[go: up one dir, main page]

JPS6221728A - Production of base material for optical fiber - Google Patents

Production of base material for optical fiber

Info

Publication number
JPS6221728A
JPS6221728A JP15917385A JP15917385A JPS6221728A JP S6221728 A JPS6221728 A JP S6221728A JP 15917385 A JP15917385 A JP 15917385A JP 15917385 A JP15917385 A JP 15917385A JP S6221728 A JPS6221728 A JP S6221728A
Authority
JP
Japan
Prior art keywords
sol
optical fiber
gel
tubular
silica
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15917385A
Other languages
Japanese (ja)
Inventor
Motoyuki Toki
元幸 土岐
Sadao Kanbe
貞男 神戸
Masatake Matsuo
誠剛 松尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP15917385A priority Critical patent/JPS6221728A/en
Publication of JPS6221728A publication Critical patent/JPS6221728A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/016Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD] by a liquid phase reaction process, e.g. through a gel phase
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/20Doped silica-based glasses doped with non-metals other than boron or fluorine
    • C03B2201/28Doped silica-based glasses doped with non-metals other than boron or fluorine doped with phosphorus
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/31Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/32Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B2201/00Type of glass produced
    • C03B2201/06Doped silica-based glasses
    • C03B2201/30Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
    • C03B2201/40Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn
    • C03B2201/42Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with transition metals other than rare earth metals, e.g. Zr, Nb, Ta or Zn doped with titanium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Manufacture, Treatment Of Glass Fibers (AREA)

Abstract

PURPOSE:To readily control the refractive index distribution and obtain readily the tiled base material having various refractive index distributions, by diffusing a specific alkoxide solution from the inner surface of a pipe of a tubular porous silica material of high purity, drying and sintering the resultant porous silica material. CONSTITUTION:An alkyl silicate is hydrolyzed under acidic, basic or neutral conditions to give a sol, which is ten put in a container, and a rod is inserted into the center thereof. After gelation, the rod is taken out or the sol is put in a rotatable cylindrical container and gelatinized while rotating the container on the axis thereof as a center and gelatinized to prepare and dry a tubular gel and give a porous tubular silica material of high purity which is a dry gel. An alkoxide (solution) of an element, expressed by formula I-IV (R is alkyl) and capable of increasing he refractive index is added to the interior of the tube and diffused into the above-mentioned porous material. The resultant material is slowly dried and heat-treated from room temperature to 300 deg.C to dehydrate the physically adsorbed water. The dehydrated material is then heated to 600 deg.C, heat-treated and decarbonized. Cl2 gas is passed through the material during the heat-treatment up to 900 deg.C to dehydroxylate the material and O2 gas is passed therethrough during heat treatment up to 1,000 deg.C to remove Cl2. Finally, the material if further heated to 1,500 deg.C, and He gas is passed therethrough the density and sinter the material.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光ファイバ用母材の製造方法に関する。[Detailed description of the invention] [Industrial application field] The present invention relates to a method for manufacturing an optical fiber preform.

〔発明の概要〕[Summary of the invention]

本発明は光ファイバ用母材の製造方法において、管状の
制純度シリカ多孔誓体の管の内面より、石英ガラスの油
接率を高める元素のアルコキシドを含む溶液を拡散させ
、適当な屈折率分布を形成させることにより、光ファイ
バ母材の新規合成法を発明したものである。
The present invention is a method for manufacturing an optical fiber base material, in which a solution containing an alkoxide of an element that increases the oil affixation rate of silica glass is diffused through the inner surface of a tubular porous silica tube to create an appropriate refractive index distribution. We have invented a new method for synthesizing optical fiber preforms by forming .

〔従来の技術〕[Conventional technology]

従来の光ファイバ母材の製造方法は、一般に次のような
ものである。
Conventional methods for manufacturing optical fiber preforms are generally as follows.

