[go: up one dir, main page]

JPS61186236A - Production of parent material for optical fiber - Google Patents

Production of parent material for optical fiber

Info

Publication number
JPS61186236A
JPS61186236A JP2503285A JP2503285A JPS61186236A JP S61186236 A JPS61186236 A JP S61186236A JP 2503285 A JP2503285 A JP 2503285A JP 2503285 A JP2503285 A JP 2503285A JP S61186236 A JPS61186236 A JP S61186236A
Authority
JP
Japan
Prior art keywords
gel
solution
core
optical fiber
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2503285A
Other languages
Japanese (ja)
Inventor
Yoshitaka Ito
嘉高 伊藤
Masatake Matsuo
誠剛 松尾
Haruo Nagafune
長船 晴夫
Masanobu Motoki
元木 正信
Sadao Kanbe
貞男 神戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2503285A priority Critical patent/JPS61186236A/en
Publication of JPS61186236A publication Critical patent/JPS61186236A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/016Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by a liquid phase reaction process, e.g. through a gel phase

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は超微粒子を用いたゾル−ゲル法による光ファイ
バ用母材の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing an optical fiber base material by a sol-gel method using ultrafine particles.

〔従来の技術〕[Conventional technology]

光ファイバ用母材の製造方法の一つとして金属アルコキ
シドと微粉末粒子とを出発原料に用いたゾル−ゲル法が
知られている。(特願昭58−2金属アルコキシドの加
水分解溶液と種々の方法により調製した微粉末粒子とを
混合して得られるクラッド用ゾル溶液を、円筒容器中で
回転ゲル化させ管状のタララドゲルを調整する。次に円
筒容器の回転中心部に生じた中空部分に、コアガラスと
なるコア用ゾル溶液を注入し、そのまま静置してゲル化
させ、コア・クラッド一体ゲルを作成する。その後、こ
のゲル体を十分に乾燥させ、所定の温度で焼結して、径
方向に屈折率分布を持つ透明な光ファイバ用母材を得る
。一般に微粉末粒子を用いたこの製法は、従来の各種0
’VD法に比らべ光ファイバ用母材が安価かつ容易に、
しかも大量に生産できる。
A sol-gel method using metal alkoxide and fine powder particles as starting materials is known as one of the methods for manufacturing optical fiber preforms. (Patent Application 1983-2 A sol solution for cladding obtained by mixing a hydrolyzed solution of metal alkoxide and fine powder particles prepared by various methods is rotated in a cylindrical container to gel it to prepare a tubular Talarado gel. Next, the core sol solution that will become the core glass is injected into the hollow part created at the center of rotation of the cylindrical container, and left to stand still to gel, creating a core-clad integral gel. The body is sufficiently dried and sintered at a predetermined temperature to obtain a transparent optical fiber base material with a radial refractive index distribution.This manufacturing method, which generally uses fine powder particles,
'Compared to the VD method, the base material for optical fiber is cheaper and easier.
Moreover, it can be produced in large quantities.

さらに、出発原料が液体であるため精製を繰返すことに
より原料の高純度化が容易であること。原料の均質化が
容易なこと。さらに気相法に比べ原料効率が高いことな
どから、近い将来、高速でかつ大型の光ファイバ用母材
を得る新しい工業的手法になる可能性が大きい。
Furthermore, since the starting raw material is a liquid, it is easy to increase the purity of the raw material by repeating purification. Easily homogenize raw materials. Furthermore, since it has higher raw material efficiency than the gas phase method, there is a strong possibility that it will become a new industrial method for producing large-sized optical fiber base materials at high speed in the near future.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかし、前述の従来技術では高品質な、つまり、気泡や
不定形異物などの不純物の混入がなく高透明性を有する
コアガラスを歩留り良く得ることが難しいという問題点
が存在する。これはコアゲルとなる溶液の反応性が一般
に高いため原料仕込みの段階で空気中の微量水分と反応
し、生じた酸化物が不純物として溶液中に混入されたり
、溶液の粘性が高いために攪拌中に溶液にとりこまれた
気泡や、溶存している微小気泡がそのまま残存しやすい
ためである・この問題点を解決するため種々の方法が試
みられている。例えば、コア用ゾルをタララドゲル製造
時と同様の方法で回転ゲル化させ、混入している不純物
や微小気泡を回転時の遠心力を利用して除去しようとす
るものである。(特願昭58−186493 ) しかし、この製法では、クラッドゲル層とコアゲル層と
の間に、コア用ゾル中に混入している不純物による極薄
い不純物層が生じることがある。
However, the above-mentioned conventional technology has a problem in that it is difficult to obtain a high-quality core glass with a high yield, that is, a core glass that is free of impurities such as bubbles and irregularly shaped foreign objects and has high transparency. This is because the reactivity of the solution that becomes the core gel is generally high, so it may react with trace amounts of moisture in the air during the raw material preparation stage, and the resulting oxide may be mixed into the solution as an impurity, or because the solution is highly viscous, it may react with trace amounts of moisture in the air. This is because bubbles trapped in the solution and dissolved microbubbles tend to remain as they are. Various methods have been tried to solve this problem. For example, the core sol is rotated into a gel in the same manner as in the production of Talarado gel, and impurities and microbubbles mixed in are removed using the centrifugal force during rotation. (Japanese Patent Application No. 58-186493) However, in this manufacturing method, an extremely thin impurity layer may be formed between the clad gel layer and the core gel layer due to impurities mixed in the core sol.

