JPS61186235A - Method for manufacturing base material for optical fiber - Google Patents
Method for manufacturing base material for optical fiberInfo
- Publication number
- JPS61186235A JPS61186235A JP2503185A JP2503185A JPS61186235A JP S61186235 A JPS61186235 A JP S61186235A JP 2503185 A JP2503185 A JP 2503185A JP 2503185 A JP2503185 A JP 2503185A JP S61186235 A JPS61186235 A JP S61186235A
- Authority
- JP
- Japan
- Prior art keywords
- solution
- optical fiber
- temperature
- manufacturing
- wet gel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000013307 optical fiber Substances 0.000 title claims description 104
- 238000000034 method Methods 0.000 title claims description 88
- 239000000463 material Substances 0.000 title claims description 51
- 238000004519 manufacturing process Methods 0.000 title claims description 40
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 189
- 239000011240 wet gel Substances 0.000 claims description 91
- 239000000377 silicon dioxide Substances 0.000 claims description 83
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 58
- 239000000843 powder Substances 0.000 claims description 57
- 239000011521 glass Substances 0.000 claims description 54
- 238000006243 chemical reaction Methods 0.000 claims description 49
- 239000000499 gel Substances 0.000 claims description 48
- 238000001035 drying Methods 0.000 claims description 41
- 238000006460 hydrolysis reaction Methods 0.000 claims description 39
- 230000007062 hydrolysis Effects 0.000 claims description 37
- -1 alkyl silicate Chemical compound 0.000 claims description 35
- 238000005245 sintering Methods 0.000 claims description 29
- 238000010438 heat treatment Methods 0.000 claims description 26
- 239000002245 particle Substances 0.000 claims description 25
- 239000007789 gas Substances 0.000 claims description 24
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 20
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 18
- 239000002019 doping agent Substances 0.000 claims description 15
- 150000004703 alkoxides Chemical class 0.000 claims description 14
- 229910052751 metal Inorganic materials 0.000 claims description 13
- 239000002184 metal Substances 0.000 claims description 13
- 239000011148 porous material Substances 0.000 claims description 10
- 230000002378 acidificating effect Effects 0.000 claims description 9
- 238000006298 dechlorination reaction Methods 0.000 claims description 9
- 230000018044 dehydration Effects 0.000 claims description 8
- 238000006297 dehydration reaction Methods 0.000 claims description 8
- 238000004017 vitrification Methods 0.000 claims description 7
- 238000006482 condensation reaction Methods 0.000 claims description 6
- 238000003795 desorption Methods 0.000 claims description 6
- 238000005262 decarbonization Methods 0.000 claims description 5
- 238000006115 defluorination reaction Methods 0.000 claims description 5
- 125000000217 alkyl group Chemical group 0.000 claims description 3
- 238000002156 mixing Methods 0.000 claims description 3
- 230000001737 promoting effect Effects 0.000 claims description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 claims description 2
- 239000000243 solution Substances 0.000 claims 25
- 239000011259 mixed solution Substances 0.000 claims 1
- 239000002023 wood Substances 0.000 claims 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 78
- 238000001879 gelation Methods 0.000 description 31
- 238000002360 preparation method Methods 0.000 description 30
- 238000003756 stirring Methods 0.000 description 28
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 20
- 235000011114 ammonium hydroxide Nutrition 0.000 description 20
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 16
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical class N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 15
- 239000012808 vapor phase Substances 0.000 description 12
- 238000010521 absorption reaction Methods 0.000 description 11
- 239000006185 dispersion Substances 0.000 description 11
- 238000005187 foaming Methods 0.000 description 11
- GXMNGLIMQIPFEB-UHFFFAOYSA-N tetraethoxygermane Chemical compound CCO[Ge](OCC)(OCC)OCC GXMNGLIMQIPFEB-UHFFFAOYSA-N 0.000 description 11
- 238000009826 distribution Methods 0.000 description 9
- 238000000862 absorption spectrum Methods 0.000 description 8
- 238000005119 centrifugation Methods 0.000 description 8
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 7
- 238000001914 filtration Methods 0.000 description 7
- 208000005156 Dehydration Diseases 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 229920001155 polypropylene Polymers 0.000 description 6
- 229920001296 polysiloxane Polymers 0.000 description 6
- 238000005336 cracking Methods 0.000 description 5
- 239000010453 quartz Substances 0.000 description 5
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000012456 homogeneous solution Substances 0.000 description 3
- 229910017604 nitric acid Inorganic materials 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- 238000004062 sedimentation Methods 0.000 description 3
- 239000010936 titanium Substances 0.000 description 3
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 238000003980 solgel method Methods 0.000 description 2
- LFQCEHFDDXELDD-UHFFFAOYSA-N tetramethyl orthosilicate Chemical compound CO[Si](OC)(OC)OC LFQCEHFDDXELDD-UHFFFAOYSA-N 0.000 description 2
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 description 1
- 230000003301 hydrolyzing effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 239000011859 microparticle Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000004447 silicone coating Substances 0.000 description 1
- 239000011343 solid material Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 239000003930 superacid Substances 0.000 description 1
- 238000001308 synthesis method Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- PKLMYPSYVKAPOX-UHFFFAOYSA-N tetra(propan-2-yloxy)germane Chemical compound CC(C)O[Ge](OC(C)C)(OC(C)C)OC(C)C PKLMYPSYVKAPOX-UHFFFAOYSA-N 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/016—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by a liquid phase reaction process, e.g. through a gel phase
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Glass Melting And Manufacturing (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は石英系光ファイバ用母材の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing a base material for a silica-based optical fiber.
従来の石英系光ファイバ用母材の主たる製造方法を以下
に記す。The main manufacturing method for conventional silica-based optical fiber base materials is described below.
(1) VAD法(電々公社他)
SiC14,GeC1,等の気体状原料を酸水素バーナ
ーに送り込み、化学反応でできたガラス微粒子を種棒の
先端に吹付けて堆積させ、軸方向に成長させて多孔質母
材とし、これを加熱し透明母材とする方法。(1) VAD method (Electric Corporation, etc.) Gaseous raw materials such as SiC14, GeC1, etc. are fed into an oxyhydrogen burner, and glass fine particles made by a chemical reaction are sprayed onto the tip of a seed rod and deposited, allowing them to grow in the axial direction. A method of making a porous base material by heating it and making it a transparent base material.
(2) M CV D法(ペル研他)石英ガラス管の
中にSic 14 r G e C1i等の原料ガスを
酸素ガスとともに送り込み、石英管の外より、バーナー
で加熱して管内部で反応させ、反応してできたガラス微
粒子を管の内側にっけ、中空の管をつくり、その管を加
熱し空どう部分をつぶし透明母材とする方法。(2) M CV D method (Pell Lab et al.) A raw material gas such as Sic 14 r G e C1i is sent into a quartz glass tube together with oxygen gas, heated with a burner from outside the quartz tube, and reacted inside the tube. , a method in which the glass particles produced by the reaction are placed inside a tube to create a hollow tube, and the tube is heated to collapse the hollow part to create a transparent base material.
現在石英系光ファイバ用母材の製造方法としては上記二
種の方法が主に用いられているが、石英系光ファイバ用
母材の製造方法としては他にOVD法、POD法、ゾル
ゲル法などがある。Currently, the above two methods are mainly used for manufacturing the base material for silica-based optical fibers, but other methods for manufacturing the base materials for silica-based optical fibers include the OVD method, POD method, and sol-gel method. There is.
しかし上記のVAD法、MCVD法、OVD法、POD
法は気体状原料の化学反応を利用した気相法であるが、
反応収率も低く、量産性も低く、望みの屈折率分布を実
現するのも困難でありX製造装置も高価であり、コスト
が高いという問題点がある。またゾルゲル法は上記の気
相法に比べてコストが大幅に安くなる可能性を秘めてい
るものの一般に光ファイバ用母材として用いられている
大きさのガラスを得るのが困難であるという問題点があ
った。(日立特開55−100231)本発明は以上の
問題点を解決するもので、その目的とするところは十分
な大きさをもつ高品質な石英系光ファイバ用母材を、従
来の気相法よりも安価に製造し得る方法を提供すること
にある。However, the above VAD method, MCVD method, OVD method, POD method
The method is a gas phase method that utilizes chemical reactions of gaseous raw materials.
There are problems in that the reaction yield is low, the mass productivity is low, it is difficult to realize a desired refractive index distribution, and the X production equipment is expensive, resulting in high costs. In addition, although the sol-gel method has the potential to be significantly cheaper than the above-mentioned vapor phase method, it has the problem that it is difficult to obtain glass of a size that is generally used as a base material for optical fibers. was there. (Hitachi Unexamined Patent Publication No. 55-100231) The present invention solves the above problems, and its purpose is to produce a high-quality quartz-based optical fiber base material of sufficient size using the conventional vapor phase method. The purpose is to provide a method that can be manufactured at a lower cost.
本発明の光ファイバ用母材の製造方法は、石英ガラス中
に含有させることで屈折率に変化を与える石英ガラスの
屈折率調整用添加剤(以下ドーパント)として、適当な
金属アルコキシド(M(OR)x。In the method for producing an optical fiber base material of the present invention, an appropriate metal alkoxide (M(OR )x.
Mは金属、Rはアルキμ基)をモル比で0%以上含む酸
性のアルキルシリケ−1−(Si (OR)、)加水分
解溶液と、粉末状の超微粉末シリカを均一に分散させた
超微粉末シリカ分散溶酸を混合して得られるゾ/l’溶
液を、前記ゾル溶液中のドーパント濃度を変えて2種類
以上作シ、前記ゾル溶液OPH値と有効ガラス成分濃度
を所定の値に調整して仕込みゾル溶液を作る工程、前記
仕込みゾル溶液を円筒状回転容器に移し入れ200〜5
00QC]rpmの範囲の所定の回転数で回転させなが
らゲル化させ管状ウェットゲルを作る操作を少なくとも
一回含み、必要なら前記管状ウェットゲルを作る操作で
生ずる中央の孔に前記仕込みゾルを流し込む操作を含む
、同心円状に組成変化(屈折率変化)をもたせたウェッ
トゲルを作る工程、前記ウェットゲルを乾燥してドライ
ゲルを作る工程、および前記ドライゲルを焼結して透明
ガラス化する工程からなることを特徴とする。An acidic alkyl silica-1-(Si (OR),) hydrolyzed solution containing 0% or more of molar ratio (M is a metal, R is an alkyl μ group) and ultrafine powdered silica are uniformly dispersed. Two or more types of zo/l' solution obtained by mixing fine powder silica dispersed dissolved acid are prepared by changing the dopant concentration in the sol solution, and the sol solution OPH value and effective glass component concentration are set to predetermined values. Step of adjusting and preparing a prepared sol solution, transferring the prepared sol solution to a cylindrical rotating container 200-5
00QC] At least once, the sol is gelled while rotating at a predetermined rotational speed in the range of rpm to form a tubular wet gel, and if necessary, the charged sol is poured into the central hole formed in the process of forming the tubular wet gel. a step of producing a wet gel with concentric composition changes (refractive index changes), a step of drying the wet gel to produce a dry gel, and a step of sintering the dry gel to make it transparent vitrified. It is characterized by
本発明において使用するドーパントとしては石英ガラス
中に含有させることで屈折率に変化を与エルl−リアル
コキシアルミニウム(Al(oa)a)、テVラアルコ
キシチタン(Ti(OR)4)、テトラアルコキシゲル
マニウム(Ge(OR)4)、テトラアルコキシジルコ
ニウム
金属アルコキシドが選ばれるが、テトラアルコキシゲル
マニウムが、透明度の良い高品質な光ファイバ用母材が
大きいサイズまで割れることなく容易に製造できるとい
う点で特に望ましい。Examples of dopants used in the present invention include tetraalkoxyaluminum (Al(oa)a), tetraalkoxytitanium (Ti(OR)4), and tetraalkoxytitanium (Ti(OR)4), which change the refractive index when incorporated into quartz glass. Alkoxygermanium (Ge(OR)4) and tetraalkoxyzirconium metal alkoxide are selected, but tetraalkoxygermanium is preferred because it can be easily manufactured into large-sized optical fiber base materials with good transparency without cracking. Particularly desirable.
本発明の光ファイバ用母材の製造方法に含まれるドーパ
ントをモル比で0%以上含む酸性のアルキルシリケート
加水分解溶液を作る工程のうち、ドーパントを含む(0
%を除く)酸性のアルキルシリケート加水分解溶液を作
る工程は、水で前記アルギルシリケート
る後に前記金属アルコキシドを必要量加え反応させ、続
いて水を加えて溶液中に残っているアルコキシド基(ア
ルコールのアルコキシド基は除く)を加水分解してなる
。このときアルキルシリケートを部分的に加水分解する
ときに加える水の量は前記アルキルシリケートに対して
モル比で1から5の範囲であることが望ましい。という
のはモル比で1以下の水でアルキルシリケートを部分的
に加水分解した場合、加水分解反応が起こるやいなや反
応溶液がゲル化を起こしてしまい、3以上の水でアルキ
ルシリケートを部分的に加水分解した場合、反応溶液中
に微量の水分が存在しやすく、金属アルコキシドを加え
た際金属アルコキシドが水と反応し金属酸化物と思われ
る微小な粒子が生成してしまい、焼結時に透明化を妨げ
、屈折率分布も不安定となるからである0この工程は反
応溶液を10℃以下に保つのが望ましい。というのは反
応溶液を10℃以下に保たないと反応溶液の粘度が上昇
したり、ゲル化したりするからである。Among the steps of preparing an acidic alkyl silicate hydrolyzed solution containing 0% or more of a dopant in molar ratio, which is included in the method for producing an optical fiber preform of the present invention,
In the process of preparing an acidic alkyl silicate hydrolyzed solution (excluding %), after the argyl silicate is added with water, the required amount of the metal alkoxide is added and reacted, and then water is added to dissolve the remaining alkoxide groups (alcohol) in the solution. (excluding the alkoxide group). At this time, the amount of water added when partially hydrolyzing the alkyl silicate is preferably in a molar ratio of 1 to 5 with respect to the alkyl silicate. This is because if an alkyl silicate is partially hydrolyzed with water with a molar ratio of 1 or less, the reaction solution will gel as soon as the hydrolysis reaction occurs, and the alkyl silicate will be partially hydrolyzed with water with a molar ratio of 3 or more. When decomposed, a small amount of water is likely to be present in the reaction solution, and when a metal alkoxide is added, the metal alkoxide reacts with water, producing microparticles that are thought to be metal oxides, which may cause transparency during sintering. In this step, it is desirable to keep the reaction solution at a temperature of 10° C. or lower. This is because unless the reaction solution is kept at 10° C. or lower, the viscosity of the reaction solution increases or gelation occurs.
また本工程においてアルキルシリケートに対して容積比
で20%以上、望ましくは40%のアルコールを加えた
溶液に水を加え部分的に加水分解反− 1 6 一
応を行なわせると、反応がより均一に進み、得られる加
水分解溶液の粘度も低く安定性も良く反応溶液を10℃
以下に保つ必要もない0まだ部分的に加水分解する際に
加える水の量の範囲も広くな“ジアルキルシリケート
い。ただこの工程で作られた加水分解溶液を用いて作っ
たウェットゲル中のアルコール含量が少し高めになるの
で注意深く乾燥する必要がある。In addition, in this step, if water is added to a solution containing 20% or more, preferably 40%, of alcohol by volume relative to the alkyl silicate and a partial hydrolysis reaction is performed, the reaction becomes more uniform. The resulting hydrolysis solution has low viscosity and good stability, and the reaction solution is heated at 10°C.
The amount of water added during partial hydrolysis does not need to be kept below 0. However, the range of the amount of water added during partial hydrolysis is also wide. The content is a little high, so you need to dry it carefully.
本発明の光ファイバ用母材の製造方法において前記超微
粉末シリカ分散溶液中には平均粒径が0、01〜1.0
μmの範囲にある超微粉末シリカが0、15g/m1以
上含まれていることが望ましい。In the method for manufacturing an optical fiber preform of the present invention, the ultrafine powder silica dispersion solution has an average particle size of 0.01 to 1.0.
It is desirable that ultrafine silica powder in the μm range be contained in an amount of 0.15 g/ml or more.
超微粉末シリカの平均粒径が小さいと超微粉末シリカ分
散溶液の粘度が高くなり実用的な濃度まで超微粉末シリ
カを含むことが困難となることから超微粉末シ゛リカの
平均粒径は0.01μmnが下限である。また平均粒径
が大きいと円筒状容器中で回転させながらゲル化させる
際に超酸粉末シリカの沈降がおこり、ウェットゲルの半
径方向にM911粉末シリカの分布が生じてしまいウェ
ットゲルを乾燥させる工程中に割れてしまうので、前記
超微粉末シリカの平均粒径は1.0μmが上限である。If the average particle size of ultrafine powder silica is small, the viscosity of the ultrafine powder silica dispersion solution increases and it becomes difficult to contain ultrafine powder silica to a practical concentration. Therefore, the average particle size of ultrafine powder silica is 0. The lower limit is .01 μmn. In addition, if the average particle size is large, sedimentation of the superacid powder silica will occur during gelation while rotating in a cylindrical container, resulting in distribution of M911 powder silica in the radial direction of the wet gel, resulting in the drying process of the wet gel. The average particle size of the ultrafine silica powder is at most 1.0 μm since the particles will crack inside.
また、超微粉末シリカ分散溶液中の超微粉末シリカの濃
度が小さいと該溶液を用いて作られるウェットゲルがド
ライプルになる時の収縮が大きくウェットゲルを乾燥す
る工程中に割れやすくなるので超徽粉禾シリカの濃度は
0.1597m1以上が望ましい。歩留壕りよく石英ガ
ラスを作る条件をさらに詳しく調べた結果、超微粉末シ
リカ分散溶液中に含まれる超微粉末シリカの平均粒径は
0.04〜Q、 471m %濃度は0.25,9/m
1以上75fさらKW−*しいことがわかった。In addition, if the concentration of ultrafine powder silica in the ultrafine silica dispersion solution is low, the wet gel made using the solution will shrink when it becomes a dry pull and will be prone to cracking during the process of drying the wet gel. The concentration of silica is preferably 0.1597ml or more. As a result of further investigation into the conditions for producing quartz glass with a good yield, the average particle size of the ultrafine powder silica contained in the ultrafine powder silica dispersion solution was 0.04 to Q, and the 471m% concentration was 0.25. 9/m
It was found that KW-* is more than 75f.