1)MOVD法(肉付は法〕 2)OVPO法(外付は法〕 5)VAII法(軸付は法〕 1〕のMC!VIJ法は、Be1l研究所から発表され
た方法で、石英管中に四塩化ケイ素とドーパントの四塩
化ゲルマニウムと酸禦ガスを送り込み、石英管の外部か
ら酸水素炎で〃0熱するとドーパントを含むシリカ微粒
子が付着する。その付着層ごとにドーパント濃度を連続
的だ変化させると適切な屈折率分布を形成することがで
きるものである。これを中実化すれば光ファイバー用母
材とすることができる。また一方、2)OVPO法は、
コーニング社で開発された方法で、石英ガラスの心棒の
表面に火炎加水分解反応でシリカ微粒子を形成し、その
後心棒を喉り除いて、加熱溶融し、透明母材とする方法
であり、形成層ごとに組成制御して屈折率分布を形成す
るものである。さらに5)VALI法は、茨城電気通信
研児所から提案された方法で出発材の先端に火炎中で生
成したシリカ微粒子を堆積し、多孔質母材を形成し、電
気炉中で透明母材とするものであり、屈折率分布は、多
孔質母材形成時に母材の表面温度分布を利用して形成す
るものである。
1) MOVD method (filling is method) 2) OVPO method (external method is method) 5) VAII method (shaft is method) 1) MC!VIJ method is a method announced by Be1l Institute, and is Silicon tetrachloride, germanium tetrachloride as a dopant, and oxidation gas are fed into the tube, and when heated from the outside of the quartz tube with an oxyhydrogen flame, fine silica particles containing the dopant adhere.The dopant concentration is continuously adjusted in each adhered layer. It is possible to form an appropriate refractive index distribution by changing the target.If it is made solid, it can be used as a base material for optical fibers.On the other hand, 2) OVPO method
This is a method developed by Corning Incorporated, in which fine silica particles are formed on the surface of a quartz glass mandrel through a flame hydrolysis reaction, and then the mandrel is removed and heated to melt to form a transparent base material. The refractive index distribution is formed by controlling the composition of each material. Furthermore, 5) The VALI method is a method proposed by the Ibaraki Telecommunication Research Institute, in which fine silica particles generated in a flame are deposited on the tip of a starting material to form a porous base material, and then a transparent base material is formed in an electric furnace. The refractive index distribution is formed by utilizing the surface temperature distribution of the porous base material when forming the porous base material.

以上の他にファイバー用母材はプラズマcv1)法でも
製造されるが、プラズマ炎が不安定であることから実用
化はされていない。
In addition to the above, fiber base materials can also be manufactured by the plasma CV1) method, but this method has not been put to practical use because the plasma flame is unstable.

上記5種の製造性が実用化されているものであり最も浸
れた方法である。
The above five types of productivity have been put into practical use, and this is the most sophisticated method.

しかし、上記5橿の製造方法は、次の欠点を有している
。つまり、どの方法も製造速度が遅く、最も早いVAI
J法でも実験型レベルでの最高が、5t/■であり、M
CVLl法では(11f/園慢度である。また、現在の
元ファイバーの価格は、現在の電話加入者#の価格より
1ケタ高くなっていることから、屯々公社Vi光ファイ
バー価格を現在の1ケタ下げることを目指している。こ
の方法として、線引き速度を早くし之り、被覆材を安価
なポリマーにしているが、さらに安1曲にするには、従
来法による透明母材より低コストの透明母材の作成法が
必要となっている。
However, the above-mentioned method for manufacturing the five-piece rod has the following drawbacks. In other words, the production speed is slow for all methods, and the fastest VAI
Even with the J method, the maximum at the experimental level is 5t/■, and the M
In the CVLl method, (11f/zonal rate).Also, since the current original fiber price is one order of magnitude higher than the current telephone subscriber price, the Tonnan Corporation Vi optical fiber price is To achieve this goal, we increase the drawing speed and use an inexpensive polymer as the covering material, but in order to make it even cheaper, we use a transparent base material that is lower in cost than the conventional method. A method for creating a transparent matrix is needed.