この場合、この領域で光ファイバの構造上、最も重要な
屈折率分布に異状が生じ、光ファイバ化した場合、光散
乱の主要因となるばかりでなく、最悪の場合には光ファ
イバとしての機能が著しく損なわれる。そこで本発明は
このような問題点を解決するもので、その目的とすると
ころはクラッドゲル作製時とは異なる回転形式によりコ
ア用ゾルを回転ゲル化し、不純物、つまり不定形異物や
微小気泡が混入していないクラッド・コア一体ゲルを製
造するこ“とにある。
In this case, an abnormality occurs in the refractive index distribution, which is the most important structure of the optical fiber in this region, and when it is made into an optical fiber, it not only becomes the main cause of light scattering, but also, in the worst case, the function as an optical fiber is lost. is significantly impaired. Therefore, the present invention is intended to solve these problems, and its purpose is to turn the core sol into a rotational gel using a rotational method different from that used when producing the cladding gel, thereby preventing the contamination of impurities, that is, irregularly shaped foreign objects and microbubbles. The goal is to manufacture a gel with a cladding and core that is not

〔問題を解決するための手段〕[Means to solve the problem]

上記問題点を解決するために、本発明のゾル−ゲル法に
よる光ファイバ用母材の製造方法は容器の長手方向にあ
いた穴に液体原料を流し込んだ後、容器の長手方向に沿
った幾何学的回転対称軸と90°の交角を成し、かつそ
の回転中心が回転容器の外部に位置する回転軸を中心と
して回転させながらゲル化させ、塊状異物、気泡のない
ゲル体を得ることを特徴とする。
In order to solve the above-mentioned problems, the method of manufacturing an optical fiber preform by the sol-gel method of the present invention involves pouring a liquid raw material into holes formed in the longitudinal direction of the container, and then It is characterized by gelling while rotating around a rotation axis that forms a 90° angle with the rotational symmetry axis of the object and whose rotation center is located outside the rotating container, thereby obtaining a gel body free of lumps and air bubbles. shall be.

この回転容器内には予め別の液体原料から作製したゲル
体が存在していても良く、その場合には、通常のクラッ
ド・コア二層構造光ファイバを含む多層構造を有する光
ファイバ用母材が作製できることになる。この場合、予
め存在するゲル体の形状は容器の長手方向に穴が存在す
るゲル体の形状は容器の長手方向に穴が存在するもので
あればよく、穴の断面は円でも楕円形状でもかまわない
A gel body prepared in advance from another liquid raw material may be present in this rotating container, and in that case, a preform for an optical fiber having a multilayer structure including a normal clad core double layer structure optical fiber. can be produced. In this case, the pre-existing gel body may have a hole in the longitudinal direction of the container.The gel body may have a hole in the longitudinal direction of the container, and the cross section of the hole may be circular or elliptical. do not have.

さらに穴口体も長手方向に直線状に伸びている必要はな
く、らせん状に伸びていてもかまわない。
Furthermore, the opening body does not need to extend linearly in the longitudinal direction, and may extend spirally.

なお、回転容器内に予めゲル体が存在しない場合には、
光ファイバ用コアロッド(例えば純シリカロッド)が作
成できることになる。
In addition, if there is no gel body in the rotating container,
A core rod for an optical fiber (for example, a pure silica rod) can be produced.

さらに、用いる液体原料は金属アルコキシドのみでも可
能であるが・製造できる母材の大きさおよびその歩留り
の点から、金属アルコキシドに微粉末粒子を加えたもの
の方が優れている0〔実施例〕 以下に本発明を石英系光ファイバ用母材の製造を例にと
り詳しく説明する。
Furthermore, it is possible to use only metal alkoxide as the liquid raw material, but in terms of the size of the base material that can be produced and its yield, it is better to add fine powder particles to metal alkoxide.0 [Example] Below Now, the present invention will be explained in detail by taking as an example the production of a base material for a silica-based optical fiber.

〈実施例1〉 シリカ超微粒子の調製:市販のエチルシリケート(商品
名答コルコート28.コルコートに、に、)4577f
、99.5%エチルアルコール(関東化学に、に、)1
157.45’、29%アンモニア水39mQ、水15
8.4 rを混合し約2時間激しく攪拌する。その溶液
を一昼夜冷所に静置した後、溶液中の無定形シリカ球濃
度を0.4 t / rnn程度に濃縮し、平均粒径が
014μ桁である単分散性の良いシリカ超微粒子溶液を
合成した。
<Example 1> Preparation of ultrafine silica particles: Commercially available ethyl silicate (trade name: Colcoat 28.Colcoat ni, Ni,) 4577f
, 99.5% ethyl alcohol (Kanto Kagaku, Ni,) 1
157.45', 29% ammonia water 39mQ, water 15
8.4 Mix and stir vigorously for about 2 hours. After leaving the solution in a cool place for a day and night, the concentration of amorphous silica spheres in the solution was concentrated to about 0.4 t/rnn, and a highly monodisperse ultrafine silica particle solution with an average particle size of 0.14 μm order was obtained. Synthesized.

クラッド用ゾルの調製:市販のエチルシリケート(商品
名;コルコート28、コルコートに、に、)244.1
f、99.5%エチルアルコ了ル(関東化学に、に、 
) 1275 ?、002規定の塩酸溶液845vを混
合攪拌しクラッド用加水分解溶液を調製した。
Preparation of sol for cladding: Commercially available ethyl silicate (trade name: Colcoat 28, Colcoat ni, Ni,) 244.1
f, 99.5% ethyl alcohol (Kanto Kagaku, Ni,
) 1275? , 002 normal hydrochloric acid solution was mixed and stirred to prepare a hydrolysis solution for cladding.