本発明の光ファイバ用母材の製造方法において前記仕込
みゾル溶液を円筒状回転容器に移し入れ回転させながら
ゲル化させる時にゾル中に含まれる超微粉末シリカが円
筒状回転容器の回転による遠心力によシ沈降をおこしウ
ェットゲルの半径方向に超微粉末シリカの分布が生じウ
ェットゲルを乾燥させる工程中に割れてしまう開期点を
取り除くにはさきに記した超微粉末シリカの平均粒径に
制限を設ける他に円筒状回転容器の回転数とゲル化時間
にもある制限を設ける必要がある。すなわち円筒状回転
容器の回転数を5000Orpm以下、ゲル化時間を6
00分以下にすることが必要である。これは用いる円筒
状回転容器のサイズにも依頼するが、実用的なサイズの
光ファイバ用母材(直径10朋以上)を作製するために
は5000rpm以下の回転数が更に望ましい。In the method for manufacturing an optical fiber base material of the present invention, when the prepared sol solution is transferred to a cylindrical rotating container and gelled while being rotated, the ultrafine powder silica contained in the sol is affected by centrifugal force due to the rotation of the cylindrical rotating container. In order to remove the opening point, which causes sedimentation and distribution of ultrafine powdered silica in the radial direction of the wet gel and cracks during the drying process of the wet gel, the average particle size of the ultrafine powdered silica described earlier is In addition to setting limits on the number of rotations of the cylindrical rotating container and gelation time, it is also necessary to set certain limits on the rotation speed of the cylindrical rotating container and the gelling time. That is, the rotation speed of the cylindrical rotating container was set to 5000 rpm or less, and the gelation time was set to 6.
It is necessary to keep the time to 00 minutes or less. Although this depends on the size of the cylindrical rotating container used, a rotation speed of 5000 rpm or less is more desirable in order to produce a practical size optical fiber preform (diameter of 10 mm or more).
円筒状回転容器を200 r pm以下で回転させた場
合は回転軸の1わりにきれいな内面をもった管状ウェッ
トゲルを得るのが困難になるので、管状ウェットゲルを
作る工程では円筒状回転容器を20Orpm以上の回転
数で回転させることが必要である。本発明ではこの操作
を必要に応じてく9かえして組成変化をもったウェット
ゲルを作るが、さらに必要に応じて得られた管状ウェッ
トゲルの孔の中に前記仕込みゾルを流し込み孔を閉じて
も良い。If the cylindrical rotating container is rotated at 200 rpm or less, it will be difficult to obtain a tubular wet gel with a clean inner surface for one axis of rotation, so in the process of making the tubular wet gel, the cylindrical rotating container is rotated at 20 rpm. It is necessary to rotate at a rotation speed higher than that. In the present invention, this operation is repeated 9 times as necessary to produce a wet gel with a compositional change, but if necessary, the charged sol may be poured into the pores of the obtained tubular wet gel and the pores closed. good.
本発明の光ファイバ用母材の製造方法においてウェット
ゲルが収縮してドライゲル、透明ガラスになる際、収縮
率が極端に大きいと乾燥工程、焼結工程に割れやすく歩
留まりよく光ファイバ用母材を製造することが困難であ
る。そのためウェットゲルを作るときに仕込むゾル溶液
の中の有効ガラス成分の濃度が高いことが望ましい。た
だ、あまシ有効ガラス成分を高くするのはゾル溶液の粘
度が高くなり操作性が悪くなった如、有効ガラス成分を
高くするだめの特別な操作が必要になったシして実用的
ではない。細かく条件を調べた結果ウェットゲルを乾燥
、焼結して透明ガラス化した時、該透明ガラスの体積が
前記ウェットゲルの体積の5〜15%の範囲になるよう
にゾル溶液の組成を選べばよいことかわかった。In the method for producing optical fiber preforms of the present invention, when wet gel shrinks to become dry gel or transparent glass, if the shrinkage rate is extremely large, it will easily break during the drying and sintering processes, and the optical fiber preforms can be manufactured with good yield. Difficult to manufacture. Therefore, it is desirable that the concentration of the effective glass component in the sol solution used when making a wet gel is high. However, increasing the effective glass component is not practical because it increases the viscosity of the sol solution, making it difficult to operate, and requires a special operation to increase the effective glass component. . After examining the conditions in detail, we found that if the composition of the sol solution is selected so that when the wet gel is dried and sintered to become transparent glass, the volume of the transparent glass is in the range of 5 to 15% of the volume of the wet gel. I knew it was a good thing.
本発明の光ファイバ用母材の製造方法においてウェット
ゲルから歩留まりよく透明ガラスを得るために必らず満
たさないといけない条件がある。In the method for manufacturing an optical fiber preform of the present invention, there are certain conditions that must be met in order to obtain transparent glass from wet gel with a good yield.
それはどのドーパント濃度のウェットゲル成分も同一の
収縮率でもって透明ガラスにならなければいけないこと
である。すなわちウェットゲルを乾燥、焼結して透明ガ
ラス化した時、前記ウェットゲルの体積に対する前記透
明ガラスの体積の比がどのドーパント濃度のゾル溶液で
も一定と々るように前記ゾル溶液を調整しなければなら
ない。That is, the wet gel component at any dopant concentration must have the same shrinkage rate to form a transparent glass. That is, when the wet gel is dried and sintered to form transparent glass, the sol solution must be adjusted so that the ratio of the volume of the transparent glass to the volume of the wet gel remains constant regardless of the dopant concentration of the sol solution. Must be.
本発明の光ファイバ用母材の製造方法においてウェット
ゲルをドライゲルにする乾燥工程は最も歩留シに影響を
与える重要な工程であるが、ウェットゲルが割れずに収
縮するための条件として乾燥がウェットゲル内部で均一
に進むことが必要である。そのためにはできるだけゆっ
くりと乾燥させればよいが、生産性なども考えた結果、
開口率10%以下で昇温速度120℃/ h r以下で
40〜160℃の温度まで昇温し、その温度範囲にある
温度で乾燥すれば歩留まり良く比較的短期間でドライゲ
ルを得ることができる。その時ゲル化させた円筒状回転
容器に前記開口率のフタをしたまま乾燥させる方法が比
較的手間をかけずに歩留まり良くドライゲルを得る良い
方法であるが、前記ウェットゲルを前記開口率をもった
容器に移し入れ、その中で乾燥させる方法を用いると、
さらに歩留まり良くドライゲ)Vf得ることができる0
このときウェットゲルを複数本前記容器に移し入れその
中で乾燥させる方法が、歩留まりに影響を与えず生産性
を高める方法として望ましい。In the method for manufacturing optical fiber preforms of the present invention, the drying process from wet gel to dry gel is the most important process that affects the yield, but drying is a condition for wet gel to shrink without cracking. It is necessary to proceed uniformly inside the wet gel. To achieve this, it is best to dry as slowly as possible, but after considering productivity, etc.
If the temperature is raised to a temperature of 40 to 160°C at an aperture ratio of 10% or less and a heating rate of 120°C/hr or less, and dried at a temperature within that temperature range, a dry gel can be obtained with a high yield in a relatively short period of time. . Drying the gelatinized cylindrical rotating container with a lid of the above-mentioned aperture ratio is a good way to obtain a dry gel with relatively little effort and high yield. If you use the method of transferring it to a container and drying it inside,
In addition, it is possible to obtain 0 Vf with better yield.
At this time, a method of transferring a plurality of wet gels into the container and drying them therein is desirable as a method of increasing productivity without affecting yield.
本発明の光ファイバ用母材の製造方法において前記ドラ
イゲルを焼結する工程は以下の7つの工程からなる。In the method for manufacturing an optical fiber preform of the present invention, the step of sintering the dry gel consists of the following seven steps.
1) 脱吸着水処理をする工程
2) 脱炭素処理をする工程
6) 脱水縮合反応の促進処理をする工程4) 脱OH
基処理をする工程
5) 脱塩素処理あるいは脱フッ素処理をする工程
6) 閉孔化処理をする工程
7) 透明ガラス化処理をする工程
(1)の脱吸着水処理をする工程は該焼結工程における
歩留りに最も大きな影響を与えるが、ドライゲルに多量
に吸着する物理的吸着水はほぼ400℃程度の熱処理に
よって除去できる。しかしこの時急速に昇温すると割れ
が生じやすく々って歩留りが低下する。しかじ昇温速度
が小さすぎると処理に時間がかかりすぎ製造コストがか
さむ。詳しい調査を行なった結果、歩留りを低下させな
いで脱吸着水処理を行なえる上限はほぼ400℃/hr
であり、400℃寸での所定の温度で少なくとも1時間
以上保持する操作を少なくとも1回行なうことが望まし
い。というのは所定の温度で少なくとも1時間以上保持
する操作はゲル内部でより均一に脱吸着水反応が起こる
状態を作るため歩留まり向上に役立つからである。1) Process of desorption water treatment 2) Process of decarbonization 6) Process of promoting dehydration condensation reaction 4) DeOH
Base treatment step 5) Dechlorination treatment or defluorination treatment step 6) Pore closing treatment step 7) Transparent vitrification treatment step (1) Deadsorbed water treatment step is the sintering step. Physically adsorbed water, which has the greatest effect on the yield in the process, can be removed by heat treatment at approximately 400°C, which is adsorbed in large amounts on the dry gel. However, if the temperature is raised rapidly at this time, cracks are likely to occur, resulting in a decrease in yield. However, if the temperature increase rate is too low, the processing will take too much time and the manufacturing cost will increase. As a result of detailed investigation, the upper limit of desorption water treatment without reducing yield is approximately 400℃/hr.
Therefore, it is desirable to carry out an operation of holding at a predetermined temperature of 400° C. for at least one hour at least once. This is because holding the gel at a predetermined temperature for at least one hour creates a condition in which the desorbed water reaction occurs more uniformly within the gel, which helps improve the yield.
(2)の脱炭素処理をする工程において、脱炭素処理は
400〜900℃の範囲の熱処理によって行なわれる。In the step (2) of decarbonizing, the decarbonizing treatment is performed by heat treatment in the range of 400 to 900°C.
このときゲルの内部に存在するアンモニアと酸の塩(ア
ンモニウム塩)も取り除くことができる。さきの脱吸着
水処理のときと同様昇温速度が歩留りに影響を与えるが
、50〜b/ h rの昇温速度が実用的である。また
本処理を行なう時、雰囲気中には0□ガヌの存在が必要
である。At this time, ammonia and acid salts (ammonium salts) present inside the gel can also be removed. As with the previous desorption water treatment, the temperature increase rate affects the yield, but a temperature increase rate of 50 to 50 b/hr is practical. Further, when performing this treatment, the presence of 0□Ganu is required in the atmosphere.
(6)の脱水結合反応の促進処理をする工程において、
脱水縮合反応の促進処理は、昇温速度30〜400℃/
h rで90〜1200℃の範囲内の所定の温度に!
+温し、その温度で30分以上保持する処理を少なくと
も1回行力ってなる。本工程の目的はゲル内部での脱水
縮合反応を促進させ、未反応OR基を減することにある
0本工程を経ずに次の工程に進んだ場合、脱OH基処理
の際、脱OH基剤が多量に消費され、それが原因となっ
て透明ガラス化処理の際、発泡することが多い0本工程
も昇温速度が歩留りに形骨を与えるが、前記の範囲が実
用的である。In the step of promoting the dehydration bonding reaction (6),
The dehydration condensation reaction is accelerated at a heating rate of 30 to 400°C/
hr to the specified temperature within the range of 90 to 1200℃!
+ Warming and holding at that temperature for at least 30 minutes at least once. The purpose of this step is to accelerate the dehydration condensation reaction inside the gel and reduce unreacted OR groups.If you proceed to the next step without going through this step, during the OH group removal treatment, In the 0-piece process, a large amount of the base material is consumed, which often results in foaming during the transparent vitrification process.The heating rate also affects the yield, but the above range is practical. .
(4)の脱OH基処理をする行程の目的は、光ファイバ
の伝送損失に特に重大な影響を与えるOH基を取り除く
ことにある。そして本工程は水分その他の不純物を含ま
ないHe等のキャリヤーガスと該キャリヤーガスに対し
て流量比で1〜40%の範囲の脱OH基剤を焼結炉に送
り込みながら700〜1100℃の範囲の温度で加熱す
ることによってなる。ここで脱OH基を完全に行なわせ
るためには脱OH基剤をギヤリヤーガスに対して1%以
上にすることが必要であるが1〜40%の範囲が望まし
い。!!だ本工程で使用される脱0■基剤は(ヨ5t−
OH)と反応して(三Si C1)あるいは(ヨ5i−
F)となるような試薬が選ばれるが、経済性、取り扱い
やすさ等の理由からCI。The purpose of the OH group removal process (4) is to remove OH groups that have a particularly serious effect on the transmission loss of the optical fiber. In this step, a carrier gas such as He that does not contain moisture or other impurities and a deOH base at a flow rate of 1 to 40% of the carrier gas are fed into a sintering furnace at temperatures ranging from 700 to 1100°C. By heating at a temperature of In order to completely remove the OH group, it is necessary to use the OH removing base in an amount of 1% or more based on the gear gas, but it is preferably in the range of 1 to 40%. ! ! The zero-removal base used in the damoto process is (yo5t-
OH) to react with (3Si C1) or (yo5i-
A reagent that gives F) is selected, but CI is used for reasons such as economic efficiency and ease of handling.
5OCI 2.SF、、cF4.C2F6.C2F8が
実用的である。5OCI 2. SF,,cF4. C2F6. C2F8 is practical.
(5)の脱塩素処理あるいは脱フッ素処理をする目的は
、さきの脱OIN基処理を経たあとでゲル中に存在する
塩素あるいはフッ素を取り除くだめである。本工程を省
略して焼結工程を進めた場合、透明ガラス化処理をした
υ線引きして光ファイバにしたりするときにガラス中に
残存する塩素あるいはフッ素が原因となって発泡しやす
くなる。脱塩素処理あるいは脱フッ素処理は800〜1
200℃の温度範囲でHe等のキャリヤーガスに対して
1〜100%の範囲の02を焼結炉に送り込みながら行
なう。The purpose of the dechlorination or defluorination treatment (5) is to remove chlorine or fluorine present in the gel after the OIN removal treatment. If this step is omitted and the sintering step is proceeded, the chlorine or fluorine remaining in the glass tends to cause foaming when the transparent vitrified υ wire is drawn to make an optical fiber. Dechlorination or defluorination treatment is 800-1
The sintering is carried out at a temperature range of 200° C. while feeding O2 in a range of 1 to 100% with respect to a carrier gas such as He into a sintering furnace.
(6)の開孔化処理は炉内を真空にするかあるいは炉内
にHeガヌを送υ込みながら昇温することによって行な
う。上記の操作を経ずに開孔化した場合、閉孔の中に雰
囲気のガスが閉じ込められ、透明ガラス化処理をしたり
するときに発泡現象が発生しやすい。まだ昇流速度が歩
留シに影響を与えるが、60〜b
用的である。ガラス中で閉孔化が起こる温度は、ゾルを
調整するときに混合する加水分解溶液と超微粉末分散溶
液に含まれる有効ガラス成分の割合、超微粉末シリカの
平均粒径、超微粉末シリカの粒径分布、ドーパントの種
類、ドーパントの濃度、ゲル中の細孔径分布、ゲル中の
含水率、昇温スピード等によって異なるため閉孔化処理
を行なう試料についてあらかじめ調査することが必要で
ある。The pore-forming process (6) is carried out by making the inside of the furnace a vacuum or by raising the temperature while feeding He gas into the furnace. If the pores are opened without going through the above operations, atmospheric gas will be trapped in the closed pores, and bubbling will likely occur during transparent vitrification. Although the rising rate still affects the yield, it is only for 60~b. The temperature at which pore closure occurs in glass depends on the ratio of effective glass components contained in the hydrolysis solution and ultrafine powder dispersion solution mixed when preparing the sol, the average particle size of ultrafine powder silica, and the ultrafine powder silica. It is necessary to investigate the sample to be subjected to pore-closing treatment in advance because it varies depending on the particle size distribution, type of dopant, concentration of dopant, pore size distribution in the gel, water content in the gel, heating speed, etc.
本発明の実施例では900〜1350℃の温度範囲にあ
った。In the examples of the present invention, the temperature was in the range of 900 to 1350°C.
前記閉孔化処理を行なった後、1200〜1600℃の
範囲の所定の温度に++温し、所定の時間その温度で保
持して前記透明ガラス化処理を行なうことにより光ファ
イバ用母相を得る。After performing the pore-closing treatment, the material is heated to a predetermined temperature in the range of 1,200 to 1,600°C, held at that temperature for a predetermined period of time, and subjected to the transparent vitrification treatment to obtain an optical fiber matrix. .
本発明の光ファイバ用母材の製造方法について各焼結条
件における最適な温度プログラムは、ゾルを調整すると
きに混合する加水分解溶液と超微粉末シリカ分散溶液に
含まれる有効ガラス成分の割合、超微粉末シリカの平均
粒径、超微粉末シリカの粒径分布、ドーパントの種類、
ドーパントの濃度、ゲル中の細孔径分布、ゲル中の含水
率等によって異なり、上述した温度範囲、昇温スピード
の中から選ばれる。Regarding the manufacturing method of the optical fiber preform of the present invention, the optimum temperature program under each sintering condition is determined by the ratio of the effective glass component contained in the hydrolysis solution and the ultrafine powder silica dispersion solution mixed when preparing the sol, Average particle size of ultrafine powder silica, particle size distribution of ultrafine powder silica, type of dopant,
It varies depending on the concentration of the dopant, the pore size distribution in the gel, the water content in the gel, etc., and is selected from the above-mentioned temperature range and heating speed.
以上の操作により十分な大きさをもつ高品質な石英系光
ファイバ用母材が歩留り良く製造できるが、以下の実施
例に基づいて本発明の詳細な説明する。By the above-described operations, a high-quality silica-based optical fiber preform having a sufficient size can be manufactured with good yield.The present invention will be described in detail based on the following examples.
〔実施例1〕
■ 加水分解溶液の調整
精製した市販のエチルシリケート576.6gに0.0
2規定の塩酸199.5 gを加え、激しく攪拌して加
水分解し、加水分解溶Hhとした。[Example 1] ■ Preparation of hydrolysis solution Add 0.0 to 576.6 g of purified commercially available ethyl silicate.
199.5 g of 2N hydrochloric acid was added, and the mixture was hydrolyzed with vigorous stirring to obtain a hydrolyzed solution Hh.
精製した市販のエチルシリクー−) 134.19に0
.2規定の塩酸17.49を加え、反応溶液を5℃以下
に保った状態で激しく攪拌すると約30分後反応溶液が
均一な透明溶液となった。この透明浴液を5℃以下に保
ったままテトラエトキシゲルマニウム11.6J9を少
しづつ加えよく攪拌させながら反応させる。20分反応
させた後、この反応溶液をやは95℃以下に保ったまま
、水32.3 f/を加えよく攪拌させながら反応させ
加水分解溶液Bとしだ。Purified commercially available ethyl silicone) 134.0 to 19
.. 17.49 g of 2N hydrochloric acid was added, and the reaction solution was stirred vigorously while keeping the temperature below 5° C. After about 30 minutes, the reaction solution became a uniform transparent solution. Tetraethoxygermanium 11.6J9 is added little by little to this transparent bath solution while maintaining the temperature below 5°C, and the reaction is allowed to proceed with thorough stirring. After reacting for 20 minutes, while maintaining the reaction solution at 95° C. or lower, 32.3 f/ of water was added and reacted with thorough stirring to obtain hydrolyzed solution B.