従来の方法とは異なる透明母材の作成法として、金属ア
ルコキシドを原料とするゾル−ゲル法で、塩素雰囲気中
で熱処理することで低き水着の光ファイバー用透明母材
の作成法が試みられている(K、 5uSa 、 I 
、Matsuyama、S 5atoh、T、Suga
numa。
As a method for creating a transparent base material that is different from conventional methods, an attempt was made to create a transparent base material for optical fibers for swimsuits using a sol-gel method using metal alkoxide as a raw material and heat-treating it in a chlorine atmosphere. (K, 5uSa, I
, Matsuyama, S 5atoh, T, Suga.
numa.

Electronics Letters、 18 、
12 、499−495(1982))。
Electronics Letters, 18,
12, 499-495 (1982)).

、この方法は原料が安価な金属アルコ−P7ドであり、
従来法とち力1って熱処理温度が代いので、低コストの
透明tは材の作成法としての可能性かある。
, this method uses an inexpensive metal alcohol P7 as a raw material,
Since the heat treatment temperature is different from that of the conventional method, there is a possibility that the low-cost transparent T can be used as a method for producing the material.

〔発明か解決しようとする問題点及び目的〕しかし、前
述の従来技術では次のような欠点を有する。すなわち、 12 MOVD 、0VPOaは、前述したような製造
速度が遅い問題や高コストであるという問題以外に、ス
テップインデックスやグレーデッドインデックス、シン
グルモード等の屈折率分布を作成する九めに、原料流量
を1gi度にコントロールしなければいけないという困
難さが有る。
[Problems and objects to be solved by the invention] However, the above-mentioned prior art has the following drawbacks. In other words, 12 MOVD and 0VPOa have the problems of slow manufacturing speed and high cost as mentioned above, as well as the problems of raw material flow rate in order to create refractive index distributions such as step index, graded index, single mode, etc. There is a difficulty in having to control it to 1gi degree.

2)VAD法でも同様に屈折率分布を作成するために酸
水素バーナーのWl!分布を利用しているが、これもコ
ントロールが困難で歩留りが悪いという間、−11を有
している。
2) In the VAD method, Wl! of the oxyhydrogen burner is used to create a refractive index distribution in the same way. However, this method is also difficult to control and has a low yield of -11.

5)ゾル−ゲル法では、従来法のままでは屈折率分布の
制御ができないという問題ヵ3有る。
5) The sol-gel method has the problem that the refractive index distribution cannot be controlled using the conventional method.

箇た、屈折分布の制御方法として、ガラスの分相後のり
一チングにより得られる多孔性ガラスにトーハ:/トf
:拡散させるという分子スタッフインク法が有るが、こ
の方法の多孔性ガラスは純度が悪く、光ファイバ用母材
とはできないことや、ドーパントは水溶液として拡散さ
せているので、水不溶のドーパントは入らないという欠
点が有る。
In addition, as a method for controlling the refractive distribution, porous glass obtained by layering after phase separation of the glass was used.
:There is a molecular stuff ink method that involves diffusion, but the porous glass used in this method has poor purity and cannot be used as a base material for optical fibers, and the dopant is diffused as an aqueous solution, so water-insoluble dopants cannot be mixed in. There is a drawback that there is no

つまり上水し友ように、いずれの光ファイバ母材の製造
方法も、面単でf:ICの高い屈折率分布の制御方法が
ないという問題点を有する。
In other words, like Josui, all methods of manufacturing optical fiber preforms have the problem that there is no method for controlling a high refractive index distribution of f:IC on a single surface.