コア用ゾルの調製:市販のエチルシリケート(商品名層
コルコート28、コルコートに、に、)56.2f、9
9.5%エチルアルコール(関東化学に、に、) 19
. Of’、02規定の塩酸溶液485fを十分に混合
攪拌した所に、屈折率制御材としてテトラエトキシゲル
マニウム(トリケミカル研究所)18.42と995%
エチルアルコール12.9 rを予め混合しておいた溶
液を徐々に滴下した後、さらに02規定の塩酸溶液18
51を加え十分に攪拌してコア用加水分解溶液を調製し
た。
Preparation of sol for core: Commercially available ethyl silicate (trade name Layer Colcoat 28, Colcoat ni, Ni,) 56.2f, 9
9.5% ethyl alcohol (Kanto Kagaku, Ni,) 19
.. Of', 02 normal hydrochloric acid solution 485f was thoroughly mixed and stirred, and tetraethoxygermanium (Trichemical Institute) 18.42 and 995% were added as a refractive index controlling material.
After gradually dropping a solution containing 12.9 r of ethyl alcohol mixed in advance, add 18 ml of 02N hydrochloric acid solution.
51 was added and sufficiently stirred to prepare a hydrolyzed solution for the core.

シリカ超微粒子溶液の水素イオン濃度(以下pH値と呼
ぶ)を2規定の塩酸溶液を用いて4.0に調整した後、
そこにクラッド用加水分解溶液を加え均一になるまで十
分に攪拌を行う。その混合溶液のpH値を02規定のア
ンモニア溶液を用いて再度55に調整し回転円筒容器(
内径40語、長さ2som、m化ビニル製、内面シリコ
ンコート済み)に所定量を流し込んだ後、毎分1000
回転の速度で図1に示すように円筒容器を回転させ、約
60分で円筒状でかつ、回転軸方向に中空部が存在する
クラッドゲルを得た。次に、pH値が40に調整済みの
シリカ超微粒子溶液と、コア用加水分解溶液とを均一に
混合したものを、0.2規定のアンモニア溶液を用いて
再度pH値を48に調整した後、先のクラッドゲルの回
転中央部にできた中空部に流し込み、ゲル体の片端から
回転中心までの距離が400語である回転装置に装着し
毎分200回転の速度(30G相当、G=9800Tn
/S2)で図2に示すように回転させ、約50分でクラ
ッド轡コア一体ゲルを得た。回転操作による遠心力の作
用によりクラッド用およびコア用加水分解溶液中の塊状
異物は回転面の外方向に、また気泡は内方向に移動する
ため、回転ロッドの中央部では塊状異物および気泡のな
い均質なゲル体が得られることになる。
After adjusting the hydrogen ion concentration (hereinafter referred to as pH value) of the silica ultrafine particle solution to 4.0 using 2N hydrochloric acid solution,
Add the hydrolyzed solution for cladding to it and stir thoroughly until it becomes uniform. The pH value of the mixed solution was adjusted to 55 again using 02N ammonia solution, and the pH value of the mixed solution was adjusted to 55 using a rotating cylindrical container (
After pouring the specified amount into a tube (inner diameter: 40 words, length: 2 som, made of m-vinyl vinyl, inner surface coated with silicone), 1000 m/min.
The cylindrical container was rotated at a rotational speed as shown in FIG. 1, and a clad gel having a cylindrical shape and a hollow portion in the direction of the rotation axis was obtained in about 60 minutes. Next, the silica ultrafine particle solution whose pH value had been adjusted to 40 and the core hydrolysis solution were uniformly mixed, and the pH value was adjusted to 48 again using a 0.2N ammonia solution. , it was poured into the hollow space created at the center of rotation of the clad gel, and it was attached to a rotating device with a distance of 400 words from one end of the gel body to the center of rotation, and the gel was heated at a speed of 200 revolutions per minute (equivalent to 30 G, G = 9800 Tn).
/S2) as shown in FIG. 2, and a clad-core-integrated gel was obtained in about 50 minutes. Due to the action of centrifugal force caused by the rotation operation, lumpy foreign matter in the hydrolyzed solutions for cladding and core move outward from the rotating surface, and air bubbles move inward, so that the central part of the rotating rod is free of lumpy foreign matter and air bubbles. A homogeneous gel body will be obtained.

このクラッド・コア一体ゲルをポリプロピレン製容器(
300Mtrb×250MX 150m1)に入れ、開
口率が02%になるように直径1mの穴を多数個開けた
上ぶたをして55℃の恒温乾燥機に入れ、約14日間で
乾燥一体ゲルを得た。この乾燥ゲルを炭化硅素発熱体電
気f中、大気雰囲気で、1℃/−=の昇温速度で900
°Cまで加熱し、その温度でヘリウムガスをキャリヤー
として塩素ガスを、その後酸素ガスを流すことにより乾
燥ゲル体中に存在する水分子、水酸基、有機分子等を十
分に除去した。その後、再度1℃/iの昇温速度で14
00℃まで加熱することによりゲル体の無孔化を行い透
明焼結体を得た0 得られた透明焼結体の品質を調べたところ、存在する1
μm以上の不定形異物・気泡の数は010m3あたり各
々1個以下であり、また光散乱も極めて小さいことから
、光ファイバ用母材として用いた場合十分な光学的特性
が得られることが期待された。尚、透明焼結体の両端に
は、不定形異物と気泡がそれぞれ集中して存在していた
This clad/core integrated gel is packed in a polypropylene container (
300Mtrb x 250MX 150m1), the top lid was covered with a number of 1m diameter holes made so that the opening ratio was 0.2%, and the gel was placed in a constant temperature dryer at 55°C to obtain a dried solid gel in about 14 days. . This dried gel was heated to 900°C in an air atmosphere using a silicon carbide heating element at a heating rate of 1°C/-=.
It was heated to °C, and at that temperature, chlorine gas was flowed using helium gas as a carrier, and then oxygen gas was flowed to sufficiently remove water molecules, hydroxyl groups, organic molecules, etc. present in the dried gel body. After that, the heating rate was increased to 1℃/i again for 14 hours.
A transparent sintered body was obtained by making the gel body non-porous by heating it to 00℃.0 When the quality of the obtained transparent sintered body was examined, it was found that 1 was present.
The number of amorphous foreign objects and bubbles larger than μm is less than 1 per 010 m3, and light scattering is extremely small, so it is expected that sufficient optical properties will be obtained when used as a base material for optical fibers. Ta. Incidentally, amorphous foreign matter and air bubbles were concentrated at both ends of the transparent sintered body.

