etching may be mentioned. That is, after the compound of the second component is generated for a few minutes and generated and dispersed within a range that does not form a film on the surface of the Al compound film, a new nucleus of the Al compound is formed even when the Al compound film is obtained by setting the initial conditions. In addition to the generation, grain growth can be suppressed. Hereinafter, the present invention will be described with reference to the following examples. Example 1 As a base material, ISO P-30 (made of cemented carbide) (model number CNMG43
H 2 92% at a temperature 1020 ° C. by a known CDV method using 2), TiCl 4 4
% And CH 4 in a mixed gas flow of 4%. On the other hand, two kinds of samples were prepared by the following method. An Al 2 O 3 film was formed at a reaction temperature of 1000 ° C. in a mixed gas flow of 92% H 2 , 3% AlCl 3 , and 5% CO 2 , and samples having a film thickness of 2, 4, 7, 10, 14 μm were prepared. . When the structure of the Al 2 O 3 film of this sample was confirmed with a microscope, it was found to be a columnar structure having an average particle size of 3 to 8 μm. The photomicrograph of the 4 μm sample of the Al 2 O 3 film is shown in FIG.
Shown in the figure. Under the same conditions as above, the thickness of the Al 2 O 3 film was 2,4,5,10,14,18μ
m sample was prepared. At this time, an Al
Each time the 2 O 3 film grows, the film formation is interrupted and H 2 70%, HCl 30%
The surface of the Al 2 O 3 film was etched for 30 minutes in a mixed gas flow of. When the structure of this sample was confirmed, it was a non-columnar structure having an average particle diameter of 1 to 4 μm. Al 2 O 3 film 5μ
The micrograph of the sample m is shown in FIG. Each sample obtained above was subjected to a cutting test under the following conditions. Abrasion test work material FC-25 Speed 150m / min Feed 0.3mm / rev Depth of cut 2mm Time 15min After cutting under the above conditions, the flank wear was measured, and the relationship between the film thickness and flank wear in each sample was measured. This is shown in FIG. Fracture resistance test work material S45C (with 4 grooves of 10mm width) Speed 100m / min Feed 0.3mm / rev Depth of cut 2mm Impact frequency About 500 times After cutting under the above conditions, each sample (20-30 pieces each) )
After cutting, the ratio of chipping (cutting ratio) was determined. FIG. 2 shows the relationship between the film thickness and the defect rate. According to the results of FIGS. 1 and 2, as described above, the coating member of the present invention shows excellent fracture resistance and impact resistance in the range of 4 to 15 μm, and more particularly in the range of 4 to 10 μm. Excellent performance. Example 2 In Example 1, every time an Al 2 O 3 film having a thickness of about 2 μm was grown, the film formation was interrupted, and 91% of H 2 , 5% of TiCl 4 , and 4 % of CH 4 were introduced into a furnace. After generating TiC for a minute, an Al compound film was coated again, and this was repeated to finally provide an 8 μm Al 2 O 3 film. The film had a non-columnar structure. The coated member was subjected to the same abrasion test and chipping resistance test as in Example 1. As a result, the flank wear amount was 0.21 mm and the chipping ratio was 25%, indicating excellent performance. Example 3 For the same TiC coated base material as used in Example 1, 1
000 ℃ H 2 85%, AlCl 3 3%, CO 2 5%, Al in N 2 10% of the mixed gas stream
After the deposition of approximately 2μm thick performs deposition of oxynitride, H 2 70
% And HCl in a mixed gas flow of 30%, the surface was etched for 30 minutes, and the film formation and etching operations were repeated to finally obtain a 6 μm Al oxynitride film. This film had a non-columnar structure having an average particle diameter of 2 μm. When a wear test and a fracture resistance test similar to those in Example 1 were performed on this sample, the flank wear amount was 0.3%.
Excellent cutting performance with a 24% chipping rate of 32%. [Effects of the Invention] As described above in detail, according to the present invention, when Al oxide or oxynitride is provided as a hard film on a base material, the hard film has a crystal structure in which fine crystal grains are aggregated. When compared with the conventional columnar crystal structure, the toughness of the hard film can be significantly improved, and even when coated on a high toughness base material, without impairing the toughness of the base material. The thickness can be increased, and not only the fracture resistance but also the wear resistance can be improved. Therefore, when this hard film-coated member is used as a cutting tool, cutting stability and long life can be achieved.