そこで本発明はこのような問題点を解決するもので、そ
の目的とするところは、容易に梢咲の高い屈折率分布の
制御方法を提供するところにある。
The present invention is intended to solve these problems, and its purpose is to provide a method for easily controlling the high refractive index distribution of treetops.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の光ファイバ用母材の製造方法は、以下の工程の
ように、管状の高純度シリカ多孔質体の管の内面より、
石英ガラスの屈折率を高める元素のアルコキシドを含む
溶液を拡散させ、内部の屈折率が多部の屈折率より高く
することにより製造することを特徴とする。
The method for manufacturing an optical fiber preform of the present invention includes the following steps:
It is characterized in that it is manufactured by diffusing a solution containing an alkoxide of an element that increases the refractive index of quartz glass, so that the internal refractive index is higher than the refractive index of many parts.

a)管状の高純度シリカ多孔質体の製造の工程b〕 屈
折率を高める元素のアルコキシドあるいは、そのff4
gを高純度シリカ多孔質体の管内に加え、シリカ多孔質
体中に拡散させる工程C〕 拡散後の高純度シリカ多孔
質体を乾燥する工程 d)乾燥後の高純度シリカ多孔質体を焼結する工程 本発明で使用する高純度シリカ多孔質体は、アルキル7
リケートや微粉末シリカを原料とするゾル−ゲル法で得
られるドライゲルや、ドライゲルを熱処理し強度を強く
した多孔質のゲル(以後焼結ゲルと記す)が適当である
。さらに、光ファイバ母材の一般的な製法であるMcv
IJ、ovpo。
a) Step b of manufacturing a tubular high-purity silica porous body] Alkoxide of an element that increases the refractive index or its ff4
Step C of adding g into the tube of the high-purity porous silica material and diffusing it into the porous silica material] Step of drying the high-purity porous silica material after diffusion d) Sintering the dried high-purity porous silica material The high-purity silica porous material used in the present invention has alkyl 7
Dry gels obtained by a sol-gel method using silicate or finely powdered silica as raw materials, and porous gels made by heat-treating dry gels to increase their strength (hereinafter referred to as sintered gels) are suitable. Furthermore, Mcv, which is a common manufacturing method for optical fiber preforms,
IJ, ovpo.

VALI法等により得られる多孔質母材であっても良い
A porous base material obtained by the VALI method or the like may be used.

ゾル−ゲル法にはマルキル7リケートを原料とし、酸あ
るいは塩基もしくは中性で加水分解し、ゾルとする方法
と、微粉末シリカを水に分散しゾルとする方法、微粉末
クリ力をアルキル7リケートの加水分解ゾルに添加する
方法もしくは、その添加後のゾルのPI’11に5〜6
にall整する方法、あるいは、アルキルシリケートの
塩基性加水分解ゾルを、アルキルシリケートの酸性加水
分解ゾルに添加し、PHを5〜6に調整する方法等が有
る。
The sol-gel method uses markyl-7 silicate as a raw material and hydrolyzes it with acid, base, or neutrality to form a sol, and the other method involves dispersing finely powdered silica in water to form a sol. 5-6 to the PI'11 of the sol after addition.
Alternatively, a basic hydrolysis sol of alkyl silicate is added to an acidic hydrolysis sol of alkyl silicate to adjust the pH to 5 to 6.

本発明で使用する高純度シリカ多孔質体は以上のどのよ
うなゾル−ゲル法のドライゲルあるいは焼結ゲルでも良
い。
The high-purity porous silica used in the present invention may be any dry gel or sintered gel produced by the sol-gel method described above.

ま次、石英ガラスの屈折率を高める元素のアルコキシド
としては、Ge(OR)、 、 P(OR)s −Ti
(OR)4 、 A1<oRノ8.(Rはアルキル基を
示す〕等であり、他には、Ta 、 BQ 、 Zr 
、 Nb 、 T1等の元素のアルコキシドも可能であ
る。
Next, as the element alkoxide that increases the refractive index of quartz glass, Ge(OR), , P(OR)s -Ti
(OR)4, A1<oRノ8. (R represents an alkyl group), and others include Ta, BQ, Zr
Alkoxides of elements such as , Nb, T1 are also possible.