〈比較例1〉 実施例1と同組成のシリカ超微粒子溶液・クラッド用加
水分解溶液、コア用加水分解溶液を調製し、実施例1と
同様の方法でクラッドゲルを回転ゲル化により作製した
。次に、クラッドゲルの回転軸方向に沿った中空部にコ
ア用加水分解溶液を流し込んだ後、回転ゲル化を行わず
、静置してコア用加水分解溶液をゲル化させクラッド・
コア一体ゲルを作製した。その後の乾燥および焼結は実
施例1と全く同じ条件下で行い透明焼結体を得た。
<Comparative Example 1> A silica ultrafine particle solution, a cladding hydrolysis solution, and a core hydrolysis solution having the same composition as in Example 1 were prepared, and a cladding gel was produced by rotational gelation in the same manner as in Example 1. Next, after pouring the core hydrolysis solution into the hollow part along the rotational axis direction of the clad gel, the core hydrolysis solution is allowed to stand still without rotational gelation, and the core hydrolysis solution is gelled.
A core-integrated gel was prepared. Subsequent drying and sintering were performed under exactly the same conditions as in Example 1 to obtain a transparent sintered body.

得られた透明焼結体の品質を調べたところ、存在する1
μm以上の不定形異物、気泡の数はQ、 j cm3あ
たり各々7個、11個以下であり、実施例1で得られた
透明焼結体に比べ明らかに品質が低下していた・これは
、コア用加水分解溶液の粘性が高いため、溶液中に混入
している塊状異物および微小気泡が分散された状態でゲ
ル化したためと考えられた。
When the quality of the obtained transparent sintered body was examined, it was found that 1
The number of amorphous foreign matter of μm or larger and bubbles was less than 7 and 11 per Q and j cm3, respectively, and the quality was clearly lower than that of the transparent sintered body obtained in Example 1. This was thought to be due to the high viscosity of the core hydrolysis solution, which caused the gelation to occur in a dispersed state of the lumpy foreign matter and microbubbles mixed in the solution.

〈実施例2〉 シリカ超微粒子溶液:市販のシリカ超微粒子(商品名;
アエロジル0×5X、日本アエロジル社)3002を水
6007に溶解し十分に攪拌した後、約2時間超音波を
照射してシリカ超微粒子が均一に分散した溶液を調製し
た。その後、500Gの遠心力下で遠心沢下を行うこと
により、溶液中に混入している塊状異物を除去し、シリ
カ超微粒子の単分散性を高めた。
<Example 2> Silica ultrafine particle solution: Commercially available silica ultrafine particle (trade name;
Aerosil 0x5X (Japan Aerosil Co., Ltd.) 3002 was dissolved in water 6007, thoroughly stirred, and then irradiated with ultrasonic waves for about 2 hours to prepare a solution in which ultrafine silica particles were uniformly dispersed. Thereafter, by performing centrifugation under a centrifugal force of 500 G, lumpy foreign matter mixed in the solution was removed, and the monodispersity of the ultrafine silica particles was improved.

クラッド用ゾルの調製:市販のエチルシリケート(商品
名;コルコート28、コルコー) K、に、)576.
5t、99.5%エチルアルコール(関東化学に、に、
) 202.91i’、002規定の塩酸溶液199、
2 fを混合攪拌してクラッド用加水分解溶液を調製し
た。
Preparation of sol for cladding: Commercially available ethyl silicate (trade name: Colcoat 28, Colcoat) K, Ni,) 576.
5t, 99.5% ethyl alcohol (to Kanto Kagaku, to
) 202.91i', 002 normal hydrochloric acid solution 199,
A hydrolyzed solution for cladding was prepared by mixing and stirring 2 f.

コア用ゾルの調製:市販のエチルシリケート(商品名;
コルコート28、コルコートに、に、) 134.1S
’、99.5%エチルアルコール(M東化学x、x、)
 45.2 ?、 0.02規定の塩酸溶液11.6 
fを混合し約30分間攪拌した後、予めテトラエトキシ
ゲルマニウム(トリケミカル研究所) 11.67と9
95%エチルアルコール647を混合して調製しておい
たゲルマニウム溶液を徐々に滴下し、さらに15分間攪
拌する。その後、002規定の塩酸溶液54.8 Yを
加え15分間攪拌してコア用加水分解溶液を調製した。
Preparation of sol for core: Commercially available ethyl silicate (trade name;
colcoat 28, colcoat ni, ni,) 134.1S
', 99.5% ethyl alcohol (Mto Kagaku x, x,)
45.2? , 0.02N hydrochloric acid solution 11.6
After mixing f and stirring for about 30 minutes, add tetraethoxygermanium (Trichemical Institute) 11.67 and 9 in advance.
A germanium solution prepared by mixing 95% ethyl alcohol 647 was gradually added dropwise, and the mixture was further stirred for 15 minutes. Thereafter, 54.8 Y of 002N hydrochloric acid solution was added and stirred for 15 minutes to prepare a hydrolyzed solution for the core.