■ 超微粉末シリカ分散溶液の調整
気相法で合成して得られる平均粒径0.15μmの超微
粉末シリカ500gを10100O!の水に徐々に添加
し、充分に攪拌した。さらにこの溶液に超音波を4時間
照射してより均一に分散させた。■ Preparation of ultrafine powder silica dispersion solution 500 g of ultrafine powder silica with an average particle size of 0.15 μm synthesized by vapor phase method was mixed with 10100O! of water and stirred thoroughly. Further, this solution was irradiated with ultrasonic waves for 4 hours to achieve more uniform dispersion.
遠心分離、濾過によシ超微粉末シリカのダマ状の異物を
取り除き超微粉末シリカ分散溶液としだ。Clumpy foreign matter from the ultrafine silica powder is removed by centrifugation and filtration to obtain an ultrafine silica dispersion solution.
■ ゾル溶液の調整とゲル化
加水分解溶液Aと超微粉末シリカを含む溶液の609、
89を混合し、ゾル溶液Aとした。同様に加水分解溶液
Bと超微粉末シリカを含む溶液の152.5.!i+を
混合し、ゾル溶液Bとした。■ Preparation of sol solution and gelation 609 of the solution containing hydrolyzed solution A and ultrafine powdered silica,
89 was mixed to prepare a sol solution A. Similarly, 152.5 of a solution containing hydrolyzed solution B and ultrafine powdered silica. ! i+ was mixed to prepare sol solution B.
次にゾル溶液Aに0.2規定のアンモニア水と水を用い
てPR値を5.0に調整し、かつ体積を1600mlに
調整した。有効ガラス成分a、231o9/ml。Next, the PR value was adjusted to 5.0 using 0.2N aqueous ammonia and water to the sol solution A, and the volume was adjusted to 1600 ml. Active glass component a, 231o9/ml.
計算値この溶液の1206.4mlを、内面をシリコー
ンコートした塩化ビニル製の円筒状回転器(内径40龍
、長さ102071.、内容積12 s 66mQに移
し入れた。この円筒状回転容器にフタをして回転装置に
取り付け、PH値を5.0に調整してから60分たった
ところで11000rpで回転を始めた。回転を始めて
から20分後にゲル化が起こったが、そのまま10分間
回転させ、外径40m7M、内径80朋、長さ1100
0iの寸法を持つ管状ウェットゲルを得た。(管状ウェ
ットゲルは円筒状回転容器の中にある。)これと平行し
てゾル溶液Bに0.2規定のアンモニア水と水を用いて
PH値を4.2に調整し、かつ体積を400m1に調整
した溶液を作製し、(有効ガラス成分濃度0.2555
9iml、計算値)回転装置から取りはずし、立てて静
置した状態にある円筒状回転容器のフタを取り、ゲル化
して15分後の管状ウェットゲルにこの溶液を流し込ん
だところ、PH値を4,2に調整してから20分たった
ところでこの溶液もゲル化して、同軸構造をもったウェ
ットゲルが得られた。Calculated value 1206.4 ml of this solution was transferred to a cylindrical rotating vessel made of vinyl chloride (inner diameter 40 mm, length 102071 mm, internal volume 12 s 66 mQ) whose inner surface was coated with silicone.A lid was placed on this cylindrical rotating vessel. After 60 minutes of adjusting the pH value to 5.0, I started rotating at 11,000 rpm.Gel formation occurred 20 minutes after I started rotating, but I kept rotating it for 10 minutes. Outer diameter 40m7M, inner diameter 80mm, length 1100mm
A tubular wet gel with dimensions of 0i was obtained. (The tubular wet gel is in a cylindrical rotating container.) In parallel, the pH value of the sol solution B was adjusted to 4.2 using 0.2N ammonia water and water, and the volume was adjusted to 400ml. A solution adjusted to (effective glass component concentration 0.2555
9 iml, calculated value) After removing the lid from the cylindrical rotating container that had been removed from the rotating device and standing still, the solution was poured into the tubular wet gel after 15 minutes of gelation, and the pH value was 4. 20 minutes after the adjustment, this solution also gelled, and a wet gel with a coaxial structure was obtained.
(外径40m、、長さ101000ta■ 乾燥
同様な方法で作製したウエットゲ)v10本を円筒状回
転容器の彦かで密閉状態のままで30℃で2日間熟成し
、その後0.4%の開口率をもったポリプロピレン製乾
燥容器に移し入れだ。次にこの乾燥容器を60℃の乾燥
機に入れ、ウェットゲルを乾燥したところ14日間で、
室温に放置しても割れない安定なドライゲル(外径27
.0mm、長さ675mm−平均値)が歩留9100%
で10本得られた。(Outer diameter: 40 m, length: 101,000 ta■ Wet gel made using the same method as drying) 10 v. Transfer to a drying container made of dry polypropylene. Next, this drying container was placed in a dryer at 60℃ and the wet gel was dried for 14 days.
Stable dry gel that does not crack even when left at room temperature (outer diameter 27
.. 0mm, length 675mm - average value) yield is 9100%
I got 10 pieces.
■ 焼結
次にこのドライヴ)Vを石英製管状焼結炉に入れ昇温速
度30℃/ h rで60℃から200℃まで加熱し、
この温度で5時間保持し、つづいて昇温速1度30℃/
hrで200℃から300℃まで加熱し、この温度で5
時間保持して脱吸着水を行なった。つづいて昇温速度3
0℃/ h rで300℃から1100℃まで加熱し、
この温度で60分間保持して脱炭素、脱塩化アンモニウ
ム処理、脱水縮合反応の促進処理を行なった。つづいて
700℃まで降温しHe 21/min、C120,2
1/minの混合ガスを流しながら30分間保持し、そ
の後Heのみを流しながら昇温速度60℃/hrで80
0℃まで加熱した。800℃でHe2.g/min X
C1□0.21/min の混合ガスを流しながら1時
間保持し、その後Heのみを流しながら昇温速度60℃
/ 11 rで900℃まで加熱した。■ Sintering Next, this drive) V was placed in a quartz tubular sintering furnace and heated from 60°C to 200°C at a temperature increase rate of 30°C/hr.
Maintain this temperature for 5 hours, then increase the temperature by 1 degree to 30℃/
Heat from 200℃ to 300℃ with hr.
Desorption of water was carried out by holding for a certain period of time. Next, heating rate 3
Heating from 300°C to 1100°C at 0°C/hr,
This temperature was maintained for 60 minutes to perform decarbonization, dechlorination ammonium treatment, and acceleration treatment of dehydration condensation reaction. Subsequently, the temperature was lowered to 700℃, He 21/min, C120,2
It was held for 30 minutes while flowing a mixed gas of 1/min, and then heated to 80°C at a heating rate of 60°C/hr while flowing only He.
Heated to 0°C. He2. g/min
Hold for 1 hour while flowing a mixed gas of C1□0.21/min, then increase the temperature to 60℃ while flowing only He.
/ 11 r and heated to 900 °C.
900℃でHe21/min、C1□0.21/rni
nの混合ガスを流しながら1時間保持し、脱OH基処理
を行なった。つづいて、He 2 l/min K対し
て020.4 II /min の混合ガスを流しなか
ら昇温速度60℃/hrで1050℃まで加熱しこの温
度で1時間保持して脱塩素処理を行なった。He21/min, C1□0.21/rni at 900℃
The mixture was maintained for 1 hour while flowing a mixed gas of n to perform OH group removal treatment. Next, while flowing a mixed gas of 020.4 II /min against He 2 l/min K, the mixture was heated to 1050°C at a heating rate of 60°C/hr and held at this temperature for 1 hour to perform dechlorination treatment. Ta.
つづいてH’eのみを流しなから昇温速度60℃/hr
で1250℃まで加熱し、この温度で60分保持して閉
孔化処理を行なった。つづいて試料を昇温速度60℃/
h rで1650℃まで加熱し、この温度で1時間保
持すると無孔化し、透明な光ファイバ用母材が得られた
。また焼結工程での割れも々く歩留りは100%であっ
た。この光ファイバ用母材の大きさは直径1a8mm、
長さ470mmであυ、そのうちコアに相当する部分の
直径は6.7龍であった。(ロスは1%未満)本実施例
で得られた光ファイバ用母材に含まれるOH基を赤外域
で吸収スベク)/しを測定することによって定量したと
ころ2,7μmでの吸収ピークが全く認められず、lp
pm以下であることが確認された。また石英製ジャケッ
ト管をかぶせて融着し、そのガラス体を線引きしたとき
も発泡せず、高品質のシングルモード光ファイバが得ら
れた。Next, without flowing only H'e, the temperature increase rate was 60℃/hr.
The sample was heated to 1250° C. and held at this temperature for 60 minutes to perform a pore-closing treatment. Next, the sample was heated at a rate of 60℃/
When heated to 1650° C. for 1 hour and held at this temperature for 1 hour, it became non-porous and a transparent optical fiber base material was obtained. In addition, cracking occurred frequently during the sintering process, and the yield was 100%. The size of this optical fiber base material is 1a8mm in diameter,
The length was 470 mm, and the diameter of the portion corresponding to the core was 6.7 mm. (The loss is less than 1%) When the OH groups contained in the optical fiber base material obtained in this example were quantified by measuring the absorption peak in the infrared region, there was no absorption peak at 2.7 μm. Not recognized, lp
It was confirmed that it was below pm. Furthermore, when the glass body was fused by covering it with a quartz jacket tube and drawn, no foaming occurred, and a high-quality single-mode optical fiber was obtained.
〔実施例2〕
加水分解溶g!Aを調整した際に0.02規定の塩酸の
代わシに0.02規定の硝酸を用い、加水分解溶液Bを
調整した際に、0.2規定の塩酸の代わりに0.2規定
の硝酸を用いたほかは、実施例1と同様の操作を行なっ
て加水分解溶液の調整を行なった。[Example 2] Hydrolyzed solution g! When preparing A, 0.02N nitric acid was used instead of 0.02N hydrochloric acid, and when preparing hydrolysis solution B, 0.2N nitric acid was used instead of 0.2N hydrochloric acid. A hydrolyzed solution was prepared in the same manner as in Example 1, except that .
この加水分解溶液と実施例1と同様な操作を行なって作
った超微粉末シリカ分散溶液を混合し、つづいて実施例
1と同様な操作によりゾル溶液の調整、ゲル化、乾燥、
焼結をしたところ歩留り90%で、光ファイバ用母利が
製造できた。まだ、塩酸、硝酸の代わりに、硫酸、酢酸
を用いて加水分解溶液を調整しても同様に光ファイバ用
母材が製造できた。This hydrolyzed solution was mixed with an ultrafine powder silica dispersion solution prepared in the same manner as in Example 1, and then a sol solution was prepared, gelled, dried, and
After sintering, the yield was 90%, and the motherboard for optical fiber could be manufactured. However, even if the hydrolysis solution was prepared using sulfuric acid or acetic acid instead of hydrochloric acid or nitric acid, the optical fiber base material could be manufactured in the same way.
〔実施例3〕
加水分解溶液を調整した際アルキルシリケートとしてメ
チルシリケートを用いたほかは実施例1と同様の操作を
行なったところ歩留り90%で光ファイバ用母材が製造
できた。ただ用いたメチルシリケートの量は加水分解溶
液Aを調整した際には421.1g、加水分解溶液Bを
調整した際には97、9 gである。[Example 3] The same operation as in Example 1 was performed except that methyl silicate was used as the alkyl silicate when preparing the hydrolyzed solution, and an optical fiber preform was manufactured with a yield of 90%. However, the amount of methyl silicate used was 421.1 g when preparing hydrolysis solution A, and 97.9 g when preparing hydrolysis solution B.
〔実施例4〕
精製した市販のエチルシリケート576.6gに0.0
2規定の塩酸199.59を加え、激しく攪拌して加水
分解し、加水分解溶液Aとした。[Example 4] 0.0 to 576.6 g of purified commercially available ethyl silicate
Hydrolysis solution A was obtained by adding 199.59% of 2N hydrochloric acid and stirring vigorously for hydrolysis.
精製した市販のエチルシリケート134.1 gに02
規定の塩酸11.6gを加え、反応溶液を5℃以下に保
った状態で激しく攪拌すると約50分後反応溶液が透明
になったが、ただちに部分的にゲル化が起こり均一な溶
液を得ることができなかった。詳しい実験の結果、エチ
ルシリケートに対してモル比で1以下の水でエチルシリ
ケートを部分的に加水分解しても均一な溶液が得られな
いことがわかった。02 to 134.1 g of purified commercially available ethyl silicate
Add 11.6 g of specified hydrochloric acid and stir vigorously while keeping the reaction solution below 5°C. After about 50 minutes, the reaction solution becomes transparent, but gelation occurs immediately and a homogeneous solution is obtained. I couldn't do it. As a result of detailed experiments, it was found that even if ethyl silicate is partially hydrolyzed with water having a molar ratio of 1 or less to ethyl silicate, a homogeneous solution cannot be obtained.
〔実施例5〕
精製した市販のエチルシリケート576.69に0.0
2規定の塩酸199.59を加え、激しく攪拌して加水
分解し、加水分解溶液Aとした。[Example 5] 0.0 to purified commercially available ethyl silicate 576.69
Hydrolysis solution A was obtained by adding 199.59% of 2N hydrochloric acid and stirring vigorously for hydrolysis.
精製した市販のエチルシリケート154.19に0.2
規定の塩酸40.6 gを加え、反応溶液を5℃以下に
保った状態で激しく攪拌すると約25分後反応溶液が均
一な透明溶液となったここの透明溶液を5℃以下に保っ
たままテトラエトキシゲルマニウム11.65gを少し
づつ加えたところ反応溶液が白濁し均一な溶液とならな
かった。詳しい実験の結果、エチルシリケートに対して
モル比で6以上の水でエチルシリケートを部分的に加水
分解した場合、あとでテトラエトキシゲルマニウムを加
えた際に反応溶液が白濁し、ゲルマニウムとシリコンの
分布が一様にならないことがわかった。Purified commercially available ethyl silicate 154.19 to 0.2
Add 40.6 g of specified hydrochloric acid and stir vigorously while keeping the reaction solution below 5℃. After about 25 minutes, the reaction solution becomes a homogeneous and transparent solution.The transparent solution here becomes a homogeneous transparent solution while keeping the temperature below 5℃. When 11.65 g of tetraethoxygermanium was added little by little, the reaction solution became cloudy and did not become a homogeneous solution. As a result of detailed experiments, we found that when ethyl silicate is partially hydrolyzed with water at a molar ratio of 6 or more to ethyl silicate, the reaction solution becomes cloudy when tetraethoxygermanium is added later, and the distribution of germanium and silicon becomes cloudy. It turns out that the results are not uniform.
〔実施例6〕
精製した市販のエチルシリケー) 134.19に02
規定の塩酸17.4 gを加え、激しく攪拌すると60
分程度ったときに反応溶液がゲル化を始めだ。詳しく実
験を行なった結果、反応溶液を10℃以下に保た々いと
ゲル化を起こしやすいことがわかった。またこのあとの
工程のテトラアルコキシゲルマニウムを加える工程、全
加水分解の工程のあいだも反応溶液を10℃以下に保っ
ておかないとゲル化しやすく、反応溶液を10℃以下に
保っておくことが望ましいことがわかった。[Example 6] Purified commercially available ethyl silica) 134.19 to 02
Add 17.4 g of specified hydrochloric acid and stir vigorously to obtain 60
After about a minute, the reaction solution started to gel. As a result of detailed experiments, it was found that gelation tends to occur if the reaction solution is kept at a temperature below 10°C. Also, during the subsequent steps of adding tetraalkoxygermanium and total hydrolysis, gelation tends to occur unless the reaction solution is kept below 10°C, so it is desirable to keep the reaction solution below 10°C. I understand.
〔実施例7〕
■ 加水分解溶液の調整
精製した市販のエチルシリケート549.19に無水エ
タノ−tLy21Brnlを加えよく攪拌した。つづい
て0.02規定の塩酸190.0gを加え、激しく攪拌
して加水分解し、加水分解溶液Aとした。[Example 7] (1) Preparation of hydrolysis solution Anhydrous ethanol-tLy21Brnl was added to purified commercially available ethyl silicate 549.19 and stirred thoroughly. Subsequently, 190.0 g of 0.02N hydrochloric acid was added, and the mixture was hydrolyzed by vigorous stirring to obtain a hydrolyzed solution A.
精製した市販のエチルシリケート127.7.!9に無
水エタノ−/l/ 55 mlを加えよく攪拌した0、
つづいて0.02規定の塩酸ii、ogを加え、激しく
60分間攪拌した。この反応溶液にテトラエトキシゲル
マニウム11.10gを少しづつ加えよく攪拌した。2
0分反応させた後、この反応溶液に0.02規定の塩酸
36.3 gを加えよく攪拌しながら反応させ加水分解
溶液Bとした0
■ 超微粉末シリカ分散溶液の調整
気相法で合成して得られる平均粒径0.15μmの超微
粉末シリカ500gを10001nlの水に徐々に添加
し、充分に攪拌した。さらにこの溶液に超音波を4時間
照射してよシ均一に分散させた。Purified commercially available ethyl silicate 127.7. ! Add 55 ml of anhydrous ethanol/l to 9 and stir well.
Subsequently, 0.02N hydrochloric acid ii,og was added and stirred vigorously for 60 minutes. 11.10 g of tetraethoxygermanium was added little by little to this reaction solution and stirred well. 2
After reacting for 0 minutes, 36.3 g of 0.02N hydrochloric acid was added to this reaction solution and reacted with thorough stirring to obtain hydrolysis solution B. 0 ■ Preparation of ultrafine powder silica dispersion solution Synthesis by vapor phase method 500 g of the obtained ultrafine powder silica having an average particle size of 0.15 μm was gradually added to 10,001 nl of water and thoroughly stirred. Further, this solution was irradiated with ultrasonic waves for 4 hours to ensure uniform dispersion.
遠心分離、濾過によ)超微粉末シリカのダマ状の異物を
取り除き超微粉末シリカ分散溶液とした。Clumpy foreign matter from the ultrafine powdered silica was removed (by centrifugation and filtration) to obtain an ultrafine powdered silica dispersion solution.
加水分解溶液Aと超微粉末シリカを含む溶液の580、
89を混合し、ゾル溶液Aとした。同様に加水分解溶液
Bと超微粉末シリカを含む溶液の145,29を混合し
、ゾル溶液Bとした0次にゾル溶液Aに02規定のアン
モニア水と水を加えてPH値を5.5に調整し、かつ体
積を、1600m1に調整した。(有効ガラス成分濃度
0、22097ml、計算値)コの溶液の1206.4
mlを、内面にシリコーンコートした塩化ビニル製の円
筒状回転容器(内径40朋、長さ1020 mm。580 of a solution containing hydrolysis solution A and ultrafine powdered silica,
89 was mixed to prepare a sol solution A. Similarly, hydrolysis solution B and solution containing ultrafine powder silica 145 and 29 were mixed to make sol solution B. Next, 02 normal ammonia water and water were added to sol solution A to adjust the pH value to 5.5. and the volume was adjusted to 1600ml. (Effective glass component concentration 0, 22097ml, calculated value) 1206.4 of the solution of
ml in a cylindrical rotating container made of vinyl chloride (inner diameter 40 mm, length 1020 mm) whose inner surface is coated with silicone.