上記アルコキシドを管状の少りカの多孔質体の内面より
拡散させる際に、アルコキシドが液体である場合はその
まま拡散させることができるが、拡散後の石英ガラス中
の濃度が高くなりすぎること力濁考見られるので、適当
な溶媒でアルコキシドを希釈すると、拡散後の石英ガラ
ス中のS度を適当にコントロールすることができる。そ
の溶媒としては、エタノール、メタノール、プロパノー
ル。
When diffusing the above alkoxide from the inner surface of a tubular porous body with a small amount of force, if the alkoxide is a liquid, it can be diffused as it is, but the concentration in the quartz glass after diffusion becomes too high. Therefore, by diluting the alkoxide with an appropriate solvent, the degree of S in the quartz glass after diffusion can be appropriately controlled. The solvents are ethanol, methanol, and propanol.

ブタノール等のアルコールや、ベンゼン、アセトン、ク
ロロホルム等の有機溶媒が適当である。
Alcohols such as butanol and organic solvents such as benzene, acetone and chloroform are suitable.

以上のようにして、屈折率を高める元素のアルコキシド
を拡散させ穴管状のシリカ多孔質体を乾燥させる。この
乾燥時にクラック等炉入り易いので、なるべくゆっくり
乾燥させる必要かある。
In the manner described above, the alkoxide of the element that increases the refractive index is diffused and the tubular silica porous body is dried. Since cracks are likely to form during this drying process, it is necessary to dry the product as slowly as possible.

このようにして得られる乾燥した拡散後の7υ力多孔質
体は次の工程により焼結することができる。
The dried 7υ force porous body thus obtained after diffusion can be sintered by the following process.

a) 型温から500℃までの熱処理による脱物理吃着
水の工程 b)500Cから600Cまでの熱処理による脱炭素の
工程 C)600℃から1100℃までの熱処理中に塩素ガス
を通じることによる脱水酸基の工程(1)900℃から
1200℃までの熱処理中に酸素ガスを通じることによ
る脱塩素の工程e)1000℃から1500℃までの熱
処理中にヘリウムガスを通じるか減圧にすることによる
緻密化の工程 ま几、以上の方法により製造でき穴管状の適当な屈折率
分布をMする透明な石英ガラスは、バーナー等により中
実化し、ロッド状の光ファイバ母材とすることがでなる
a) Decarbonization process by heat treatment from mold temperature to 500℃ b) Decarbonization process by heat treatment from 500C to 600C C) Decarbonization process by passing chlorine gas during heat treatment from 600℃ to 1100℃ Hydroxyl group step (1) Dechlorination step by passing oxygen gas during heat treatment from 900°C to 1200°C e) Densification by passing helium gas or reducing pressure during heat treatment from 1000°C to 1500°C In the process, the transparent quartz glass having an appropriate refractive index distribution in the shape of a hollow tube, which can be manufactured by the above method, is solidified using a burner or the like to form a rod-shaped optical fiber base material.

〔実施例〕〔Example〕

実施例1 市販のケイ酸エチル208F(1モル)に1規定の塩酸
を18(lWI1770え激しく攪拌し加水分解しゾル
とじ几。このゾルをボップロピレン製の円筒状容′、a
(内径10TBφ、長す100 ++w )にm、t、
その中央部にボップロピレン製の禅(外径s■φ長さ1
oom)eさし、この状態でゲル化させ几。
Example 1 Commercially available ethyl silicate 208F (1 mol) was mixed with 1N hydrochloric acid (18%) with vigorous stirring using WI1770 to hydrolyze the sol.
(inner diameter 10TBφ, length 100++w) m, t,
In the center of it is made of bopp propylene (outer diameter s x φ length 1
oom) Add the paste and let it gel in this state.

ゲル化後棒を引き抜き管状のゲルとし、60〜80℃の
mWで乾燥させドライゲル〔外径6N、φ、内内径18
嬌φ、長60fi〕が得られた。ドライゲルを50℃/
 h rの昇温スピードで700℃まで加熱し焼結ゲル
とし几。
After gelation, the rod was pulled out to form a tubular gel and dried at 60 to 80°C mW to form a dry gel [outer diameter 6N, φ, inner diameter 18
A length of 60 fi] was obtained. Dry gel at 50℃/
Heat to 700℃ at a heating rate of hr to form a sintered gel.