シリカ超微粒子溶液6101とクラッド用加水分解溶液
9787とを混合攪拌(〜十分均質になった所で、02
規定のアンモニア水を用いてpH値を54に調整した。
Mix and stir the silica ultrafine particle solution 6101 and the hydrolyzed solution for cladding 9787 (~02 when it becomes sufficiently homogeneous.
The pH value was adjusted to 54 using regular aqueous ammonia.

この溶液を実施例1で用いたのと同様の円筒容器に所定
量流し込み、同一条件下で回転させた所、約55分で円
筒状でかつ、回転軸方向に中空部が存在するクラッドゲ
ルを得た。
When a predetermined amount of this solution was poured into a cylindrical container similar to that used in Example 1 and rotated under the same conditions, a clad gel that was cylindrical and had a hollow part in the direction of the rotation axis was obtained in about 55 minutes. Ta.

次にコア用加水分解溶液2441とシリカ超微粒子溶液
1532を混合攪拌し十分に均質になった所で、02規
定のアンモニア水を用いてpH値を475に調整した。
Next, the core hydrolysis solution 2441 and the silica ultrafine particle solution 1532 were mixed and stirred, and when they became sufficiently homogeneous, the pH value was adjusted to 475 using 02N aqueous ammonia.

この溶液をクラッドゲル作製時に生じた中空部に流し込
み、実施例1と同様の条件下で回転させ、約27分でク
ラッド・コア一体ゲルを得た0 この一体ゲルを実施例1と同様の方法で乾燥させ、約1
8日で乾燥ゲルを得た。この乾燥ゲルを炭化硅素発熱体
電気炉j中、大気雰囲気で、1℃/iの昇温速度で85
0℃まで加熱し、その温度でヘリウムガスをキャリヤー
として塩素ガスを、その後酸素ガスを流すことにより乾
燥ゲル体中に存在する水分子、水酸基、有機分子等を十
分に除去した。その後、再度1℃/iの昇温速度で13
50℃まで加熱することによりゲル体の無孔化を行い透
明焼結体を・得た。
This solution was poured into the hollow space created during the preparation of the clad gel and rotated under the same conditions as in Example 1 to obtain a clad/core integral gel in about 27 minutes. Dry, about 1
A dry gel was obtained in 8 days. This dried gel was heated to 85°C in an electric furnace with a silicon carbide heating element at a heating rate of 1°C/i in an atmospheric atmosphere.
Water molecules, hydroxyl groups, organic molecules, etc. present in the dried gel were sufficiently removed by heating to 0° C. and flowing chlorine gas using helium gas as a carrier and then oxygen gas at that temperature. After that, the heating rate was increased to 1℃/i again to 13℃.
The gel body was made non-porous by heating to 50°C, and a transparent sintered body was obtained.

得られた透明焼結体の品質を調べたところ、存在する1
μm以上の不定形異物、気泡の数は01cm3あたり各
々2個、1個以下であった0実施例1と同様に不定形異
物、気泡ともに非常に少なく、極めて高品質な焼結体で
あった0以上の実施例および比較例かられかるようにコ
ア用加水分解溶液の回転ゲル化は、気泡の除去に対して
特に有効であることがわかる。
When the quality of the obtained transparent sintered body was examined, it was found that 1
The number of irregularly shaped foreign particles and bubbles larger than μm was 2 and 1 or less per cm3, respectively.Same as Example 1, there were very few irregularly shaped foreign particles and bubbles, and the sintered body was of extremely high quality. As can be seen from the above Examples and Comparative Examples, rotational gelation of the hydrolysis solution for the core is particularly effective for removing air bubbles.

〈比較例2〉 先の実施例2と同様に市販のシリカ超微粒子を出発原料
として全く同組成、同容量のシリカ超微粒子溶液、−ク
ラッド用加水分解溶液、コア用加水分解溶液を用いて実
験を行った。実施例2と異なる点は、先の実施例1・比
較比1の場合と同様に、コア用加水分解溶液を回転ゲル
化させずに、静置した状態でゲル化させ、クラッド・コ
ア一体ゲルを得た点にある。
<Comparative Example 2> As in Example 2, an experiment was conducted using commercially available silica ultrafine particles as a starting material, a silica ultrafine particle solution of exactly the same composition and volume, a hydrolyzed solution for the cladding, and a hydrolyzed solution for the core. I did it. The difference from Example 2 is that, as in the case of Example 1 and Comparative Ratio 1, the core hydrolyzed solution was not gelated by rotation, but gelled while standing, and the cladding and core integrated gel was formed. It is in the point where I got it.

また、その後の乾燥、焼結等の条件はすべて実施例2と
同一にした。そのような条件下で得た透明焼結体の品質
を調べたところ、存在する1μm以上の不定形異物、気
泡の数はQ、 j cm3あたり各々7個、16個であ
り、実施例2で得られた透明焼結体に比べ明らかに品質
が低下していた。
Furthermore, all conditions for subsequent drying, sintering, etc. were the same as in Example 2. When the quality of the transparent sintered body obtained under such conditions was examined, the number of amorphous foreign particles and bubbles of 1 μm or more present was 7 and 16 per cm3, respectively, which was the same as in Example 2. The quality was clearly lower than that of the obtained transparent sintered body.