内容積1.256.6 ml )に移し入れた。この円
筒状回転容器にフタをして回転装置に取り付け、PH値
を5.5に調整してから30分たったところで、120
0rpmで回転を始めた0回転を始めてから15分後に
ゲル化が起こったが、そのまま10分間回転させ、外径
4.0朋、内径80酊、長さ10QQisの寸法を持つ
管状ウエットゲ7しを得た。(管状ウェットゲルは円筒
状回転容器の中にある)
これと平行してゾル溶液Bを0.2規定のアンモニア水
と水を用いてPH値を5,1に調整し、かつ、体積を4
00m1に調整した溶液を作製しく有効ガラス成分濃度
0.2243 g/ml、計算値)、回転装置から取り
はずし、立てて静置した状態にある円筒状回転容器のフ
タを取り、ゲル化して10分後の管状ウェットケルにこ
の溶液を流し込んだところ、PH値を5.1に調整して
から、22分だったところでこの溶液もゲル化して、同
軸構造をもったウェットゲルが得られた。(外径407
1M、長さ1000間)
■ 乾燥
同様な方法で作製したウエットゲ)v20本を円筒状回
転容器のなかで密閉状態のままで30℃で2日間熟成し
、そのうち10本を0.1%の開口率をもったポリプロ
ピレン製乾燥容器に移し入れ、残りの10本は円筒状回
転容器の両端に開口率0.1%のフタをした。次にこれ
らを60℃の乾燥機に入れ、ウェットゲルを乾燥したと
ころ17日間で、室温に放置しても割れない安定なドラ
イヴ)v (外径26.5mm、長さ663mm−平均
値)が得られた。乾燥方法として前者の方法を選んだ場
合は歩留りは90%、後者の方法を選んだ場合は歩留り
は80%であった。(inner volume 1.256.6 ml). This cylindrical rotating container was capped and attached to a rotating device, and 30 minutes after adjusting the pH value to 5.5,
Gelation occurred 15 minutes after the rotation started at 0 rpm, but the tube was rotated for 10 minutes and a tubular wet gel 7 with dimensions of outer diameter 4.0 mm, inner diameter 80 mm, and length 10 QQis was formed. Obtained. (The tubular wet gel is in a cylindrical rotating container.) In parallel, the pH value of sol solution B was adjusted to 5.1 using 0.2N ammonia water and water, and the volume was adjusted to 4.
To prepare a solution adjusted to 0.00ml (effective glass component concentration: 0.2243 g/ml, calculated value), remove it from the rotating device, remove the lid of the cylindrical rotating container that has been left standing, and let it gel for 10 minutes. When this solution was poured into the subsequent tubular wet gel, the solution also gelled 22 minutes after adjusting the pH value to 5.1, and a wet gel with a coaxial structure was obtained. (Outer diameter 407
1M, length 1000mm) ■Drying 20 wet gels prepared in the same manner as above were aged in a cylindrical rotating container in a closed state at 30°C for 2 days, and 10 of them were aged with an aperture of 0.1%. The remaining 10 bottles were placed in a polypropylene drying container with an opening ratio of 0.1% at both ends of the cylindrical rotating container. Next, I put these in a dryer at 60℃ to dry the wet gel, and after 17 days it turned out to be a stable drive that would not break even if left at room temperature (outer diameter 26.5 mm, length 663 mm - average value). Obtained. When the former method was selected as the drying method, the yield was 90%, and when the latter method was selected, the yield was 80%.
■ 焼結
実施例1と同様な方法を用いてドライヴ/l/1フ本を
焼結したところ歩留り100%で光ファイバ用母材が得
られた。この光ファイバ用母材の大きさは直径18.5
m、、長さ463朋であり、そのうちコアに相当する部
分の直径は3.7 mmであった。(2) Sintering When one drive/liter was sintered using the same method as in Example 1, an optical fiber base material was obtained with a yield of 100%. The size of this optical fiber base material is 18.5 in diameter.
The length was 463 mm, and the diameter of the portion corresponding to the core was 3.7 mm.
本実施例で得られた光ファイバ用母材に含1れるOH基
を赤外域で吸収スベク)/しを測定することによって定
量したところ、2.7μmでの吸収ピークが全く認めら
れず、lppm以下であることが確認された。また線引
きしたときも発泡せず高品質の光ファイバが得られた。When the OH groups contained in the optical fiber base material obtained in this example were quantified by measuring the absorption spectrum in the infrared region, no absorption peak was observed at 2.7 μm, and lppm It was confirmed that: Furthermore, a high-quality optical fiber was obtained without foaming when drawn.
本実施例で示したように、加水分解溶液を調整する際に
、アルコールを用いるとアルコールを用いないときに比
べて冷却する手間が省けより実用的である。また、加水
分解溶液、あるいは超微粉末シリカを含む溶液と混合し
たゾル溶液の粘度も低くなり作業性もよかった。As shown in this example, using alcohol when preparing a hydrolysis solution saves the effort of cooling compared to not using alcohol, which is more practical. In addition, the viscosity of the sol solution mixed with the hydrolyzed solution or the solution containing ultrafine powdered silica was low, and the workability was good.
〔実施例8〕
■ 加水分解溶液の調整
精製した市販のエチルシリケート549.1 gK無水
エタノ−yv2,18m1を加えよく攪拌した。つづい
て0.02規定の塩酸190.09を加え、激しく攪拌
して加水分解し、加水分解溶液Aとした。[Example 8] (1) Preparation of hydrolyzed solution 549.1 g of purified commercially available ethyl silicate (2,18 ml of K anhydrous ethanol) was added and stirred thoroughly. Subsequently, 190.09 g of 0.02 N hydrochloric acid was added, and the mixture was hydrolyzed by vigorous stirring to obtain a hydrolyzed solution A.
精製した市販のエチルシリケート127.717に無水
エタノール55m、lを加えよく攪拌した。つづいて0
.02規定の塩酸11.0.9を加え、激しく60分間
攪拌した。この反応溶液にテトライソプロポキシゲルマ
ニウム1′5.54gを少しづつ加えよく攪拌した。2
0分反応させた後、この反応溶液に002規定の塩酸3
6.3 gを加えよく攪拌させながら反応させ加水分解
溶液Bとした。55 ml of absolute ethanol was added to 127.717 purified commercially available ethyl silicate and stirred well. followed by 0
.. 02N hydrochloric acid 11.0.9 was added and stirred vigorously for 60 minutes. 5.54 g of tetraisopropoxygermanium 1' was added little by little to this reaction solution and stirred well. 2
After reacting for 0 minutes, add 002N hydrochloric acid 3 to this reaction solution.
6.3 g was added and reacted with thorough stirring to obtain a hydrolyzed solution B.
■ 超微粉末シリカ分散溶液の調整
気相法で合成して得られる平均粒径007μmの超微粉
末シリカ500gを10100Oの水に徐々に添加し、
充分に攪拌した。さらにこの溶液に超音波を4時間開剤
してより均一に分散させた。■ Preparation of ultrafine powder silica dispersion solution 500 g of ultrafine powder silica with an average particle size of 007 μm synthesized by vapor phase method was gradually added to 10100 O water.
Stir thoroughly. Further, this solution was exposed to ultrasonic waves for 4 hours to achieve more uniform dispersion.
遠心分離、濾過によシ、超微粉末シリカのダマ状の異物
を取り除き、超餓粉末シリカの分散溶液とした。Clumpy foreign matter from the ultrafine powdered silica was removed by centrifugation and filtration to obtain a dispersion solution of ultrafine powdered silica.
■ ゾル溶液の調整とゲル化
加水分解溶液Aと超微粉末シリカ分散溶液の580、8
gを混合し、さらに超音波振動を力えてよく超微粉末
シリカを分散し、ゾル溶液Aとした。■ Preparation of sol solution and gelation Hydrolysis solution A and ultrafine powder silica dispersion solution 580, 8
A sol solution A was prepared by mixing the silica powder with the following ingredients and further applying ultrasonic vibration to disperse the ultrafine powder silica.
同様に加水分解溶液Bと超微粉末シリカを含む溶液の1
45.2gを混合し、同様に超音波振動を与えて超微粉
末シリカを分散し、ゾル溶液Bとした。Similarly, hydrolysis solution B and solution 1 containing ultrafine powder silica
45.2 g were mixed, and ultrasonic vibration was similarly applied to disperse the ultrafine powdered silica to obtain sol solution B.
次にゾル溶液Aを0.2規定のアンモニア水と水を用い
てPH値を5゛5に調整し、かつ体積を1600m1に
調整した。(有効ガラス成分0.220g/mls計算
値)この溶液の1206.4mlを内面にシリコテンコ
ートした金属製の円筒状回転容器(内径40mm1長さ
1020朋、内容積1256.6m1)に移し入れた。Next, the pH value of the sol solution A was adjusted to 5'5 using 0.2N aqueous ammonia and water, and the volume was adjusted to 1600ml. (Calculated value of effective glass component 0.220 g/ml) 1206.4 ml of this solution was transferred to a metal cylindrical rotating container (inner diameter 40 mm, length 1020 mm, internal volume 1256.6 m1) whose inner surface was coated with Silicoten. .
この円筒状回転容器にフタをして回転装置に取p付け、
PH値を5.5に調整してから60分たったところで1
500 rpmで回転を始めた。回転を始めてから21
分後にゲル化が起こったが、そのマ″jf、20分間回
転させ、外径40m7rLs内径ao、、m、、長さ1
1000iの寸法を持つ管状ウェットゲルを得た。(管
状ウェットゲル= 68−
は円筒状回転容器の中にある。)これと平行してゾル溶
液Bに0,2規定のアンモニア水と水を用いてPR値を
5.2に調整し、かつ体積を400m1に調整した溶液
(有効ガラス成分0,2243fl/ml、計算値)を
作製し、回転装置から取りはずし立てて静置した状態に
ある円筒状回転容器のフタを取り、ゲル化して23分後
の管状ウェットゲルにこの溶液を流し込んだところ、P
H値を5.2に調整してから18分たったところでこの
溶液もゲル化L テ、同軸構造をもったウェットゲルが
得られた。Put a lid on this cylindrical rotating container and attach it to the rotating device,
1 after 60 minutes after adjusting the pH value to 5.5.
Rotation started at 500 rpm. 21 years since I started spinning
After a few minutes, gelation occurred, and the machine was rotated for 20 minutes, and the outer diameter was 40m7rLs, the inner diameter was ao, m, and the length was 1.
A tubular wet gel with dimensions of 1000i was obtained. (The tubular wet gel = 68- is in a cylindrical rotating container.) In parallel, the PR value was adjusted to 5.2 using 0.2N aqueous ammonia and water in the sol solution B, and A solution whose volume was adjusted to 400 ml (effective glass content: 0,2243 fl/ml, calculated value) was prepared, and the lid of the cylindrical rotating container, which had been removed from the rotating device and left standing, was removed and gelatinized for 23 minutes. When this solution was poured into the subsequent tubular wet gel, P
Eighteen minutes after the H value was adjusted to 5.2, this solution also gelled, and a wet gel with a coaxial structure was obtained.
(外径40’mNs長さ1000.、)■ 乾燥
同様な方法で作製したウェットゲル10本を円筒状回転
容器のなかで密閉状態のままで30℃で2日間熟成し、
その後0.1%の開口率をもった乾燥容器に移し入れた
。次にこの乾燥容器を58℃の乾燥機に入れ、ウェット
ゲルを乾燥したところ17日間で、室温に放置しても割
れない安定なドライゲル(外径26.2 朋、長さ65
8朋−平均値)が歩留9100%で10本得られた。(Outer diameter 40'mNs Length 1000.)■Drying 10 wet gels prepared in the same manner were aged in a closed cylindrical rotating container at 30°C for 2 days.
Thereafter, it was transferred to a drying container with an open area ratio of 0.1%. Next, this drying container was placed in a dryer at 58°C to dry the wet gel. After 17 days, it became a stable dry gel that did not break even when left at room temperature (outer diameter 26.2 mm, length 65 mm).
8-average value) were obtained with a yield of 9100%.
■ 焼結
実施例1と同様な方法でドライケル10本を焼結したと
ころ歩留り100%で光ファイバ用母材が得られた。こ
の光ファイバ用母材の大きさは直径1a5mm、長さ4
66罷であり、そのうちコアに相当する部分の直径は3
.7罷であった。(2) Sintering Ten drykels were sintered in the same manner as in Example 1, and an optical fiber base material was obtained with a yield of 100%. The size of this optical fiber base material is 1 a 5 mm in diameter and 4 mm in length.
There are 66 lines, of which the diameter of the part corresponding to the core is 3
.. There were seven strikes.
本実施例で得られた光ファイバ用母材に含まれるOH基
を赤外域で吸収スペクトルを測定することによって定量
したところ、2.7μmでの吸収−ピークが全く認めら
れず、lppm以下であることが確認された。また線引
きしたときも発泡せず高品質の光ファイバが得られた。When the OH groups contained in the optical fiber base material obtained in this example were quantified by measuring the absorption spectrum in the infrared region, no absorption peak was observed at 2.7 μm, and it was below lppm. This was confirmed. Furthermore, a high-quality optical fiber was obtained without foaming when drawn.
〔実施例9〕
■ 加水分解溶液の調整
精製した市販のエチルシリケー) 549.19に無水
エタノール218m1を加えよく攪拌した。つづいて0
,02規定の塩酸190.0gを加え、激しく攪拌して
加水分解し、加水分解溶液Aとした。[Example 9] (1) Preparation of hydrolyzed solution 218 ml of absolute ethanol was added to purified commercially available ethyl silica 549.19 and stirred thoroughly. followed by 0
, 190.0 g of 02 N hydrochloric acid was added thereto, and the mixture was hydrolyzed with vigorous stirring to obtain a hydrolyzed solution A.
精製した市販のエチルシリケート127.7.9に無水
エタノール55m1を加えよく攪拌したaつづいて0.
02規定の塩酸11.0gを加え、激しく60分間攪拌
した。この反応溶液にテトラエトキシゲルマニウム11
.10 gを少しづつ加えよく攪拌した。20分反応さ
せた後、この反応溶液に002規定の塩酸363gを加
えよく攪拌させながら反応させ加水分解溶液Bとした。55 ml of absolute ethanol was added to purified commercially available ethyl silicate 127.7.9 and stirred thoroughly.
11.0 g of 02N hydrochloric acid was added and stirred vigorously for 60 minutes. Tetraethoxygermanium 11 is added to this reaction solution.
.. 10 g was added little by little and stirred well. After reacting for 20 minutes, 363 g of 002N hydrochloric acid was added to this reaction solution and reacted with thorough stirring to obtain a hydrolyzed solution B.
■ 超微粉末シリカ分散溶液の調整
気相法で合成して得られる平均粒径0.15μmの超微
粉末シリカ500Iを3066TLlの水に徐々に添加
し、充分に攪拌した。さらにこの溶液に超音波を4時間
照射してより均一に分散させた。(2) Preparation of ultrafine powder silica dispersion solution Ultrafine powder silica 500I with an average particle size of 0.15 μm synthesized by a vapor phase method was gradually added to 3066 TLl of water and thoroughly stirred. Further, this solution was irradiated with ultrasonic waves for 4 hours to achieve more uniform dispersion.
遠心分M、 if”過により超微粉末シリカのダマ状の
異物を取り除き超微粉末シリカの分散溶液とした。Clumpy foreign matter from the ultrafine powdered silica was removed by centrifugation M, if'' to obtain a dispersion solution of ultrafine powdered silica.
■ 加水分解溶液Aと超微粉末シリカ(分散)溶液の1
380.8gを混合し、ゾル溶液Aとした。■ Hydrolyzed solution A and ultrafine powder silica (dispersion) solution 1
380.8g were mixed to form sol solution A.
同様に加水分解溶液Bと超微粉末シリカを含む溶液の3
45.29を混合し、ゾル溶液Bとした。Similarly, hydrolysis solution B and solution 3 containing ultrafine powder silica
45.29 were mixed to prepare a sol solution B.
次にゾル溶液Aを0.2規定のアンモニア水と水を用い
てPH値を5.60に調整し、かつ体積を2400m、
lに調整した。(有効ガラス成分0.15,9/ml、
計算値)この溶液の1206.4 mlを内面シリコー
ンコートした塩化ビニル製の円筒状回転容器(内径40
mm5長さ1020朋、内容積1256.6ml )に
移し入れた。この円筒状回転容器にフタをして回転装置
に取り付け、PH値を560に調整してから30分だっ
たところで150Orpmで回転を始めだ。回転を始め
てから25分後にゲル化が起こったが、そのまま20分
間回転させ、外径40朋、内径807nms長さ100
0韻の寸法を持つ管状ウェットゲルを得た。(管状ウェ
ットケルは円筒状回転容器の中にある)これと平行して
ゾル溶液Bに0.2規定のアンモニア水と水を用いてP
H値を5.6に調整し、かつ体積を6oomlに調整し
た仕込みゾル溶液(有効ガラス成分0.115397m
l、計算値)を作製し、回転装置から取りはずし、立て
て静置した状態にある円筒状回転容器のフタを取り、ゲ
ル化して30分後の管状ウェットゲルにこの溶液を流し
込んだところ、PH値を5.3に調整してから30分た
ったところでこの溶液もゲル化して、同軸楊°造をもっ
たウェットケルが得られた。(外径40關、長さ100
100O■ 乾燥
同様な方法で作製したウェットゲル10本を円筒状回転
容器のなかで密閉状態の′i!、まで60℃で2日間熟
成し、その後0.1 %の開口率をもった乾燥容器に移
し入れた。次にこの乾燥容器を60℃の乾燥機に入れ、
ウェットゲルを乾燥したところ17日間で、室温に放置
しても割れない安定なドライゲル(外径23.211m
5長さ584朋、平均値)が歩留り30チで3本得られ
た。Next, the pH value of the sol solution A was adjusted to 5.60 using 0.2N aqueous ammonia and water, and the volume was adjusted to 2400 m.
Adjusted to l. (Effective glass component 0.15.9/ml,
Calculated value) 1206.4 ml of this solution was placed in a cylindrical rotating container made of vinyl chloride (inner diameter 40
The tube was transferred to a container (mm5, length 1020 mm, internal volume 1256.6 ml). This cylindrical rotating container was capped and attached to a rotating device, and 30 minutes after adjusting the pH value to 560, it started rotating at 150 rpm. Gelation occurred 25 minutes after the start of rotation, but after 20 minutes of rotation, the outer diameter was 40 mm, the inner diameter was 807 nm, and the length was 100 mm.
A tubular wet gel with dimensions of 0 rhyme was obtained. (The tubular wet cell is in a cylindrical rotating container.) In parallel, 0.2N ammonia water and water are added to the sol solution B.