焼結ゲルの管内に10重破パーセントのゲルマニウムイ
ンプロポキシドのエタノール溶液を加え、20分間拡散
させ次。室温で一夜乾燥させた後、60℃で2日間乾燥
した。電気炉に入れ、室温から600℃箇で30℃/ 
h rの昇温スピードで昇温し、600℃で2時間保持
し塩素ガスを2j/−の流量で流し念。硯いて50C/
hrで900℃まで昇温し酸素ガスをCL5)/―で5
0分間流し、950℃まで昇温しヘリウム雰囲ス中で5
0分間保持しガラス化した。
An ethanol solution of 10 percent germanium impropoxide was added to the sintered gel tube and allowed to diffuse for 20 minutes. After drying at room temperature overnight, it was dried at 60° C. for 2 days. Place it in an electric furnace and heat it at 30℃/600℃ from room temperature.
The temperature was raised at a heating rate of hr, held at 600°C for 2 hours, and then chlorine gas was poured at a flow rate of 2j/-. Inkstone 50C/
Raise the temperature to 900℃ for hr and oxygen gas at CL5)/-5
0 minutes, heated to 950℃, and heated in helium atmosphere for 5 minutes.
It was held for 0 minutes and vitrified.

以上により、中央部分のGeの拡散し九部分と外周のG
eの全ズ含有していない部分の2重構造の管状の石英ガ
ラスが得られた。これを中実化し線引きするとステップ
インデックス型の石英ファイバが得られ念。伝送損失は
20 dB/Axであった。
As a result of the above, the Ge in the central part is diffused and the G in the outer part and the outer circumference is
A tubular quartz glass having a double structure in which no tin was contained was obtained. If this is solidified and drawn, a step index type quartz fiber can be obtained. Transmission loss was 20 dB/Ax.

実施例2 市販のケイ酸エチル208f(1モル)に、PE1(L
Oのアンモニア水72−、エタノール400−を加え攪
拌しゾルとし念。このゾルをポリプロピレン族の円筒状
容器(内径1011IIφ。
Example 2 Commercially available ethyl silicate 208f (1 mol) was added with PE1 (L
Add 72% of aqueous ammonia and 400% of ethanol and stir to make a sol. This sol was poured into a polypropylene cylindrical container (inner diameter 1011IIφ).

&す100 m )に加え、その中央部にポリプロピレ
ン族の4(外径3鴫φ、長さ100m)をさし、この状
態でゲル化させた。ゲル化後棒を引き抜き管状のゲルと
し、60〜80Cの温度で乾燥させドライゲル(外径5
Hφ、内径1.5畷φ、長さ50−)とした。ドライゲ
ルを180℃/hrで900℃まで昇温し5時間保持し
さらicl 000℃まで昇温し5時間保持しv8Mゲ
ルとした。
100 m), a polypropylene group 4 (outer diameter 3 φ, length 100 m) was inserted into the center, and gelation was performed in this state. After gelation, the rod is pulled out to form a tubular gel and dried at a temperature of 60 to 80C to form a dry gel (outer diameter 5
Hφ, inner diameter 1.5 φ, length 50-). The dry gel was heated to 900°C at 180°C/hr, held for 5 hours, and further heated to icl 000°C and held for 5 hours to obtain a v8M gel.

焼結ゲルの管内に15重量パーセントのゲルマニウムエ
トキシドのアセトン溶液ヲ加え、50分間拡散させた。
A 15 weight percent germanium ethoxide solution in acetone was added to the sintered gel tube and allowed to diffuse for 50 minutes.