〈実施例6〉 実施例1と同組成のシリカ超微粒子溶液、クラッド用加
水分解溶液、コア用加水分解溶液を調製し、実施例1と
同様の方法でクラッドゲルを、続いてコアゲルを作製し
クラッド・ファ一体ゲルを得た。ただし、コア用加水分
解溶液の回転ゲル化時の回転数を毎分60回転(2,6
G相当)とした。得られた一体ゲルは、実施例1と同様
の方法で乾燥、焼結を行い透明焼結体を得た。得られた
透明焼結体の品質を調べたところ、存在する1μm以上
の不定形異物、気泡の数は31cm3あたり各々6個、
2個以下であった。実施例1の場合に比べ不定形異物、
気泡の数ともにやや多かったが、この原因は回転速度の
差によるものと考えられる。
<Example 6> A silica ultrafine particle solution, a cladding hydrolyzed solution, and a core hydrolyzed solution having the same composition as in Example 1 were prepared, and a cladding gel was produced in the same manner as in Example 1, followed by a core gel. - Obtained gel. However, the rotation speed during rotational gelation of the hydrolyzed solution for the core should be set at 60 revolutions per minute (2, 6
(equivalent to G). The obtained integral gel was dried and sintered in the same manner as in Example 1 to obtain a transparent sintered body. When examining the quality of the obtained transparent sintered body, it was found that there were 6 irregularly shaped foreign particles and bubbles of 1 μm or more in size and 6 bubbles per 31 cm3.
There were no more than 2 pieces. Compared to the case of Example 1, irregularly shaped foreign matter,
Although the number of bubbles was somewhat large, this is thought to be due to the difference in rotational speed.

しかし、比較例1と比べた場合、コアの回転ゲル化によ
る効果は著しいと言える。
However, when compared with Comparative Example 1, it can be said that the effect of rotational gelation of the core is remarkable.

〈実施例4〉 前記実施例6と同様に、コア回転ゲル化時の回転速度だ
けを毎分1000回転(730G相当)に変化させて品
質の差異を検討した。
<Example 4> As in Example 6, only the rotation speed during core rotation gelation was changed to 1000 revolutions per minute (equivalent to 730 G) to examine the difference in quality.

乾燥、焼結等の諸条件を実施例1と同様にして、得られ
た透明焼結体の品質を調べたところ、存在する1μm以
上の不定形異物、気泡の数はQ、 i cry3あたり
各々1個以下という高品質であり、実施例1と同様にコ
ア回転ゲル化による効果が顕著であつた0 〈実施例5〉 前記実施例3と同様に、コア回転ゲル化時の回転速度だ
けを毎分2200回転(3500G相当)に変化させて
品質の差異を検討した。この回転速度で回転ゲル化させ
ようとしたところ、回転により生じる遠心力が大きすぎ
、既存の円筒状ゲル体に亀裂が生じクラッド・コア一体
ゲルは得られなかった。
The quality of the obtained transparent sintered body was examined under the same conditions as in Example 1 for drying, sintering, etc., and the number of amorphous foreign matter of 1 μm or more and bubbles was Q and i cry3, respectively. It was of high quality with less than 1 piece, and the effect of core rotation gelation was remarkable as in Example 1. Example 5 As in Example 3, only the rotation speed during core rotation gelation was The difference in quality was examined by changing the speed to 2200 revolutions per minute (equivalent to 3500 G). When an attempt was made to perform rotational gelation at this rotational speed, the centrifugal force generated by the rotation was too large, causing cracks in the existing cylindrical gel body, making it impossible to obtain a clad-core integrated gel.

〈実施例6〉 光ファイバ用コアロッド材(純シリカロッド)を作製す
るために実施例1と同様の組成のシリカ超微粒子溶液、
クラッド用加水分解溶液を調製した。2規定の塩酸溶液
を用いてシリカ超微粒子溶液のpH値を4.6に調整し
た後、クラッド用加水分解溶液と十分混合攪拌し、再度
02規定のアンモニア溶液を用いてpH値を56に調整
した。
<Example 6> In order to produce a core rod material for an optical fiber (pure silica rod), a silica ultrafine particle solution with the same composition as in Example 1,
A hydrolysis solution for cladding was prepared. After adjusting the pH value of the silica ultrafine particle solution to 4.6 using 2N hydrochloric acid solution, thoroughly mix and stir with the hydrolysis solution for cladding, and adjust the pH value to 56 again using 02N ammonia solution. did.

その溶液を実施例1と同様の円筒容器に所定量流し込み
、図2に示す回転装置に装着し、毎分200回転の回転
速度で回転させながらゲル化させ、約56分でコア用ロ
ッドゲルを得た。その後の乾燥、焼結等の条件はすべて
実施例1と同様とした。
A predetermined amount of the solution was poured into a cylindrical container similar to that in Example 1, and the solution was attached to the rotating device shown in Fig. 2, and gelatinized while rotating at a rotational speed of 200 revolutions per minute to obtain a core rod gel in about 56 minutes. Ta. The conditions for subsequent drying, sintering, etc. were all the same as in Example 1.

得られた透明焼結体の品質を調べたところ・存在する1
μm以上の不定形異物、気泡の数は01Cm3あたり各
々1個以下であり、光散乱もほとんど認められない程度
の高品質性であった。したがって、この光ファイバ用コ
アロッドは十分実用に共するものと言える。
When the quality of the obtained transparent sintered body was investigated, there was 1
The number of amorphous foreign matter of μm or larger and the number of bubbles was 1 or less per 01 Cm3, and the quality was such that almost no light scattering was observed. Therefore, it can be said that this optical fiber core rod is fully suitable for practical use.