Prepared sol solution with H value adjusted to 5.6 and volume adjusted to 6ooml (effective glass component 0.115397ml)
1, calculated value), removed from the rotating device, removed the lid of the cylindrical rotating container that was standing still, and poured this solution into the tubular wet gel after 30 minutes of gelation. Thirty minutes after the value was adjusted to 5.3, this solution also gelled, and a wet gel with a coaxial tooth structure was obtained. (Outer diameter: 40 mm, length: 100 mm
100O■ Drying 10 wet gels prepared in the same manner are sealed in a cylindrical rotating container. The sample was aged at 60°C for 2 days until 200°C, and then transferred to a drying container with an open area of 0.1%. Next, put this drying container in a dryer at 60℃,
After drying the wet gel for 17 days, it turned out to be a stable dry gel that does not crack even when left at room temperature (outer diameter 23.211 m).
5 length: 584 mm, average value), 3 pieces were obtained at a yield of 30 inches.
■ 焼結
実施例1と同様々方法でドライゲル3本を焼結したとこ
ろ歩留り100%で光ファイバ用母材が得られた。この
光ファイバ用母材の大きさは直径16.0mm、長さ4
01闘であり、そのうちコアに相当する部分の直径は3
.2朋であった。(2) Sintering When three pieces of dry gel were sintered in the same manner as in Example 1, an optical fiber base material was obtained with a yield of 100%. The size of this optical fiber base material is 16.0 mm in diameter and 4 mm in length.
01, and the diameter of the part corresponding to the core is 3
.. There were 2 friends.
本実施例で得られた光ファイバ用母材に含壕れるOH基
を赤外域で吸収スペクトルを測定することによって定量
したところ327μmでの吸収ピークが全く認められず
、lppm以下であることが確認された。また線引きし
たときも発泡せず高品質な光ファイバが得られた。When the OH groups contained in the optical fiber base material obtained in this example were quantified by measuring the absorption spectrum in the infrared region, no absorption peak was observed at 327 μm, and it was confirmed that it was below 1 ppm. It was done. Furthermore, a high-quality optical fiber was obtained without foaming when drawn.
本実施例のように超微粉末シリカを含む溶液としてシリ
カ濃度が0.15g7m1程度のもの、(あるいは結果
的にウェットゲルを乾燥・焼結して透明ガラス化した時
その透明ガラスの体積がウェットゲルの体積の66%の
もの)、を用いて光ファイバ用母材を作製しても高品質
な光ファイバ用母材が得られるが、乾燥工程における歩
留りが30係と低く経済的ではなかった。また収縮が大
きくより太き々ウェットゲルを作る必要があり実用的で
はなかった。。As in this example, a solution containing ultrafine powdered silica with a silica concentration of about 0.15g7ml (or as a result, when the wet gel is dried and sintered to become transparent glass, the volume of the transparent glass becomes wet) Although a high-quality optical fiber preform can be obtained by producing an optical fiber preform using gel (66% of the gel volume), the yield in the drying process was low at 30%, making it uneconomical. . In addition, it was not practical because the shrinkage was large and it was necessary to make a thicker wet gel. .
〔実施例10〕
■ 加水分解溶液の調整
精製した市販のエチルシリケー) 427.29に無水
エタノール155m1を加えよく攪拌した。つづいて0
.02規定の塩酸147.8 gを加え、激しく攪拌し
て加水分解し、力l水5分解溶液Aとした。[Example 10] (1) Preparation of hydrolysis solution 155 ml of absolute ethanol was added to purified commercially available ethyl silica 427.29 and stirred well. followed by 0
.. 147.8 g of 0.2N hydrochloric acid was added thereto, and the mixture was hydrolyzed with vigorous stirring to obtain a 1-water decomposition solution A.
精製した市販のエチルシリケー) 97.1 gに無水
エタノールsqmlを加えよく攪拌した。つづいて0.
02規定の塩酸a4gを加え、激しく60分間攪拌した
。この反応溶液にテトラエトキシゲルマニウム11.0
gを少しづつ加えよく攪拌した。sqml of absolute ethanol was added to 97.1 g of purified commercially available ethyl silica, and the mixture was thoroughly stirred. Followed by 0.
02N hydrochloric acid (a) (4 g) was added, and the mixture was vigorously stirred for 60 minutes. Tetraethoxygermanium 11.0% was added to this reaction solution.
g was added little by little and stirred well.
20分反応させた後、この反応溶液に0.02規定の塩
酸28.4.9を加えよく攪拌しながら反応させ加水分
解溶液Bとした。After reacting for 20 minutes, 0.02N hydrochloric acid 28.4.9 was added to the reaction solution and the reaction was carried out with thorough stirring to obtain a hydrolyzed solution B.
■ 超微粉末シリカ分散溶液の調整
気相法で合成して得られる平均粒径0,15μmの超微
粉末シリカ500gを10100Oの水に徐々に添加し
、充分に攪拌した。さらにこの溶液に超音波を4時間照
射してよシ均一に分散させた。(2) Preparation of ultrafine powder silica dispersion solution 500 g of ultrafine powder silica with an average particle size of 0.15 μm synthesized by the vapor phase method was gradually added to 10,100 O water and thoroughly stirred. Further, this solution was irradiated with ultrasonic waves for 4 hours to ensure uniform dispersion.
遠心分離、r過により超微粉末シリカのダマ状の異物を
取り除き、超微粉末シリカ分散溶液とした。Clumpy foreign matter from the ultrafine powdered silica was removed by centrifugation and r-filtration to obtain an ultrafine powdered silica dispersion solution.
■ ゾル溶液の調整とゲル化
加水分解溶液Aと超微粉末シリカを含む溶液の686、
4 gを混合し、ゾル溶液Aとした。同様に加水分解溶
液Bと超微粉末シリカを含む溶液の171、69を混合
し、ゾル溶液Bとした。■ Preparation and gelation of sol solution 686 of the solution containing hydrolyzed solution A and ultrafine powdered silica,
4 g were mixed to prepare sol solution A. Similarly, hydrolysis solution B and solutions 171 and 69 containing ultrafine powdered silica were mixed to prepare sol solution B.
次にゾル溶液Aに0.2規定のアンモニア水と水を用い
てPH値を5.3に調整し、かつ体積を1600m1に
調整した。(有効ガラス成分濃度CL 2209/ml
、計算値)この仕込み溶液の12064m1を、内面に
シリコーンコートした塩化ビニル製の円筒状回転容器(
内径40mm5長さ1020mm、内容積1256.6
rnl)に移し入れた。Next, the pH value of the sol solution A was adjusted to 5.3 using 0.2N aqueous ammonia and water, and the volume was adjusted to 1600 ml. (Effective glass component concentration CL 2209/ml
, calculated value) 12,064 ml of this preparation solution was placed in a cylindrical rotating container made of vinyl chloride whose inner surface was coated with silicone (
Inner diameter 40mm5 length 1020mm, internal volume 1256.6
rnl).
この円筒状回転容器にフタをして回転装置に取り付け、
PH値を5.6に調整してから30分たったととるで1
200rpmで回転を始めた。(定速回転)回転を始め
てから15分後にゲル化が起こったが、そのまま10分
間回転させ、外径40間、内径8711m、長さ110
00iの寸法をもつ管状ウェットゲルを得た。これと平
行してゾル溶液Bを0.2規定のアンモニア水と水を用
いてPH値を5.0に調整し、かつ体積を400m1に
調整した仕込みゾル溶液を作製しく有効ガラス成分濃度
0、2243 g7ml、計算値)、回転装置から取り
はずし、立てて静置した状態にある円筒状回転容器のフ
タを取り、ゲル化して12分後の管状ウェットゲルにこ
の溶液を流し込んだところPH値を50に調整してから
20分たったところでこの溶液もゲル化して、円軸構造
をもったウェットゲルが得られた。(外径40朋、長さ
1000m1fL)■ 乾燥
同様な方法で作製したウェットゲル10本を円筒状回転
容器のなかで密閉状態のままで60℃、2日間熟成し、
01%の開口率をもったポリプロピレン製乾燥容器に移
し入れ、これらを65℃の乾燥機に入れたところ、15
日間で室温に放置しても割れ々い安定なドライゲル(外
径27. Ornm、長さ675mm、平均値)が歩留
り90%で9本得られた。Put a lid on this cylindrical rotating container and attach it to the rotating device.
1 after 30 minutes after adjusting the pH value to 5.6
It started rotating at 200 rpm. (Constant speed rotation) Gelation occurred 15 minutes after the start of rotation, but after 10 minutes of rotation, the outer diameter was 40 m, the inner diameter was 8711 m, and the length was 110 m.
A tubular wet gel with dimensions 00i was obtained. In parallel with this, a prepared sol solution was prepared by adjusting the pH value of sol solution B to 5.0 using 0.2N aqueous ammonia and water, and adjusting the volume to 400ml.The effective glass component concentration was 0. 2243 g7ml (calculated value), removed from the rotating device, removed the lid of the cylindrical rotating container that was standing still, and poured this solution into the tubular wet gel after 12 minutes of gelation, and the pH value was 50. After 20 minutes of adjustment, this solution also gelled, and a wet gel with a cylindrical structure was obtained. (Outer diameter 40 mm, length 1000 m 1fL) ■ Drying 10 wet gels prepared in the same manner were aged in a closed cylindrical rotating container at 60°C for 2 days.
When transferred to a drying container made of polypropylene with an open area ratio of 0.01% and placed in a dryer at 65°C,
Nine dry gels (outer diameter 27.0 nm, length 675 mm, average value) that remained stable even after being left at room temperature for several days were obtained at a yield of 90%.
■ 焼結
次にこのドライゲルを石英製管状焼結炉に入れ昇温速度
30℃/ h rで30℃から200℃まで加熱し、こ
の温度で5時間保持し、つづいて200℃から600℃
まで昇温速度60℃/ h rで加熱し、この温度で5
時間保持して脱吸着水を行なった。つづいて昇温速度6
0℃/ h rで600℃から1050℃まで加熱し、
この温度で60分間保持して脱炭素、脱塩化アンモニウ
ム処理、脱水網合反応の促進処理を行なった。つづいて
700℃まで降温しHe 2 l /min 、 c
120.2 l /minの混合ガスを流しながら3
0分間保持し、その後Heガスのみを流しなから昇温速
度60℃/hr で800℃まで加熱した。800℃で
He 2 l/min。■ Sintering Next, this dry gel was placed in a quartz tubular sintering furnace and heated from 30°C to 200°C at a heating rate of 30°C/hr, held at this temperature for 5 hours, and then heated from 200°C to 600°C.
Heating at a heating rate of 60°C/hr until 50°C at this temperature.
Desorption of water was carried out by holding for a certain period of time. Next, heating rate 6
Heating from 600 °C to 1050 °C at 0 °C/hr,
This temperature was maintained for 60 minutes to perform decarbonization, dechlorination ammonium treatment, and acceleration treatment of dehydration network reaction. Subsequently, the temperature was lowered to 700°C and He 2 l/min, c
3 while flowing a mixed gas of 120.2 l/min.
The temperature was maintained for 0 minutes, and then the temperature was heated to 800°C at a temperature increase rate of 60°C/hr without flowing only He gas. He 2 l/min at 800°C.
c l 20.2 l / minの混合ガスを流しな
がら1時間保持し、その後Heガスのみを流しなから昇
温速度60℃/ h rで900℃壕で加熱した。90
0℃でHe 2 l /min 、 cl 20.2
l /minの混合ガスを流しながら1時間保持し、
脱OH基処理を行なった。つづいてHe21/rrun
に対して020.41/min の混合ガスを流し
ながら昇温60℃/ h rで1000℃まで加熱し、
この温度で1時間保持して脱塩素処理を行なった。つづ
いてI(eガスのみを流しなから昇温速度30℃/ h
rで1250℃まで加熱し、この温度で60分保持し
て閉孔化処理を行なった。上記の処理を行なった試料の
うち4本を1250℃から昇温速度60℃/ h rで
1550℃まで加熱し、この温度で1時間保持すると無
孔化し、透明は光ファイバ用母材が歩留り100チで得
られた。また前記閉孔化処理を行なった試料のうち5本
を1600℃のリングヒータを通すことによって無孔化
すると、透明な光ファイバ用母材が歩留り100%で得
られた。この光ファイバ用母材の大きさは直径18.5
m、、長さ461 m、でありそのうちコアに相当する
部分の直径は6.7朋であった。The mixture was maintained for 1 hour while flowing a mixed gas of 20.2 l/min, and then heated in a trench at 900°C at a heating rate of 60°C/hr without flowing only He gas. 90
He 2 l/min at 0°C, cl 20.2
Hold for 1 hour while flowing mixed gas at l/min.
OH group removal treatment was performed. Next is He21/rrun
Heating to 1000°C at a rate of 60°C/hr while flowing a mixed gas at a rate of 020.41/min.
This temperature was maintained for 1 hour to perform dechlorination treatment. Next, I (without flowing only e gas, the temperature increase rate was 30℃/h.
The sample was heated to 1250° C. using r and held at this temperature for 60 minutes to perform a pore-closing treatment. Four of the samples subjected to the above treatment were heated from 1250°C to 1550°C at a heating rate of 60°C/hr and held at this temperature for 1 hour. Obtained with 100 pieces. Furthermore, when five of the samples subjected to the pore-closing treatment were passed through a ring heater at 1600° C. to render them pore-free, a transparent optical fiber base material was obtained at a yield of 100%. The size of this optical fiber base material is 18.5 in diameter.
The length was 461 m, and the diameter of the portion corresponding to the core was 6.7 m.
本実施例で得られた光ファイバ用母材に含まれるOH基
を赤外域で吸収スペクトルを測定することによって定量
したところ9本の試料のうちどの試料についても2.7
μmでの吸収ピークが全く認められず、lppm以下で
あることが確認された。The OH groups contained in the optical fiber base material obtained in this example were quantified by measuring absorption spectra in the infrared region.
No absorption peak at μm was observed, and it was confirmed that the absorption peak was at 1 ppm or less.
また線引きしたときも発泡せず高品質の光ファイバが得
られた。Furthermore, a high-quality optical fiber was obtained without foaming when drawn.
このように仕込みゾル溶液を調整する際、酸性のアルキ
ルシリケート加水分解溶液からの有効ガラス成分と超微
粉末シリカを含む溶液からの有効ガラス成分の割合が3
5対65の場合も、実施例7の45対55の場合も最適
焼結条件が少し異なるが高品質な光ファイバ用母材が得
られた。詳しい実験の結果この比が20対80から80
対20の範囲が実用的であることがわかった。When preparing the charged sol solution in this way, the ratio of the effective glass component from the acidic alkyl silicate hydrolysis solution to the effective glass component from the solution containing ultrafine powder silica is 3.
Although the optimum sintering conditions were slightly different in both the case of 5:65 and the case of 45:55 in Example 7, high-quality optical fiber preforms were obtained. As a result of detailed experiments, this ratio is 20:80 to 80.
A range of 20 was found to be practical.
〔実施例11〕
■ 加水分解溶液の調整
精製した市販のエチルシリケー) 549.1 、!i
+[無水エタノール218m1を加えよく攪拌した。つ
づいて0.02規定の塩酸190.0gを加え、激しく
攪拌して加水分解し、加水分解溶液Aとした。[Example 11] ■ Preparation of hydrolysis solution Purified commercially available ethyl silica) 549.1,! i
+ [218 ml of absolute ethanol was added and stirred well. Subsequently, 190.0 g of 0.02N hydrochloric acid was added, and the mixture was hydrolyzed by vigorous stirring to obtain a hydrolyzed solution A.
精製した市販のエチルシリケート127.79に無水エ
タノール55m1を加えよく攪拌した。つづいて0.0
2規定の塩酸11.C1pを加え、激しく60分間攪拌
した。この反応溶液にテトラエトキシゲルマニウム11
.10pを少しづつ加えよく攪拌した。20分反応させ
た後、この反応溶液に002規定の塩酸36.39を加
えよく攪拌し々がら反応させ加水分解溶液Bとした。55 ml of absolute ethanol was added to 127.79 g of purified commercially available ethyl silicate and stirred thoroughly. followed by 0.0
2N hydrochloric acid 11. C1p was added and stirred vigorously for 60 minutes. Tetraethoxygermanium 11 is added to this reaction solution.
.. 10p was added little by little and stirred well. After reacting for 20 minutes, 36.39 g of 002N hydrochloric acid was added to this reaction solution and reacted with thorough stirring to obtain a hydrolyzed solution B.
■ 超微粉末シリカ分散溶液の調整
気相法で合成して得られる平均粒径0.65μmの超微
粉末シリカ500gを10100Oの水に徐々に添加し
、充分に攪拌した。さらにこの溶液に= 5〜
超音波を4時間照射してより均一に分散させた。(2) Preparation of ultrafine powder silica dispersion solution 500 g of ultrafine powder silica with an average particle size of 0.65 μm synthesized by the vapor phase method was gradually added to 10,100 O water and thoroughly stirred. Further, this solution was irradiated with ultrasonic waves for 4 hours to achieve more uniform dispersion.
遠心分離、沢過により超微粉末シリカのダマ状の異物を
取り除き、超微粉末シリカ分散溶液とした。Clumpy foreign matter from the ultrafine silica powder was removed by centrifugation and filtering to obtain an ultrafine silica dispersion solution.
■ ゾル溶液の調整とゲル化
加水分解溶液Aと超微粉末シリカを含む溶液の580、
8 gを混合し、ゾル溶液Aとした。同様に加水分解溶
液Bと超微粉末シリカを含む溶液の145.2.!9を
混合し、ゾル溶液Bとした。■ Preparation of sol solution and gelation 580 of the solution containing hydrolyzed solution A and ultrafine powdered silica,
8 g were mixed to prepare sol solution A. Similarly, 145.2 of a solution containing hydrolyzed solution B and ultrafine powdered silica. ! 9 was mixed to prepare sol solution B.
次にゾル溶液Aに0,2規定のアンモニア水と水を用い
てPH値を5.6に調整し、かつ体積を160.0++
+lに調整した。(有効ガラス成分濃度0、220 g
/ml、計画値)この溶液の1206.4m、lを、内
面にシリコーンコートした塩化ビニル製の円筒状回転容
器(内径40mm5長さIC120mm。Next, the pH value was adjusted to 5.6 using 0.2N aqueous ammonia and water to the sol solution A, and the volume was adjusted to 160.0++.
Adjusted to +l. (Effective glass component concentration 0, 220 g
/ml, planned value) 1206.4 ml, liter of this solution was placed in a cylindrical rotating container made of vinyl chloride whose inner surface was coated with silicone (inner diameter 40 mm, length IC 120 mm).
内容積1256.6m1)に移し入れた。この円筒状回
転容器にフタをして回転容器に取り付け、 PI(値を
5.42に調整してから60分たったところで150O
rpmで回転を始めた。回転を始めてから18分後にゲ
ル化が起こったが、その−!ま15分間回転させ、外径
40mvts内径aomm1長さ1000mmの寸法を
もつ管状ウェットゲルを得た。これと平行してゾル溶i
Bを02規定のアンモニア水と水を用いてPH値を5.