室温で一夜乾燥させt後80℃で1日乾燥し友。′Ft
気炉に入れ、室温から400℃まで昇温し5時間保持し
脱炭素処理し、900℃で2時間保持している間に塩素
ガスt−流し脱水酸基の工程を姓、1000’Cで酸素
ガスを1時間流し脱塩素の工程を行い、真空にして15
00tl:で1時間保持することでガラス化し念。以上
により中央部分のGeの拡散し念部分と外周のGoを全
く含有していない部分を有する2重構造の管状石英ガラ
ス(外径五5■ψ、内径111IIIφ、長さ55畷〕
が得られた。これを線引きするとステップインデックス
型の石英ファイバが得られた。伝送損失は90 tl 
B/1rrttであつ友。
Dry at room temperature overnight, then dry at 80°C for 1 day. 'Ft
Placed in an air furnace, heated from room temperature to 400°C and held for 5 hours for decarbonization, and while held at 900°C for 2 hours, chlorine gas was flowed in to perform the dehydration process. Flow the gas for 1 hour to perform the dechlorination process, then vacuum it for 15 minutes.
00tl: Hold it for 1 hour to make sure it becomes vitrified. As a result of the above, a double-structured tubular quartz glass (outer diameter 55 mm, inner diameter 111 mm, length 55 mm) has a central part where Ge is diffused and a peripheral part which does not contain any Go.
was gotten. When this was drawn, a step index type quartz fiber was obtained. Transmission loss is 90 tl
B/1rrtt and friend.

実施例3 市販のケイ酸メチル1s2f(1モル)に、水72i、
メタノール160−を加え攪拌しゾルとした。このゾル
をポリプロピレン族の円筒状容器(内径20wφ、長さ
150+w)に加え、その中央部にポリプロピレン族の
俸(外径5四φ、長さ1so+w)tさし、この状態で
ゲル化させた。ゲル化後棒を引き抜き管状のゲルとし、
60〜80℃の温度で乾燥させドライゲル(外径12削
φ。
Example 3 To commercially available methyl silicate 1s2f (1 mol), water 72i,
160 methanol was added and stirred to form a sol. This sol was added to a polypropylene cylindrical container (inner diameter 20wφ, length 150+w), and a polypropylene tube (outer diameter 54φ, length 1so+w) was inserted into the center of the container, and it was allowed to gel in this state. . After gelation, the rod is pulled out to form a tubular gel.
Dry the gel at a temperature of 60 to 80°C (outer diameter: 12 mm).

内径3uφ、長さ80晴〕が得られた。ドライゲルを1
00℃/hrで700’Cまで昇温し焼結ゲルとした。
An inner diameter of 3 uφ and a length of 80 mm was obtained. 1 dry gel
The temperature was raised to 700'C at a rate of 00°C/hr to form a sintered gel.

焼結ゲルの管内に50重量パーセントのゲルマニウムブ
トキシドのブタノール溶at刀口工、5゜分間拡散させ
た。5(ICで一夜乾燥させた後、120℃でS日間乾
燥させた。電気炉に入れ冨湛から500℃まで昇温し1
0時間保持し脱炭素の工程をし、700℃で塩素ガスを
2時間流し脱水a基の工程をし、800℃で1時間酸素
ガスを流し脱塩素の工程をし、ヘリウムガスを流しなが
ら1000℃まで昇温してガラス化した。以上によりG
oの拡散し友中央部分と、外側のGeの全く含有してい
ない部分を有する2重構造の管状石英ガラス(外径8鴫
φ、内径2wφ、長さ60 m )が得られ次。これを
中実化し線引きするとステップインデックス型の石英フ
ァイバが得られ友。伝送損失は10dB/kMであった
A butanol solution of 50 weight percent germanium butoxide was diffused into the sintered gel tube for 5 minutes. 5 (After drying overnight in an IC, it was dried at 120°C for S days. It was placed in an electric furnace and heated from Tomi to 500°C.
Hold for 0 hours to perform a decarbonization process, flow chlorine gas at 700°C for 2 hours to perform a dehydration process, then flow oxygen gas for 1 hour at 800°C to perform a dechlorination process, and hold for 1000°C while flowing helium gas. It was heated to ℃ and vitrified. Due to the above, G
A double-structured tubular quartz glass (outer diameter 8 φ, inner diameter 2 w φ, length 60 m) having a central part where Ge is diffused and an outer part containing no Ge at all was obtained. When this is solidified and drawn, a step index type quartz fiber is obtained. Transmission loss was 10 dB/kM.