以上の実施例、比較例かられかるように、コア用加水分
解溶液を回転ゲル化させクラッド・コア一体ゲルを得る
本方法は、どのような出発原料に対しても混入する不定
形異物、気泡の除去に対して十分な効果があることが確
められた。このような効果は、回転時に生ずる遠心力を
利用したものであるため、十分な除去効果を期待するた
めにはある程度以上の遠心力が必要である反面、必要以
上に大きな遠心力が付加されるとタララドゲルの破損を
まねく恐れがある0しかし、本発明の実施例1,3.4
で示したように、遠心力が相当に広い範囲で異物および
気泡の除去効果が顕著であることが確認されている。
As can be seen from the above Examples and Comparative Examples, this method for obtaining an integrated cladding and core gel by rotationally gelling a hydrolyzed solution for the core is effective against irregularly shaped foreign matter and air bubbles that may be mixed in with any starting material. It was confirmed that it is sufficiently effective in removing. This effect utilizes the centrifugal force generated during rotation, so a certain amount of centrifugal force is required to achieve a sufficient removal effect, but on the other hand, an unnecessarily large centrifugal force is added. However, Examples 1 and 3.4 of the present invention may cause damage to the Talarado gel.
As shown in , it has been confirmed that the effect of removing foreign objects and air bubbles is remarkable in a fairly wide range of centrifugal force.

本発明の実施例では円柱状のコアガラスの製造を例にと
り説明してきたが、作製するガラスの形状は円柱状であ
る必要はなく、断面が楕円形状であったり、母材の長手
方向にらせん形状であっても良い。その様な形状のコア
ガラスを有する光ファイバ用母材を、他のOVD法など
で製造することは非常に困難なため・本発明の方法は極
めて有効な母材製造手段といえる。
In the embodiments of the present invention, the manufacturing of cylindrical core glass has been explained as an example, but the shape of the glass to be manufactured does not necessarily have to be cylindrical, and may have an elliptical cross section or a spiral shape in the longitudinal direction of the base material. It may be a shape. Since it is very difficult to manufacture an optical fiber preform having such a shaped core glass by other methods such as OVD, the method of the present invention can be said to be an extremely effective method for producing the preform.

また、液体原料として微粉末粒子を用いずに、金属アル
コキシドの加水分解溶液だけを用いても光ファイバ用母
材の製造が可能であるが、得られる母材の大きさおよび
その歩留りの点から、微粉末粒子を用いた本方法の方が
優れていることは明白である。
In addition, it is possible to manufacture optical fiber base material using only a hydrolyzed solution of metal alkoxide without using fine powder particles as a liquid raw material, but it is difficult to manufacture the base material for optical fibers in terms of the size of the obtained base material and its yield. It is clear that the present method using fine powder particles is superior.

〔発明の効果〕〔Effect of the invention〕

本発明は、以上説明したように、光ファイバ用母材の前
駆体となる透明焼結体の製造において、回転ゲル化によ
って管状クラッドゲルを作製した後、クラッドゲル作製
時とは異なる回転方法で、つまり、タララドゲル作製時
における回転軸と90°の交角を成し、その回転中心が
ゲル体の外部に位置する回転軸を中心として、コア用加
水分解溶液を回転ゲル化させクラッド・コア一体ゲルを
製造しようとするものである。
As explained above, in the production of a transparent sintered body that is a precursor of a preform for an optical fiber, a tubular clad gel is produced by rotational gelation, and then a rotation method different from that used for producing the clad gel is used. The hydrolyzed solution for the core is rotated and gelled around the rotation axis that forms a 90° angle with the rotation axis during the production of Talarado gel, and the center of rotation is located outside the gel body to produce a clad/core integrated gel. This is what I am trying to do.

この製造方法は原料中に混入している塊状の不定形異物
および気泡を除去するのに極めて有効である。ゲル化時
の回転方法を多小変えるという非常に簡単な改良で、異
物、気泡の除去に対して極めて高い効果があるため、本
方法を用いれば、伴わずに従来以上に高品質な光ファイ
バ用母材を容易に得られると期待される。
This production method is extremely effective in removing lump-like amorphous foreign matter and air bubbles mixed in raw materials. A very simple modification of slightly changing the rotation method during gelation is extremely effective in removing foreign matter and air bubbles, so if this method is used, it is possible to create optical fibers of higher quality than before without the gelling process. It is expected that the base material for use will be easily obtained.

得られる透明焼結体の品質が極めて優れていることから
、本発明は光ファイバ用母材の製造だけに限らず、他の
光学用ガラス、電子材料用ガラスなどの製造時にも十分
応用できるものである。等に、屈折率分布の異なる多層
ガラスの製造には、極めて有効な製造手段となると言え
る0
Since the quality of the obtained transparent sintered body is extremely excellent, the present invention is applicable not only to the production of optical fiber base materials, but also to the production of other optical glasses, glasses for electronic materials, etc. It is. It can be said that 0 is an extremely effective manufacturing method for manufacturing multilayer glass with different refractive index distributions.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の回転ゲル化装置の概念を示した図で、ゲ
ル体の長手方向と平行な方向に回転軸が存在する。 第2図は本発明にかかる回転ゲル化装置の概念を示した
図で、タララドゲル製造時における回転軸と90°の交
角を成し、かつその回転中心がゲル体の外部に位置して
いるところが特徴である。 第1図1・・・・・・回転中心線 2・・・・・・軸受け 3・・・・・・回転用円筒容器 4・・・・・・容器固定用ホルダー 5・・・・・・回転用モーター 6・・・・・・支持台 第2図1・・・・・・回転台 2・・・・・・回転用円筒容器 3・・・・・・容器固定用ホルダー 4・・・・・・回転中心線 5・・・・・回転軸 6・・・・・・軸受け 7・・・・・・回転用モーター 8・・・・・・支持台 以  上
FIG. 1 is a diagram showing the concept of a conventional rotary gelling device, in which a rotation axis exists in a direction parallel to the longitudinal direction of the gel body. Fig. 2 is a diagram showing the concept of the rotary gelling apparatus according to the present invention, which forms an angle of 90° with the rotation axis during the production of Talarad gel, and whose rotation center is located outside the gel body. It is a characteristic. Fig. 1 1...Rotation center line 2...Bearing 3...Rotating cylindrical container 4...Holder for fixing the container 5... Rotating motor 6...Support stand Fig. 21...Rotating stand 2...Rotating cylindrical container 3...Holder for fixing the container 4... ... Rotation center line 5 ... Rotation shaft 6 ... Bearing 7 ... Rotation motor 8 ... Support stand or more