2に調整シフ、かつ体積を・・4oomlに調整した溶
液を作製しく有効ガラス成分0.2243 ji/me
、計算値)、回転装置から取りはずし、立てて静置した
状態にある円筒状回転容器のフタを取り、ゲル化して1
8分後の管状ウェットゲルにこの溶液を流し込んだとこ
ろ、PH値を52に調整してから15分たったところで
この溶液もゲル化して同軸構造をもったウェットゲルが
得られた。(外径40mm5長さ101000i■ 乾
燥
同様な方法で作製したウェットゲル10本を円筒状回転
容器のなかで密閉状態のままで30℃で2日間熟成し、
その後0.1%の開口率をもった乾燥容器に移し入れた
。次にこの乾燥容器を65℃の乾燥機に入れ、ウェット
ゲルを乾燥したところ15日間で、室温に放置しても割
れない安定なドライゲル(外径28.0 mm、長さ7
00m、m、平均値)が歩留り70チで7本得られた。It was transferred to a container with an internal volume of 1256.6 m1). This cylindrical rotating container was capped and attached to the rotating container, and the PI (value was adjusted to 5.42 and 60 minutes later, the temperature was 150 O.
It started rotating at rpm. Gelation occurred 18 minutes after starting the rotation, but-! The gel was rotated for 15 minutes to obtain a tubular wet gel having dimensions of an outer diameter of 40 mvts, an inner diameter of aomm, and a length of 1000 mm. In parallel with this, sol solution i
The pH value of B was adjusted to 5.0 using 02N ammonia water and water.
Make a solution whose volume is adjusted to 2 and the volume is adjusted to 4 ooml.The effective glass component is 0.2243 ji/me.
, calculated value), removed from the rotating device, removed the lid of the cylindrical rotating container that was standing still, and gelled.
When this solution was poured into the tubular wet gel after 8 minutes, the solution also gelled 15 minutes after adjusting the pH value to 52, and a wet gel with a coaxial structure was obtained. (Outer diameter: 40 mm, length: 101,000 i) 10 wet gels prepared in a similar manner were aged in a cylindrical rotating container for 2 days at 30°C in a sealed state.
Thereafter, it was transferred to a drying container with an open area ratio of 0.1%. Next, this drying container was placed in a dryer at 65°C to dry the wet gel. After 15 days, a stable dry gel (outer diameter 28.0 mm, length 7
00m, m, average value) were obtained with a yield of 70 inches.
■ 焼結
実施例1と同様な方法でドライゲル7本を焼結したとこ
ろ歩留り100%で光ファイバ用母材が7本得られた。(2) Sintering When seven pieces of dry gel were sintered in the same manner as in Example 1, seven pieces of optical fiber base material were obtained with a yield of 100%.
この光ファイバ用母材の太きさは直径18.4mm、長
さ462mmであり、そのうちコアに相当する部分の直
径は3.6朋であった。The thickness of this optical fiber preform was 18.4 mm in diameter and 462 mm in length, of which the diameter of the portion corresponding to the core was 3.6 mm.
本実施例で得られた光ファイバ用母材に含まれるOH基
を赤外域で吸収スペクトルを測定することによって定量
したところ2.7μmでの吸収ピークが全く認められず
、lppm以下であることが確認された。また線引きし
たときも発泡せず高品質の光ファイバが得られた。When the OH groups contained in the optical fiber base material obtained in this example were quantified by measuring the absorption spectrum in the infrared region, no absorption peak was observed at 2.7 μm, and it was found to be less than 1 ppm. confirmed. Furthermore, a high-quality optical fiber was obtained without foaming when drawn.
本実施例で示したように0.35μmの平均粒径をもつ
超微粉末シリカを用いた場合でも光ファイバ用母材が製
造できた。詳しい実験の結果、平均粒径が1μmを越え
る超微粉末シリカを用いた場合は、回転ゲル化の際の粒
子の沈降のためにドライゲルをも作製することが困難で
あった。As shown in this example, an optical fiber base material could be manufactured even when ultrafine powdered silica having an average particle size of 0.35 μm was used. As a result of detailed experiments, it was found that when ultrafine powdered silica having an average particle size exceeding 1 μm was used, it was difficult to prepare a dry gel due to sedimentation of the particles during rotational gelation.
〔実施例12〕 ■ 加水分解溶液の調整 −53一 実施例7と同様な方法で行なった。[Example 12] ■ Preparation of hydrolysis solution -531 The same method as in Example 7 was used.
■ 超微粉末シリカを含む溶液の調整 実施例7と同様な方法で行なった。■ Preparation of solution containing ultrafine powdered silica The same method as in Example 7 was used.
■ ゾル溶液の調整とゲル化
回転ゲル化の際の回転数が50000rpmであるとと
以外は実施例7と同様な方法で行なったところ回転で生
じた強い遠心力のために微粉末シリカの沈降が起こり、
(目でみてもわかる)ウェットゲルを乾燥する工程で全
数側れてしまった。■ Preparation of sol solution and gelation Rotation When the same method as in Example 7 was carried out except that the rotation speed during gelation was 50,000 rpm, fine powder silica sedimented due to the strong centrifugal force generated by rotation. happens,
(You can see it with your eyes) All of the wet gels fell apart during the drying process.
詳しい実験の結果、内径40.mの円筒状回転容器を用
いた場合では、回転ゲル化の際の回転数は5000rp
m以下であることが必要であった。As a result of detailed experiments, the inner diameter was 40. When using a cylindrical rotating container of m, the rotation speed during rotational gelation is 5000 rpm.
It was necessary that it be less than m.
ただし円筒状回転容器がずっと小さいサイズの場合、例
えば内径5mmの場合だと回転させる時間を短かく選べ
ば5000 El r pmでもドライゲルを割れずに
作製することは、可能であった。However, if the cylindrical rotating container was much smaller in size, for example with an inner diameter of 5 mm, it was possible to produce dry gel without cracking even at 5000 El r pm if the rotating time was shortened.
〔実施例16〕 ■ 加水分解溶液の調整 実施例7と同様な方法で行なった。[Example 16] ■ Preparation of hydrolysis solution The same method as in Example 7 was used.
■ 超微粉末シリカ分散溶液の調整 実施例7と同様な方法で行iつだ。■ Preparation of ultrafine powder silica dispersion solution This was carried out in the same manner as in Example 7.
■ ゾル溶液の調整とゲル化
実施例7と同様な方法でゾル溶液Aとゾル溶液Bを作製
した。(2) Preparation and gelation of sol solutions Sol solutions A and B were prepared in the same manner as in Example 7.
次にゾル溶液Aに0.2規定のアンモニア水と水を用い
てPH値を5.5に調整し、かつ体積を1600m1に
調整した。(有効ガラス成分濃度0、220 g/ml
、計算値)この仕込みゾル溶液入の115a1mlを、
内面にシリコーンコートした金属製の円筒状回転容器(
内径40龍、長さ1020朋、内容fi1256.6m
J)に移し入れた。この円筒状回転容器にフタをして回
転装置に取り付け、PH値を5,5に調整してから30
分たったところで1500rpmで回転を始めた。回転
を始めてから15分後にゲル化が起こったが、そのまま
10分間回転させ、外径40mm5内径11,2朋、長
さ1000mmの寸法を持つ管状ウェットゲルを得た。Next, the pH value of the sol solution A was adjusted to 5.5 using 0.2N aqueous ammonia and water, and the volume was adjusted to 1600 ml. (Effective glass component concentration 0, 220 g/ml
, calculated value) 1 ml of 115a containing this prepared sol solution,
A metal cylindrical rotating container with silicone coating on the inside (
Inner diameter 40 mm, length 1020 mm, content fi 1256.6 m
I moved it to J). Put a lid on this cylindrical rotating container, attach it to the rotating device, adjust the pH value to 5.5, and then
After a minute, it started rotating at 1500 rpm. Although gelation occurred 15 minutes after the start of rotation, the gel was continued to rotate for 10 minutes to obtain a tubular wet gel having dimensions of an outer diameter of 40 mm, an inner diameter of 11.2 mm, and a length of 1000 mm.
これと平行してゾル溶液Bを0.2規定のアンモニア水
と水を用いてPH値を5.1に調整し、かつ体積を40
0m1に調整した仕込みゾル溶液Bを作製しく有効ガラ
ス成分0.2243 g/ml、計算値)、回転装置か
ら取りはず[−1立てて静置した状態にある円筒状回転
容器のフタを取り、ゲル化して12分後の管状ウェット
ゲルにこの仕込みゾル溶液Bを48.25m1流し込ん
だ。このあとこの円筒状回転容器にフタをして再び回転
装置に取り付けすぐに150Orpmで回転を始めたと
ころPH値を51に調整してから18分たったところで
この仕込みゾル溶液Bもゲル化したが、その1″iJ、
10分間回転させると、外径40TIms 内径8、0
mm、長さ1000.、の管状ウェットゲルが得られ
た。In parallel, the pH value of sol solution B was adjusted to 5.1 using 0.2N aqueous ammonia and water, and the volume was adjusted to 40%.
Prepare the sol solution B adjusted to 0 ml (effective glass component: 0.2243 g/ml, calculated value), remove from the rotating device [-1] Remove the lid of the cylindrical rotating container that is standing still, After 12 minutes of gelation, 48.25 ml of this prepared sol solution B was poured into the tubular wet gel. After that, this cylindrical rotating container was capped and reattached to the rotating device and immediately started rotating at 150 rpm, and 18 minutes after adjusting the pH value to 51, this prepared sol solution B also gelled. Part 1″iJ,
When rotated for 10 minutes, the outer diameter is 40TIms and the inner diameter is 8.0
mm, length 1000. , a tubular wet gel was obtained.
■ 乾燥
同様な方法で作製したウェットゲル10本を円筒状回転
容器のなかで密閉状態のままで60℃で2日間熟成し、
つづいて0.1%の開口率をもったポリプロピレン製乾
燥容器に移し入れた。この乾燥容器を60℃の乾燥機に
入れ、ウェットゲルを乾燥したところ17日間で、室温
に放置しても割れない安定々ドライゲル(外径26.5
.、、内径56罷、長さ665rnm−平均値)が歩留
シタ0饅で9本得られた。■Drying 10 wet gels prepared in the same manner were aged in a cylindrical rotating container in a sealed state at 60°C for 2 days.
Subsequently, it was transferred to a polypropylene drying container with an open area ratio of 0.1%. When this drying container was placed in a dryer at 60°C and the wet gel was dried, the dry gel (outer diameter 26.5
.. , , inner diameter 56 lines, length 665 nm - average value) were obtained with a yield of 0.
■ 焼結
実施例7と同様々方法を用いてドライゲル9本を焼結し
たところ歩留り100チで光ファイバ用母材9本が得ら
れた。この光ファイバ用母材の大きさは外径1a5闘、
内径五7朋、長さ463間であり、そのうちコアに相当
する部分の外径は52朋であった。またこの光ファイバ
用母材を中央の孔を真空にして中実化してから線引きす
ることによって光ファイバが得られた。(2) Sintering When nine pieces of dry gel were sintered using the same method as in Example 7, nine pieces of optical fiber base material were obtained with a yield of 100 inches. The size of this optical fiber base material is 1a5 mm in outer diameter.
It had an inner diameter of 57 mm and a length of 463 mm, of which the outer diameter of the portion corresponding to the core was 52 mm. Further, an optical fiber was obtained by making the optical fiber preform into a solid material by evacuating the central hole and then drawing it.
本実施例で得られた光ファイバ用母材に含まれるOH基
を赤外域で吸収スペクトルを測定することによって定量
したところ、2.7μmでの吸収ピークが全く認められ
ず、lppm以下であることが確認された。また中実化
した後線引きしたときも発泡せず高品質の光ファイバが
得られた。When the OH groups contained in the optical fiber base material obtained in this example were quantified by measuring the absorption spectrum in the infrared region, no absorption peak was observed at 2.7 μm, and it was below lppm. was confirmed. Furthermore, even when the fiber was drawn after solidification, no foaming occurred and a high-quality optical fiber was obtained.
〔実施例14〕
■ 加水分解溶液の調整
精製した市販のエチルシリケー) 549.2.9に無
水エタノール218m1を加えよく攪拌した。つづいて
0.02規定の塩酸190.0 gを加え、激しく攪拌
して加水分解し、加水分解溶液Aとした。[Example 14] (1) Preparation of hydrolysis solution 218 ml of absolute ethanol was added to purified commercially available ethyl silica 549.2.9 and stirred thoroughly. Subsequently, 190.0 g of 0.02N hydrochloric acid was added, and the mixture was hydrolyzed by vigorous stirring to obtain a hydrolyzed solution A.
精製した市販のエチルシリケー)105.4.9に無水
エタノール55m1を加えよく攪拌した。つづいて0.
2規定の塩酸11.7gを加え、激しく60分間攪拌し
た。この反応溶液にテトラエトキシゲルマニウム36.
84.9を少しづつ加えよく攪拌した。20分反応させ
た後、この反応溶液に02規定の塩酸35.2 gを加
えよく攪拌させながら反応させ加水分解溶液Bとした。55 ml of absolute ethanol was added to purified commercially available ethyl silica) 105.4.9 and stirred well. Followed by 0.
11.7 g of 2N hydrochloric acid was added and stirred vigorously for 60 minutes. Add 36% of tetraethoxygermanium to this reaction solution.
84.9 was added little by little and stirred well. After reacting for 20 minutes, 35.2 g of 02N hydrochloric acid was added to the reaction solution and the reaction was carried out with thorough stirring to obtain a hydrolyzed solution B.
■ 超微粉末シリカ分散溶液の調整
気相法で合成して得られる平均粒径015μmの超微粉
末シリカ500gを10100Oの水に徐々に添加し、
充分に攪拌した。さらにこの溶液に超音波を4時間照射
してよυ均一に分散させた。■ Preparation of ultrafine powder silica dispersion solution Gradually add 500 g of ultrafine powder silica with an average particle size of 015 μm synthesized by vapor phase method to 10100O water.
Stir thoroughly. Furthermore, this solution was irradiated with ultrasonic waves for 4 hours to uniformly disperse it.
遠心分離、濾過により超微粉末シリカのダマ状の異物を
取υ除き、超微粉末シリカ分散溶液とした。Clumpy foreign matter from the ultrafine silica powder was removed by centrifugation and filtration to obtain an ultrafine silica dispersion solution.
■ ゾル溶液の調整とゲル化
加水分解溶液Aと超微粉末シリカを含む溶液の580、
89を混合し、ゾル溶液Aとした。同様に加水分解溶液
Bと超微粉末シリカを含む溶液の145.2.jQに少
し2規定の塩酸を加えPHを下げた溶液を混合し、ゾル
溶液Bとした。■ Preparation of sol solution and gelation 580 of the solution containing hydrolyzed solution A and ultrafine powdered silica,
89 was mixed to prepare a sol solution A. Similarly, 145.2 of a solution containing hydrolyzed solution B and ultrafine powdered silica. Sol solution B was prepared by adding a small amount of 2N hydrochloric acid to jQ to lower the pH.
次にゾル溶液Aに0.2規定のアンモニア水と水を用い
てPH値を5.5に調整し、かつ体積を1600m1に
調整した。(有効ガラス成分濃度0、220 g7ml
、計算値)この溶液の5278m1を、内面にシリコー
ンコートした塩化ビニル製の円筒状回転容器(内径40
17H,長さ520m、、内容at628.3 ml
)に移し入れた。この円筒状回転容器にフタをして回転
装置に取り付け、PH値を5.5に調整してから60分
たったところで180Orpmで回転を始めた。回転を
始めてから15分後にゲル化が起こったが、そのまま1
0分間回転させ、外径40mrls内径16g1長さ5
00m、の寸法を持つ管状ウェットゲルを得た。これと
平行してゾル溶液Bを02規定のアンモニア水と水を用
いてPH値を3,0に調整し、かつ体積を400m1に
調整した溶液を作製しく有効ガラス成分0、2344
g7m11計算値)、回転装置から取りはずし、立てて
静置した状態にある円筒状回転容器のフタを廣り、ゲル
化して15分後の管状ウェットケルにこの溶液を流し込
んだところPH値を60に調整してから22分たったと
ころでこの溶液もゲル化して、同軸構造をもったウェッ
トゲルが得られた。(外径40龍、長さ500ii)■
乾燥
同様な方法で作製したウェットゲル10本を円筒状回転
容器のなかで密閉状態のままで60℃で2日間熟成し、
つづいて0.1係の開口率をもったポリプロピレン製乾
燥容器に移し入れた。この乾燥容器を60℃の乾燥機に
入れ、ウェットゲルを乾燥したところ17日間で、室温
に放置しても割れない安定なドライゲル(外径26.5
mm5内径10、67nrn、長さ662罷、平均値)
が歩留り70チで7本得られた。Next, the pH value of the sol solution A was adjusted to 5.5 using 0.2N aqueous ammonia and water, and the volume was adjusted to 1600 ml. (Effective glass component concentration 0, 220 g7ml
, calculated value) 5278 ml of this solution was placed in a cylindrical rotating container made of vinyl chloride (inner diameter 40
17H, length 520m, content at 628.3ml
). This cylindrical rotating container was capped and attached to a rotating device, and 60 minutes after adjusting the pH value to 5.5, rotation was started at 180 rpm. Gel formation occurred 15 minutes after starting the rotation, but the
Rotate for 0 minutes, outer diameter 40mrls inner diameter 16g1 length 5
A tubular wet gel with dimensions of 00 m was obtained. In parallel, a solution was prepared in which the pH value of sol solution B was adjusted to 3.0 using 02N ammonia water and water, and the volume was adjusted to 400ml.The effective glass component was 0.2344.
g7m11 calculated value), removed from the rotating device, opened the lid of the cylindrical rotating container that was standing still, and poured this solution into the tubular wet gel after 15 minutes of gelation, resulting in a pH value of 60. After 22 minutes of adjustment, this solution also gelled, and a wet gel with a coaxial structure was obtained. (Outer diameter 40mm, length 500ii)■
Ten wet gels prepared in the same manner as drying were aged in a cylindrical rotating container in a sealed state at 60°C for 2 days.
Subsequently, it was transferred to a drying container made of polypropylene having an aperture ratio of 0.1. When this drying container was placed in a dryer at 60°C and the wet gel was dried, a stable dry gel (outer diameter 26.5
mm5 inner diameter 10, 67nrn, length 662 lines, average value)
Seven pieces were obtained with a yield of 70 cm.
■ 焼結
実施例7と同様々方法を用いてドライゲル7本を焼結し
たところ歩留り100%で光ファイ、く用母材7本が得
られた。この光ファイバ用母材の大きさは直径1a5m
m、長さ231 mmであり、そのうちコアに相当する
部分の直径は7.4 m、であった。(2) Sintering When seven pieces of dry gel were sintered using the same method as in Example 7, seven base materials for optical fibers were obtained with a yield of 100%. The size of this optical fiber base material is 1a5m in diameter.
The diameter of the portion corresponding to the core was 7.4 m.