【図面の簡単な説明】
第1図は硬質膜の膜厚とフランク摩耗量との関係を示し
た図、第2図は硬質膜の膜厚と欠損率との関係を示した
図であり、第3図は本発明における硬質膜の結晶組織を
示す顕微鏡写真(約3000倍)、第4図は従来の硬質膜の
結晶組織を示す顕微鏡写真である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a diagram showing the relationship between the thickness of the hard film and the flank wear amount, and FIG. 2 is a diagram showing the relationship between the thickness of the hard film and the defect rate; FIG. 3 is a micrograph (about 3000 times) showing the crystal structure of the hard film in the present invention, and FIG. 4 is a micrograph showing the crystal structure of a conventional hard film.
Claims (1)
組織のAl酸化物あるいは酸窒化物から成る膜厚が4乃至
15μmの硬質膜を被覆したことを特徴とする硬質膜被覆
部材。 2.母材が周期律表第4a,5a及び6a族金属の炭化物、窒
化物、炭窒化物のうちの1種または2種以上を鉄族金属
にて結合した超硬合金から成る特許請求の範囲第1項記
載の硬質膜被覆部材。(57) [Claims] The thickness of a non-columnar structure Al oxide or oxynitride formed by agglomeration of fine crystal grains on the base material surface is 4 to
A hard film-coated member coated with a 15 μm hard film. 2. Claims wherein the base material is made of a cemented carbide in which one or more of carbides, nitrides, and carbonitrides of metals of Groups 4a, 5a and 6a of the periodic table are combined with an iron group metal. 2. The hard film-coated member according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62241764A JP2747584B2 (en) | 1987-09-26 | 1987-09-26 | Hard film coated member |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62241764A JP2747584B2 (en) | 1987-09-26 | 1987-09-26 | Hard film coated member |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS6483667A JPS6483667A (en) | 1989-03-29 |
JP2747584B2 true JP2747584B2 (en) | 1998-05-06 |
Family
ID=17079180
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62241764A Expired - Lifetime JP2747584B2 (en) | 1987-09-26 | 1987-09-26 | Hard film coated member |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2747584B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2867803B2 (en) * | 1992-06-25 | 1999-03-10 | 三菱マテリアル株式会社 | Surface-coated tungsten carbide based cemented carbide cutting tool with excellent chipping resistance |
JP4427271B2 (en) | 2003-04-30 | 2010-03-03 | 株式会社神戸製鋼所 | Alumina protective film and method for producing the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6142789A (en) * | 1984-08-07 | 1986-03-01 | Hitachi Maxell Ltd | Disk cartridge |
JPS6148582A (en) * | 1984-08-10 | 1986-03-10 | Agency Of Ind Science & Technol | Fine processing method |
-
1987
- 1987-09-26 JP JP62241764A patent/JP2747584B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS6483667A (en) | 1989-03-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5674564A (en) | Alumina-coated sintered body | |
JP3678924B2 (en) | Aluminum oxide coated tool | |
JP4598814B2 (en) | Method for coating a cutting tool comprising a body coated with a hard wear-resistant coating | |
JP2003340610A (en) | Cutting tool insert | |
JP4437353B2 (en) | Coated cutting tool and manufacturing method thereof | |
JP3384110B2 (en) | Coated cutting tool and its manufacturing method | |
JP4711714B2 (en) | Surface coated cutting tool | |
JP5383259B2 (en) | Cutting tools | |
CN115351317A (en) | Coated cutting tool and method of making same | |
EP1471165A2 (en) | Coating with controlled grain size and morphology for enhanced wear resistance and toughness | |
JP3962300B2 (en) | Aluminum oxide coated tool | |
JPS6353269A (en) | Cutting tool tip made of diamond coated tungsten carbide-base sintered hard alloy | |
US6365230B1 (en) | Method of manufacturing a diamond film coated cutting tool | |
JP2004216488A (en) | Surface coated cutting tool | |
JP2003117706A (en) | Covered tool | |
JP3291775B2 (en) | Surface coated cutting tool | |
JP2876132B2 (en) | Coated cutting tool | |
JP2747584B2 (en) | Hard film coated member | |
JP2003039212A (en) | Coated cutting tools | |
JP2876130B2 (en) | Coated cutting tool | |
JPH08300203A (en) | Cutting tool coated with composite hard layer surface | |
JPH11335870A (en) | Titanium carbonitride-aluminum oxide-coated tool | |
CN114173968A (en) | Coated tools and cutting tools with the same | |
JP3314089B2 (en) | Coated cemented carbide | |
JP2668221B2 (en) | Coated cemented carbide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080220 Year of fee payment: 10 |