Claims (4)

【特許請求の範囲】[Claims] (1)容器の長手方向にあいた穴に第1の液体原料を流
し込んだ後、容器の長手方向に沿った幾何学的回転対称
軸と90°の交角を成し、かつその回転中心が回転容器
の外部に位置する回転軸を中心として回転させながらゲ
ル化させることを特徴とする、ゾル−ゲル法による光フ
ァイバ用母材の製造方法。
(1) After pouring the first liquid raw material into the hole formed in the longitudinal direction of the container, the rotation center of the rotating container forms an angle of 90° with the geometric rotational symmetry axis along the longitudinal direction of the container. 1. A method for producing an optical fiber preform by a sol-gel method, the method comprising gelling the preform while rotating it around a rotation axis located outside the sol-gel method.
(2)特許請求の範囲第1項において、前記回転容器の
内面が予め円筒状の内面をもつ、第2の液体原料から作
製したゲルで形成されているものを回転容器として用い
ることを特徴とする特許請求の範囲第1項記載の光ファ
イバ用母材の製造方法。
(2) In claim 1, the rotating container is characterized in that the inner surface of the rotating container has a cylindrical inner surface and is formed of a gel made from the second liquid raw material. A method for manufacturing an optical fiber preform according to claim 1.
(3)前記第1の液体原料が金属アルコキシドおよび微
粉末粒子から調製されることを特徴とする特許請求の範
囲第1項記載の光ファイバ用母材の製造方法。
(3) The method for manufacturing an optical fiber preform according to claim 1, wherein the first liquid raw material is prepared from a metal alkoxide and fine powder particles.
(4)前記第1および第2の液体原料が金属アルコキシ
ドおよび微粉末粒子から調整されることを特徴とする特
許請求の範囲第2項記載の光ファイバ用母材の製造方法
(4) The method for manufacturing an optical fiber preform according to claim 2, wherein the first and second liquid raw materials are prepared from metal alkoxide and fine powder particles.
JP2503285A 1985-02-12 1985-02-12 Production of parent material for optical fiber Pending JPS61186236A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2503285A JPS61186236A (en) 1985-02-12 1985-02-12 Production of parent material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2503285A JPS61186236A (en) 1985-02-12 1985-02-12 Production of parent material for optical fiber

Publications (1)

Publication Number Publication Date
JPS61186236A true JPS61186236A (en) 1986-08-19

Family

ID=12154568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2503285A Pending JPS61186236A (en) 1985-02-12 1985-02-12 Production of parent material for optical fiber

Country Status (1)

Country Link
JP (1) JPS61186236A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0614855A1 (en) * 1993-03-11 1994-09-14 AT&T Corp. Manufacture of high proof-test optical fiber using sol-gel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0614855A1 (en) * 1993-03-11 1994-09-14 AT&T Corp. Manufacture of high proof-test optical fiber using sol-gel
CN1043470C (en) * 1993-03-11 1999-05-26 美国电话电报公司 Manufacture of high proof-test optical fiber using sol-gel

Similar Documents

Publication Publication Date Title
CN1012641B (en) Method for fabricating articles which include high silica glass bodies and articles formed thereby
CA1311127C (en) Glass body formed from a vapor-derived gel and process for producing same
CA2273733A1 (en) Method for forming article using sol-gel processing
JPS61186236A (en) Production of parent material for optical fiber
JP2009227582A (en) Method for manufacturing optical fiber
EP1061050A1 (en) Process for fabricating an article via sol-gel processing
JPS6096533A (en) Preparation of quartz glass tube
JPS6296339A (en) Method for manufacturing base material for optical fiber
JP4268489B2 (en) Method for producing transparent quartz glass body
JPS62288130A (en) Production of preform for quartz based optical fiber
JPS62275036A (en) Method for manufacturing base material for optical fiber
JPS61186235A (en) Method for manufacturing base material for optical fiber
JPS62100445A (en) Method for manufacturing base material for optical fiber
JPS6054929A (en) Silica glass manufacturing method
JPS61186226A (en) Manufacturing method of quartz glass
JPS63144137A (en) Production of optical fiber preform
JPS61186232A (en) Production of tubular quartz glass
JPS61186234A (en) Production of parent material for optical fiber of quartz glass
JPS61186237A (en) Method for manufacturing silica glass base material for optical fiber
JPS62278139A (en) Method for manufacturing optical fiber base material
JPS62119132A (en) Method for manufacturing base material for optical fiber
JPS6191023A (en) Manufacturing method of tubular quartz glass
JPS62167230A (en) Glass tube manufacturing method
JPS6345143A (en) Method for manufacturing base material for optical fiber
JPS62288122A (en) Production of glass body by sol-gel method