本実施例で得られた光ファイバ用母材に含まれるOH基
を赤外域で吸収スペクトルを測定することによって定量
したところ、2.7μmでの吸収ピークが全く認められ
ず、lppm以下であることが確認された。また線引き
したときも発泡せず高品質な光ファイバが得られた。When the OH groups contained in the optical fiber base material obtained in this example were quantified by measuring the absorption spectrum in the infrared region, no absorption peak was observed at 2.7 μm, and it was below lppm. was confirmed. Furthermore, a high-quality optical fiber was obtained without foaming when drawn.
本実施例で示したようにGeを10モルチドーブするこ
とによってマルチモード型ステップインデックス光ファ
イバ用母材が作製できた。As shown in this example, a base material for a multimode step-index optical fiber was fabricated by doping Ge with 10 molti.
〔実施例15〕
■ 加水分解溶液の調整
A 精製した市販のエチルシリケート549.2gに無
水エタノール218dを加えよく攪拌した。[Example 15] (1) Preparation of hydrolysis solution A 218 d of absolute ethanol was added to 549.2 g of purified commercially available ethyl silicate and stirred thoroughly.
つづいて002規定の塩酸190.0 gを加え、激し
く攪拌して加水分解し、加水分解溶液Aとした。Subsequently, 190.0 g of 002N hydrochloric acid was added, and the mixture was hydrolyzed with vigorous stirring to obtain a hydrolyzed solution A.
B 精製した市販のエチルシリケー) 119.5Iに
無水エタノール55m1を加えよく攪拌した。B Purified commercially available ethyl silica) 119.5I was added with 55 ml of absolute ethanol and stirred well.
−61一
つづいて0.2規定の塩酸11.7gを加え、激しく6
0分間攪拌した。この反応溶液にテトラエトキシゲルマ
ニウム20.59を少しづつ加えよく攪拌した。20分
反応させた後、この反応溶液に0.2規定の塩酸35.
517を加えよく攪拌させながら反応させ加水分解溶液
Bとした。Add 11.7 g of 0.2 N hydrochloric acid to -61 one by one, and vigorously 6
Stirred for 0 minutes. 20.59 g of tetraethoxygermanium was added little by little to this reaction solution and stirred well. After reacting for 20 minutes, 35% of 0.2N hydrochloric acid was added to the reaction solution.
517 was added and reacted with thorough stirring to obtain a hydrolyzed solution B.
C精製した市販のエチルシリケー) 108.9gに無
水エタノール55m1を加えよく攪拌した。55 ml of absolute ethanol was added to 108.9 g of purified commercially available ethyl silica and stirred well.
つづいて0,2規定の塩酸11.7.9を加え、激しく
60分間攪拌した。この反応溶液にテトラエトキシゲル
マニウム32.779を少しづつ加えよく攪拌した。2
0分反応させた後、この反応溶液に0.2規定の塩酸5
5.3 gを加えよく攪拌させながら反応させ加水分解
溶液Cとした。Subsequently, 11.7.9% of 0.2N hydrochloric acid was added and stirred vigorously for 60 minutes. To this reaction solution, 32.779 g of tetraethoxygermanium was added little by little and stirred well. 2
After reacting for 0 minutes, 0.2N hydrochloric acid 5 was added to the reaction solution.
5.3 g was added and reacted with thorough stirring to obtain a hydrolyzed solution C.
D 精製した市販のエチルシリケー) 105.4gに
無水エタノール55m1を加えよく攪拌した。D. 55 ml of absolute ethanol was added to 105.4 g of purified commercially available ethyl silica, and the mixture was thoroughly stirred.
つづいて02規定の塩酸11.7gを加え、激しく60
分間攪拌した。この反応溶液にテトラエトキシゲルマニ
ウム36.8 gを少しづつ加えよく攪拌した。20分
反応させた後、この反応溶液に0.2規定の塩酸35.
29を加えよく攪拌させながら反応させ加水分解溶液り
とした。Next, add 11.7 g of 02N hydrochloric acid and
Stir for a minute. 36.8 g of tetraethoxygermanium was added little by little to this reaction solution and stirred well. After reacting for 20 minutes, 35% of 0.2N hydrochloric acid was added to the reaction solution.
29 was added and reacted with thorough stirring to obtain a hydrolyzed solution.
■ 微粉末シリカ分散溶液の調整
気相法で合成して得られる平均粒径0.15μmの超微
粉末シリカ500gを10007nlの水に徐々に添加
し、充分に攪拌した。さらにこの溶液に超音波を4時間
照射してよシ均一に分散させた。(2) Preparation of fine powder silica dispersion solution 500 g of ultrafine powder silica with an average particle size of 0.15 μm synthesized by a vapor phase method was gradually added to 10,007 nl of water and thoroughly stirred. Further, this solution was irradiated with ultrasonic waves for 4 hours to ensure uniform dispersion.
遠心分離、Δ4過により超微粉末シリカのダマ状の異物
を取り除き、超微粉末シリカ分散溶液とした。Clumpy foreign matter from the ultrafine powdered silica was removed by centrifugation and Δ4 filtration to obtain an ultrafine powdered silica dispersion solution.
■ ゾル溶液の調整とケル化
加水分解溶液Aと超微粉末シリカ分散溶液の580、8
9を混合し、ゾル溶液Aとした。■ Preparation of sol solution and 580, 8 of kelization hydrolysis solution A and ultrafine powder silica dispersion solution
9 was mixed to obtain sol solution A.
同様に加水分解溶液Bと超微粉末シリカを含む溶液の1
45.2gに2規定の塩酸を加えてPH値を下げた溶液
を混合し、ゾル溶液Bとした。Similarly, hydrolysis solution B and solution 1 containing ultrafine powder silica
A solution obtained by adding 2N hydrochloric acid to 45.2 g to lower the pH value was mixed to obtain sol solution B.
同様に加水分解溶液Cと超微粉末シリカを含む溶液の1
45.29に2規定の塩酸を加えてPH値を下げた溶液
を混合し、ゾル溶液Cとした。Similarly, hydrolysis solution C and solution 1 containing ultrafine powder silica
A solution obtained by adding 2N hydrochloric acid to 45.29 to lower the pH value was mixed, and a sol solution C was obtained.
同様に加水分解溶液りと超微粉末シリカを含む溶液の1
45.2.9に2規定の塩酸を加えてP)(値を下げだ
溶液を混合し、ゾル溶液りとした。Similarly, one of the solutions containing hydrolyzed solution and ultrafine powdered silica
45. Add 2N hydrochloric acid to 2.9 to lower the P value. The solutions were mixed to form a sol solution.
次にゾル溶液Aに0.2規定のアンモニア水と水を用い
てP I−I値を5.5に、かつ体積を1600m1に
調整し、仕込みゾル溶液Aを作製した。(有効ガラス成
分濃度0.220 g/ml!、計算値)この仕込みゾ
ル溶液Aの471.23TLlを、内面にシリコーンコ
ートした塩化ビニル製の円筒状回転容器(内径40F1
71h長さ520龍、内容積628.3m1)に移し入
れた。この円筒状回転容器にフタをして回転装置に取p
付け、PH値を5.5に調整してから30分たったとこ
ろで1500rprnで回転を始めた。回転を始めてか
ら15分後にゲル化が起こったが、そのまま10分間回
転させ、外径40龍、内径20羽、長さ500m、の寸
法を持つ管状ウェットゲルを得た。Next, 0.2N ammonia water and water were used in the sol solution A to adjust the P I-I value to 5.5 and the volume to 1600 ml to prepare a charged sol solution A. (Effective glass component concentration 0.220 g/ml!, calculated value) 471.23 TL of this prepared sol solution A was placed in a cylindrical rotating container made of vinyl chloride (inner diameter 40F1) whose inner surface was coated with silicone.
71 hours long, 520 meters long, internal volume 628.3 m1). Put a lid on this cylindrical rotating container and attach it to the rotating device.
30 minutes after the pH value was adjusted to 5.5, rotation was started at 1500 rpm. Gelation occurred 15 minutes after the start of rotation, but by continuing to rotate for 10 minutes, a tubular wet gel having dimensions of 40 mm in outer diameter, 20 mm in inner diameter, and 500 m in length was obtained.
これと平行してゾル溶液Bを0.2規定のアンモニア水
と水を用いてPH値を4,2に、かつ体積を400m1
に調整し、仕込みゾル溶液Bを作製し、(有効ガラス成
分濃度2.280 g/ml、計算値)つづいて回転装
置から取りはずし、立てて静置した状態にある円筒状回
転容器のフタを取り、ゲル化して12分後の管状ウェッ
トゲルにこの仕込みゾル溶液Bを100.53m1流し
込んだ。このおとこの円筒状回転容器にフタをして再び
回転装置に取り付けすぐに150Orpmで回転を始め
たところPH値を4.2に調整してから15分たったと
ころでこの仕込みゾル溶液Bもゲル化したが、そのまま
10分間回転させると、外径40mm、内径12mm、
長さ500.mの管状ウェットゲルが得られた。In parallel, the sol solution B was adjusted to a pH value of 4.2 using 0.2N ammonia water and water, and the volume was adjusted to 400ml.
Prepare the sol solution B (effective glass component concentration: 2.280 g/ml, calculated value), remove it from the rotating device, and remove the lid of the cylindrical rotating container that has been left standing standing still. After 12 minutes of gelation, 100.53 ml of this prepared sol solution B was poured into the tubular wet gel. This man's cylindrical rotating container was capped and reattached to the rotating device and immediately started rotating at 150 rpm, and after 15 minutes after adjusting the pH value to 4.2, this prepared sol solution B also gelled. However, if you keep rotating it for 10 minutes, the outer diameter will be 40mm, the inner diameter will be 12mm,
Length 500. m tubular wet gels were obtained.
これと平行してゾル溶液Cを0.2規定のアンモニア水
と水を用いてPH値をΔ2に、かつ体積を400m1に
調整し、仕込みゾル溶液Cを作製し、(有効ガラス成分
濃度2.328 fl/ml )つづいて回転装置から
取りはずして、立てて静置した状態にある円筒状回転容
器のフタを取り、ゲル化して10分後の管状ウェットゲ
ルにこの仕込みゾル溶液Cを50.26 ml流し込ん
だ。このおとこの円筒状回転容器にフタをして再び回転
装置に取り付けすぐに1500rp’mで回転を始めた
ところPH−65=
値を3.2に調整してから15分たったところでこの仕
込みゾル溶液Cもゲル化したが、そのまま10分間回転
させると、外径40龍、内径4mm。In parallel with this, the PH value of the sol solution C was adjusted to Δ2 using 0.2N aqueous ammonia and water, and the volume was adjusted to 400ml to prepare a charged sol solution C (effective glass component concentration 2. 328 fl/ml) Next, remove the lid from the cylindrical rotating container that was left standing standing still after removing it from the rotating device, and add 50.26 ml of this prepared sol solution C to the tubular wet gel that has been gelatinized for 10 minutes. ml was poured. I put a lid on this man's cylindrical rotating container and attached it to the rotating device again and immediately started rotating at 1500 rpm'm, and after 15 minutes after adjusting the value to PH-65 = 3.2, this prepared sol solution C also gelled, but when rotated for 10 minutes, the outer diameter was 40 mm and the inner diameter was 4 mm.
長さ500m、、の管状ウェットゲルが得られた。A tubular wet gel with a length of 500 m was obtained.
これと平行してゾル溶液りを02規定のアンモニア水と
水を用いてPH値を3.10に、かつ体積を400m1
に調整し、仕込みゾル溶液りを作製しく有効ガラス成分
濃度2.344 fi / ml s計算値)つづいて
回転装置から取りはずし、立てて静置した状態にある円
筒状回転容器のフタを取如、ゲル化して10分後の管状
ウェットゲルにこの仕込みゾル溶液りを流し込んだとこ
ろPH値を3.1に調整してから12分たったところで
この仕込みゾル溶液りもゲル化して、同軸構造をもった
ウェットゲルが得られた。(外径40.、、長さ500
朋)■ 乾燥
同様な方法で作製したウェットゲル10本を円筒状回転
容器のなかで密閉状態のitで60℃で2日間熟成し、
つづいて0,1%の開口率をもったポリプロピレン製乾
燥容器に移し入れた。この乾燥容器を60℃の乾燥機に
入れ、ウェットゲルを乾燥したところ17日間で、室温
に放置しても割れ彦い安定なドライゲル(直径26.5
mm、長さ633γm−平均値)が歩留り70t16で
7本得られた。In parallel with this, the sol solution was adjusted to a pH value of 3.10 using 02N ammonia water and water, and the volume was 400ml.
The effective glass component concentration was adjusted to 2.344 fi/ml s (calculated value), and the lid of the cylindrical rotating container, which had been left standing standing still, was removed. After 10 minutes of gelation, this prepared sol solution was poured into a tubular wet gel, and after 12 minutes after adjusting the pH value to 3.1, this prepared sol solution also gelled and had a coaxial structure. A wet gel was obtained. (Outer diameter 40., Length 500.
10 wet gels prepared in the same manner as drying were aged in a closed cylindrical rotating container at 60°C for 2 days.
Subsequently, it was transferred to a polypropylene drying container with an open area ratio of 0.1%. When this drying container was placed in a dryer at 60°C and the wet gel was dried, the dry gel (diameter 26.5
mm, length 633 [gamma]m - average value) and a yield of 70t16.
■ 焼結
実施例7と同様な方法を用いてドライゲル7本を焼結し
たところ歩留υ100%で透明ガラス体7本が得られた
。この透明ガラス体の大きさは直径1115朋、長さ2
31.、であシ、そのうちGeが10モルチドープされ
た成分の直径は1.85關であり、またGeがEL89
モルチドープされた成分の外径が5.55 、m%内径
が1.85朋であり、またGeが5,56モルチドープ
された成分の外径が9.25m、、内径が5.55 m
、であり、Geノンドープ成分の外径が1a5闘、内径
が9.25 、mであった。(2) Sintering When seven pieces of dry gel were sintered using the same method as in Example 7, seven pieces of transparent glass bodies were obtained with a yield υ of 100%. The size of this transparent glass body is 1115 mm in diameter and 2 mm in length.
31. , among which the diameter of the component doped with 10 moles of Ge is 1.85 mm, and Ge has an EL of 89
The outer diameter of the molti-doped component is 5.55 mm, the m% inner diameter is 1.85 m, and the outer diameter of the 5,56 Ge-doped component is 9.25 m, and the inner diameter is 5.55 m.
, and the outer diameter of the Ge non-doped component was 1a5m, and the inner diameter was 9.25m.
つづいてこの透明ガラス体を焼結炉に入れ、1490℃
で1時間保持することによって屈折率が半径方向になだ
らかに変化しているグレーデドインデックス型マルチモ
ード光ファイバ用母材が得られた。Next, this transparent glass body was placed in a sintering furnace and heated to 1490°C.
A preform for a graded-index multimode optical fiber in which the refractive index changes gently in the radial direction was obtained by holding the sample at 100° C. for 1 hour.
本実施例で得られた光ファイバ用母材に含壕れるOH基
を赤外域で吸収スペクトルを測定することによって定量
したところ、2.7μmでの吸収ピークが全く認められ
ず、lppm以下であることが確認された。また線引き
したときも発泡せず高品質な光ファイバが得られた。When the OH groups contained in the optical fiber base material obtained in this example were quantified by measuring the absorption spectrum in the infrared region, no absorption peak was observed at 2.7 μm, and it was below 1 ppm. This was confirmed. Furthermore, a high-quality optical fiber was obtained without foaming when drawn.
本実施例で示したように仕込みゾル溶液を4種類用意し
、それを用いて同軸構造をもった透明ガラス体を作製し
、その後高温で所定時間熱処理をすることによって屈折
率が半径方向にほぼ二乗で分布しているグレーデドイン
デックスマルチモード光ファイバ用母材が作製できるが
、仕込みゾル溶液をさらに多数用意し、それらを用いて
さらに細かい同軸構造をもった透明ガラス体を作製し、
その後高温で熱処理をすることによってさらに帯域特性
のすぐれたグレーデドインデックスマルチモード光ファ
イバ用母材が作製できる。As shown in this example, four types of sol solutions were prepared, a transparent glass body with a coaxial structure was made using them, and the refractive index was changed approximately in the radial direction by heat treatment at a high temperature for a predetermined time. Although it is possible to fabricate a graded index multimode optical fiber base material with a square distribution, it is possible to prepare a larger number of sol solutions and use them to fabricate a transparent glass body with an even finer coaxial structure.
By subsequently heat-treating at a high temperature, a graded index multimode optical fiber base material with even better band characteristics can be produced.
〔実施例16〕
前記の実施例で示したのは520mm、、1020mm
の長さで内径が40mmの円筒状回転容器を用いて光フ
ァイバ用母材を作製した例であるが、 2020龍の長
さで内径が60mmの円筒状回転容器を用いても実施例
7と同様な方法(仕込み量は異なる)でドライゲルが歩
留シロ0%で作製できた。このドライゲルを焼結で門る
焼結炉が現在ないので透明ガラス化が部分的にしかでき
ず光ファイバ用母材は得られていないが、前記実施例の
焼結工程での歩留シがよいことから考えても本発明の光
ファイバ用母材の製造方法で1m以上の長さをもつ光フ
ァイバ用母材を工業的に実用的な歩留りで作製するのは
容易であると考えられる。[Example 16] The lengths shown in the above examples are 520 mm, 1020 mm.
In this example, an optical fiber base material was produced using a cylindrical rotating container with a length of 40 mm and an inner diameter of 40 mm, but Example 7 could also be produced using a cylindrical rotating container with a length of 2020 mm and an inner diameter of 60 mm. A dry gel was produced with a yield margin of 0% using the same method (the amount of preparation was different). Since there is currently no sintering furnace for sintering this dry gel, transparent vitrification is only partially possible and a base material for optical fibers has not been obtained. From a good perspective, it is considered that it is easy to produce an optical fiber preform having a length of 1 m or more at an industrially practical yield using the method for producing an optical fiber preform of the present invention.
同様な方法でチタンをはじめアルミニウム、ジルコニウ
ム等種々の方法で光ファイバ用母材が作製できることを
確認した。It was confirmed that optical fiber base materials can be produced using various methods such as titanium, aluminum, and zirconium in a similar manner.
壕だ、超微粉末シリカは気相法以外の方法、例えば湿式
法、アンモニア合成法、etc・・曲、を用イテモ合成
でき、製造される光ファイバのグレード、価格に合わせ
て選ばれる。However, ultrafine powdered silica can be synthesized using methods other than the vapor phase method, such as wet methods, ammonia synthesis methods, etc., and is selected according to the grade and price of the optical fiber to be manufactured.
以上述べたように本発明によれば実用的々大きさをもつ
高品質な石英系光ファイバ用母材を、従来の気相法より
も安価に製造することが可能となる。また本発明による
とシングルモード用光ファイバ用母材をはじめ、マルチ
モードグレーテドインデックス光ファイバ用母材、マル
チモードステップインデックス光ファイバ用母材、大口
径高NAステップインデックス光ファイバ用母材等が製
造できる。そのため光ファイバ通信をはじめ光ファイバ
を用いる種々の用途へ応用されよう。As described above, according to the present invention, it is possible to produce a high-quality preform for a silica-based optical fiber of a practical size at a lower cost than by the conventional vapor phase method. Further, according to the present invention, preforms for single mode optical fibers, preforms for multimode graded index optical fibers, preforms for multimode step index optical fibers, preforms for large diameter high NA step index optical fibers, etc. Can be manufactured. Therefore, it will be applied to various applications using optical fibers, including optical fiber communications.
以上that's all
Claims (1)
与える石英ガラスの屈折率調整用添加剤(以下ドーパン
ト)として、適当な金属アルコキシド(M(OR)_4
、Mは金属、Rはアルキル基)をモル比で0%以上含む
酸性のアルキルシリケート加水分解溶液と、粉末状の超
微粉末シリカを均一に分散させた超微粉末シリカ分散溶
液とを混合して得られるゾル溶液を、前記ゾル溶液のド
ーパント濃度を変えて2種類以上作り、前記ゾル溶液中
のPH値と有効ガラス成分濃度を所定の値に調整して仕
込み、ゾル溶液を作る工程、前記仕込みゾル溶液を円筒
状回転容器に移し入れ200〜50000rpmの範囲
の所定の回転数で回転させながらゲル化させ管状ウェッ
トゲルを作る操作を少なくとも一回含み、必要なら前記
管状ウェットゲルを作る操作で生ずる中央の孔に前記仕
込みゾルを流し込む操作を含む、同心円状に組成変化(
屈折率変化)をもたせたウェットゲルを作る工程、前記
ウェットゲルを乾燥してドライゲルを作る工程、および
前記ドライゲルを焼結して透明ガラス化する工程からな
ることを特徴とする光ファイバ用母材の製造方法。 (2)前記金属アルコキシドとして一般式がGe(OR
)_4で表わされるテトラアルコキシゲルマニウムを用
いたことを特徴とする特許請求の範囲第1項記載の光フ
ァイバ用母材の製造方法。 (5)前記ドーパントをモル比で0%以上含む酸性のア
ルキルシリケート加水分解溶液を作る工程のうちで前記
ドーパントを含む(0%は除く)酸性のアルキルシリケ
ート加水分解溶液を作る工程において、前記アルキルシ
リケートに対してモル比で1から3の範囲の水で前記ア
ルキルシリケートを部分的に加水分解し、しかる後に前
記金属アルコキシドを必要量加え反応させ、続いて水を
加えて溶液中に残っているアルコキシド基を加水分解し
て前記加水分解溶液とすることを特徴とする特許請求の
範囲第1項または第2項記載の光ファイバ用母材の製造
方法。 (4)前記加水分解溶液を作る工程において、反応溶液
を10℃以下に保つことを特徴とする特許請求の範囲第
3項記載の光ファイバ用母材の製造方法。 (5)前記ドーパントをモル比で0%以上含む酸性のア
ルキルシリケート加水分解溶液を作る工程のうちで前記
ドーパントを含む(0%は除く)酸性のアルキルシリケ
ート加水分解浴液を作る工程において、前記アルキルシ
リケートと前記アルキルシリケートに対して容積比で2
0%以上のアルコールの混合液に、前記アルキルシリケ
ートに対してモル比で0.1〜3.9の範囲の水を加え
前記アルキルシリケートを部分的に加水分解し、しかる
後に前記金属アルコキシドを必要量加え反応させ続いて
水を加えて溶液中に残っているアルコキシド基を加水分
解して前記加水分解溶液とすることを特徴とする特許請
求の範囲第1項または第2項記載の光ファイバ用母材の
製造方法。 (6)前記超微粉末シリカ分散溶液中に平均粒径が0.
01〜1.0μmの範囲にある超微粉末シリカが0.1
5g/ml以上含まれていることを特徴とする特許請求
の範囲第1項〜第5項記載の光ファイバ用母材の製造方
法。 (7)前記ゲル化させる工程において、前記ゾル溶液の
温度とPHを調整することにより、600分以下の範囲
の時間でゲル化させることを特徴とする特許請求の範囲
第1項〜第6項記載の光ファイバ用母材の製造方法。 (8)前記ウェットゲルを乾燥、焼結して透明ガラス化
した時、前記透明ガラスの体積が前記ウェットゲルの体
積の5〜15%の範囲になるような組成に前記ゾル浴液
を調整することを特徴とする特許請求の範囲第1項〜第
7項記載の光ファイバ用母材の製造方法。 (9)前記ウェットゲルを乾燥、焼結した透明ガラス化
した時、前記ウェットゲルの体積に対する前記透明ガラ
スの体積の比がどのドーパント濃度の前記ゾル溶液でも
一定となるように前記ゾル溶液を調整することを特徴と
する特許請求の範囲第1項〜第8項記載の光ファイバ用
母材の製造方法。 (10)前記乾燥工程において、前記円筒状回転容器の
両端に開口率10%以下のフタとして前記ウェットゲル
を乾燥させることを特徴とする特許請求の範囲第1項〜
第9項記載の光ファイバ用母材の製造方法。 (11)前記乾燥行程において、前記ウェットゲルを円
筒状回転容器から取り出し、前記ウェットゲルを10%
以下の開口率をもった容器に移し入れ前記容器中で乾燥
させることを特徴とする特許請求の範囲第1項〜第10
項記載の光ファイバ用母材の製造方法。 (12)5〜60℃の範囲の温度でゲル化させた後、昇
温速度120℃/hr以下で40〜160℃の温度まで
昇温し、収縮乾燥させてドライゲルを作成することを特
徴とする特許請求の範囲第1項〜第11項記載の光ファ
イバ用母材の製造方法。 (13)前記ドライゲルを焼結する工程が以下の7つの
工程からなることを特徴とする特許請求の範囲第1項〜
第12項記載の光ファイバ用母材の製造方法。 1)脱吸着水処理をする工程 2)脱炭素処理をする工程 3)脱水縮合反応の促進処理をする工程 4)脱OH基処理をする工程 5)脱塩素処理あるいは脱フッ素処理をする工程 6)閉孔化処理をする工程 7)透明ガラス化処理をする工程 (14)昇温速度400℃/hr以下で20〜400℃
の範囲の所定の温度に昇温し、その温度で1時間以上保
持する処理を少なくとも1回行なって前記脱吸着水処理
を行なうことを特徴とする特許請求の範囲第13項記載
の光ファイバ用母材の製造方法。 (15)昇温速度30〜400℃/hrで400〜90
0℃の範囲内の所定の温度に昇温して前記脱炭素処理を
行なうことを特徴とする特許請求の範囲第13項または
第14項記載の光ファイバ用母材の製造方法。 (16)昇温速度30〜400℃/hrで900〜12
00℃の範囲内の所定の温度に昇温し、その温度で30
分以上保持する処理を少なくとも1回行なって前記脱水
縮合反応の促進処理を行なうことを特徴とする特許請求
の範囲第13項〜第15項記載の光ファイバ用母材の製
造方法。 (17)700〜1100℃の範囲の温度でHeガスあ
るいはO_2ガスあるいはN_2ガスあるいはArガス
あるいはそれらの混合ガスとガスに対して流量比で1〜
40%の範囲の脱OH基剤を炉内に送り込みながら脱O
H基処理を行なうことを特徴とする特許請求の範囲第1
3項〜第16項記載の光ファイバ用母材の製造方法。 (18)前記脱OH基剤としてCl_2、SOCL、S
F_6、CF_4、C_2F_6、C_2F_8のいず
れかを用いて前記脱OH基処理を行なうことを特徴とす
る特許請求の範囲第18項記載の光ファイバ用母材の製
造方法。 (19)脱OH基処理の後、800〜1200℃の温度
範囲で所定の時間HeガスあるいはArガスあるいはN
_2ガスあるいはそれらの混合ガスに対して流量比で1
〜100%の範囲のO_2を炉内に送り込むことにより
前記脱塩素処理あるいは脱フッ素処理を行なうことを特
徴とする特許請求の範囲第13項〜第18項記載の光フ
ァイバ用母材の製造方法。 (20)炉内を真空にするかあるいは炉内にHeガスを
送り込みながら昇温速度30〜400℃/hrで900
〜1350℃の範囲内の所定の温度に昇温し、その温度
で1時間以上保持する処理を少なくとも1回行なって前
記閉孔化処理を行なうことを特徴とする特許請求の範囲
第13項〜第19項記載の光ファイバ用母材の製造方法
。 (21)閉孔化処理を行なった後、1200〜1600
℃の範囲の所定の温度に昇温し、所定の時間その温度で
保持して前記透明ガラス化処理を行なうことを特徴とす
る特許請求の範囲第13項〜第20項記載の光ファイバ
用母材の製造方法。[Scope of Claims] (1) A suitable metal alkoxide (M(OR)_4
, M is a metal, R is an alkyl group) by mixing an acidic alkyl silicate hydrolyzed solution containing 0% or more in molar ratio and an ultrafine powder silica dispersion solution in which powdered ultrafine powder silica is uniformly dispersed. a step of preparing two or more types of sol solutions obtained by changing the dopant concentration of the sol solution, adjusting the pH value and effective glass component concentration in the sol solution to predetermined values, and preparing the sol solution; It includes at least one operation of transferring the prepared sol solution to a cylindrical rotating container and gelling it while rotating at a predetermined rotation speed in the range of 200 to 50,000 rpm to form a tubular wet gel, and if necessary, the operation of forming the tubular wet gel. Composition changes (
1. A preform for an optical fiber, comprising: a step of making a wet gel with a change in refractive index), a step of drying the wet gel to make a dry gel, and a step of sintering the dry gel to make it into transparent glass. manufacturing method. (2) The general formula of the metal alkoxide is Ge(OR
)_4 The method for manufacturing an optical fiber preform according to claim 1, characterized in that tetraalkoxygermanium represented by _4 is used. (5) In the step of producing an acidic alkyl silicate hydrolyzed solution containing the dopant in a molar ratio of 0% or more, in the step of producing an acidic alkyl silicate hydrolyzed solution containing the dopant (excluding 0%), The alkyl silicate is partially hydrolyzed with water in a molar ratio of 1 to 3 to the silicate, then the required amount of the metal alkoxide is added and reacted, and then water is added to form a solution remaining in the solution. 3. The method for producing an optical fiber preform according to claim 1 or 2, wherein the alkoxide group is hydrolyzed to obtain the hydrolyzed solution. (4) The method for manufacturing an optical fiber preform according to claim 3, characterized in that in the step of preparing the hydrolysis solution, the reaction solution is kept at a temperature of 10° C. or lower. (5) In the step of producing an acidic alkyl silicate hydrolysis solution containing the dopant in a molar ratio of 0% or more, the step of producing an acidic alkyl silicate hydrolysis bath solution containing the dopant (excluding 0%), alkyl silicate and a volume ratio of 2 to the alkyl silicate.
Water is added in a molar ratio of 0.1 to 3.9 to the alkyl silicate to a mixed solution of 0% or more alcohol to partially hydrolyze the alkyl silicate, and then the metal alkoxide is required. The optical fiber according to claim 1 or 2, characterized in that the alkoxide group remaining in the solution is hydrolyzed by adding a large amount of the solution and reacting, and then water is added to hydrolyze the alkoxide group remaining in the solution. Method of manufacturing base material. (6) The ultrafine powder silica dispersion solution has an average particle size of 0.
Ultrafine powder silica in the range of 0.01 to 1.0 μm is 0.1
6. The method for manufacturing an optical fiber preform according to claim 1, wherein the preform contains 5 g/ml or more. (7) In the step of gelling, the sol solution is gelled in a time period of 600 minutes or less by adjusting the temperature and pH of the sol solution. A method for manufacturing the optical fiber base material described above. (8) Adjust the composition of the sol bath solution so that when the wet gel is dried and sintered to become transparent glass, the volume of the transparent glass is in the range of 5 to 15% of the volume of the wet gel. A method for manufacturing an optical fiber preform as claimed in any one of claims 1 to 7. (9) When the wet gel is dried and sintered into transparent glass, the sol solution is adjusted so that the ratio of the volume of the transparent glass to the volume of the wet gel is constant regardless of the dopant concentration of the sol solution. A method for manufacturing an optical fiber preform according to any one of claims 1 to 8, characterized in that: (10) In the drying step, the wet gel is dried by forming lids with an opening ratio of 10% or less on both ends of the cylindrical rotating container.
9. The method for manufacturing an optical fiber preform according to item 9. (11) In the drying process, the wet gel is taken out from the cylindrical rotating container, and the wet gel is
Claims 1 to 10, characterized in that the product is transferred to a container having the following opening ratio and dried in said container.
A method for producing an optical fiber base material as described in . (12) After gelling at a temperature in the range of 5 to 60°C, the temperature is raised to a temperature of 40 to 160°C at a heating rate of 120°C/hr or less, and dried by shrinkage to create a dry gel. A method for manufacturing an optical fiber preform according to claims 1 to 11. (13) The step of sintering the dry gel consists of the following seven steps.
13. A method for manufacturing an optical fiber preform according to item 12. 1) Process of desorption water treatment 2) Process of decarbonization 3) Process of promoting dehydration condensation reaction 4) Process of removing OH group 5) Process of dechlorination or defluorination 6 ) Step of pore closing treatment 7) Step of transparent vitrification treatment (14) 20 to 400°C at a temperature increase rate of 400°C/hr or less
14. The optical fiber according to claim 13, wherein the deadsorbed water treatment is performed at least once by raising the temperature to a predetermined temperature in the range of and holding it at that temperature for one hour or more. Method of manufacturing base material. (15) 400-90 at a heating rate of 30-400℃/hr
15. The method for manufacturing an optical fiber preform according to claim 13 or 14, wherein the decarbonization treatment is performed by increasing the temperature to a predetermined temperature within a range of 0°C. (16) 900-12 at a heating rate of 30-400℃/hr
Raise the temperature to a predetermined temperature within the range of 00℃, and at that temperature
16. The method of manufacturing an optical fiber preform according to claim 13, wherein the dehydration condensation reaction is accelerated by performing a holding process for at least one minute. (17) At a temperature in the range of 700 to 1100°C, the flow rate ratio for He gas, O_2 gas, N_2 gas, Ar gas, or a mixture thereof is 1 to 1.
De-O while feeding 40% range of de-OH base into the furnace.
Claim 1 characterized in that H group treatment is performed.
A method for manufacturing an optical fiber preform according to items 3 to 16. (18) Cl_2, SOCL, S as the OH removing base
19. The method for manufacturing an optical fiber preform according to claim 18, wherein the OH group removal treatment is performed using any one of F_6, CF_4, C_2F_6, and C_2F_8. (19) After the OH group removal treatment, He gas or Ar gas or N
_2 gases or a mixture thereof with a flow rate ratio of 1
The method for manufacturing an optical fiber preform according to claims 13 to 18, characterized in that the dechlorination treatment or defluorination treatment is performed by sending O_2 in the range of ~100% into the furnace. . (20) Make the inside of the furnace a vacuum or feed He gas into the furnace at a heating rate of 30 to 400°C/hr to 900°C.
Claim 13, characterized in that the pore-closing treatment is performed by performing at least once a process of raising the temperature to a predetermined temperature within the range of ~1350°C and holding it at that temperature for 1 hour or more. 20. The method for manufacturing an optical fiber preform according to item 19. (21) After pore closing treatment, 1200 to 1600
The optical fiber motherboard according to claims 13 to 20, characterized in that the transparent vitrification treatment is performed by raising the temperature to a predetermined temperature in the range of °C and holding at that temperature for a predetermined time. Method of manufacturing wood.
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2503185A JPS61186235A (en) | 1985-02-12 | 1985-02-12 | Method for manufacturing base material for optical fiber |
GB08524138A GB2165534B (en) | 1984-10-05 | 1985-10-01 | Method of preparing parent material for optical fibres |
US06/782,773 US4680046A (en) | 1984-10-05 | 1985-10-02 | Method of preparing preforms for optical fibers |
DE19853535367 DE3535367A1 (en) | 1984-10-05 | 1985-10-03 | METHOD FOR PRODUCING PREFORMS FOR OPTICAL FIBERS |
FR8514656A FR2571358A1 (en) | 1984-10-05 | 1985-10-03 | PROCESS FOR THE PREPARATION OF OPTICAL FIBER PREFORMS |
AU48316/85A AU574230B2 (en) | 1984-10-05 | 1985-10-04 | Preparing silica tube preform from gel |
SG606/90A SG60690G (en) | 1984-10-05 | 1990-07-19 | Method of preparing parent material for optical fibres |
HK293/91A HK29391A (en) | 1984-10-05 | 1991-04-18 | Method of preparing parent material for optical fibres |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2503185A JPS61186235A (en) | 1985-02-12 | 1985-02-12 | Method for manufacturing base material for optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61186235A true JPS61186235A (en) | 1986-08-19 |
Family
ID=12154540
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2503185A Pending JPS61186235A (en) | 1984-10-05 | 1985-02-12 | Method for manufacturing base material for optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61186235A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030047106A (en) * | 2001-12-07 | 2003-06-18 | 삼성전자주식회사 | Fabrication method using centrifugal casting for silica glass |
-
1985
- 1985-02-12 JP JP2503185A patent/JPS61186235A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20030047106A (en) * | 2001-12-07 | 2003-06-18 | 삼성전자주식회사 | Fabrication method using centrifugal casting for silica glass |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4680046A (en) | Method of preparing preforms for optical fibers | |
US4680048A (en) | Method of preparing doped silica glass | |
JPH0826742A (en) | Synthetic quartz glass powder | |
JPS61186235A (en) | Method for manufacturing base material for optical fiber | |
JPS6191033A (en) | Method for manufacturing base material for optical fiber | |
EP1061050A1 (en) | Process for fabricating an article via sol-gel processing | |
CA1318131C (en) | Fabrication of high-silica glass article | |
KR100549422B1 (en) | Silica Glass Composition for Sol-Gel Process and Silica Glass Production Method Using the Same | |
JPS6296339A (en) | Method for manufacturing base material for optical fiber | |
JP4268489B2 (en) | Method for producing transparent quartz glass body | |
JPH0686299B2 (en) | Method for producing silica-based glass | |
JPS61186236A (en) | Production of parent material for optical fiber | |
JPS62288130A (en) | Production of preform for quartz based optical fiber | |
JPS63144137A (en) | Production of optical fiber preform | |
JPS61186237A (en) | Method for manufacturing silica glass base material for optical fiber | |
JPS6221728A (en) | Production of base material for optical fiber | |
JPS61186232A (en) | Production of tubular quartz glass | |
JPH0764574B2 (en) | Method for manufacturing rod-shaped quartz glass preform | |
JPS62246835A (en) | Method for manufacturing quartz glass base material for optical fiber | |
JPS6054929A (en) | Silica glass manufacturing method | |
JPS62288117A (en) | Production of doped silica glass | |
JPH0583503B2 (en) | ||
JPS6345143A (en) | Method for manufacturing base material for optical fiber | |
AU619301B2 (en) | A method of preparing doped silica glass | |
JPS62187132A (en) | Production of glass for optical fiber |