実施例4 市販の微粉末シリカ(Cabosil 200 : 0
abot社の表面1R200i/rの商品名〕602を
水120−に加え、よく均一に分散させヒドロシルにし
た。このゾルをポリプロピレン族の円筒状容器(内径2
0喝φ、長さ200 m )に加え、その中央部にポリ
プロピレン製の棒(外径5fiφ、長さ200 w )
 fさし、この状態で100Cでゲル比させた。モル化
後容器と棒を抜き管状のゲルにした。60〜80℃の1
vで乾燥させドライゲル(外径1611IIφ、内径4
閤φ、長さ160m)が得られた。ドライゲルを100
0Cまで昇温し10時間保持して焼結ゲルとした。
Example 4 Commercially available fine powder silica (Cabosil 200:0
Surface 1R200i/r (trade name) 602 manufactured by Abot Corporation was added to water 120-1 and thoroughly and uniformly dispersed to form a hydrosil. This sol was poured into a polypropylene cylindrical container (inner diameter 2
In addition to a polypropylene rod (outer diameter 5fiφ, length 200w) in the center.
The gel was subjected to gel comparison at 100C in this state. After molarization, the container and rod were removed to form a tubular gel. 1 of 60-80℃
dry gel (outer diameter 1611IIφ, inner diameter 4
A diameter of 160 m was obtained. 100 dry gel
The temperature was raised to 0C and held for 10 hours to form a sintered gel.

焼結ゲルの管内に10ffitパーセントのリン酸エチ
ルのエタノール溶液を加え、60分間拡散させた。50
℃で5時間乾燥させ友後、80℃で20時間乾燥させ念
。電気炉に入れ至温から600℃まで昇【島し脱炭素の
工程をし、1000℃で塩素ガスを5侍間流し脱水酸基
の工程をし、1100Cで1時間酸素ガスを流し脱塩素
の工程をし、ヘリウムガスを流しながら1400℃まで
昇温してガラス化し友。以上によりリンの拡散した中、
央細分と、外側のリンの全く含有していない部分を有す
る2重構造の・U状石英ガラス(外径10■φ。
A 10 ffit percent ethyl phosphate solution in ethanol was added to the sintered gel tube and allowed to diffuse for 60 minutes. 50
After drying at ℃ for 5 hours, dry at 80℃ for 20 hours. Place it in an electric furnace and raise it from the lowest temperature to 600℃ (decarbonization process), then run chlorine gas at 1000℃ for 5 hours to perform the dehydration process, and then run oxygen gas at 1100℃ for 1 hour to dechlorinate it. Then, while flowing helium gas, the temperature is raised to 1400℃ to vitrify it. While the phosphorus was diffused due to the above,
U-shaped quartz glass with a double structure (outer diameter 10 mm) with a central subdivision and an outer part that does not contain any phosphorus.

内径2.5fiφ、長さ120m)が得られた。これ金
線引きするとステップインデックス型の石英ファイバカ
3得られ之。伝送損失は150d13/7.3、であっ
た。
An inner diameter of 2.5 fiφ and a length of 120 m) was obtained. When this is drawn with gold wire, a step index type quartz fiber 3 is obtained. The transmission loss was 150d13/7.3.

実施例5 精製した市販のケイ酸エチル208F(1モル)に10
2規定の塩酸180ゴを加え、激しく攪拌し加水分解し
た。このゾルに微粉末シリカ(Aerosil 0X5
0 :アエロジル社の表面4som’、’rのものの商
品名〕を7五2 ? (1,22モル〕祷拌下加え、超
音波や遠心分離によ、り均一なゾルとし次。このゾルを
ポリプロピレン製の円筒状容器(内径2(1wφ、長さ
200 sm )に加え、その中央部にポリプロピレン
裂の帰(外1L5喝φ、沃さ200 mm )をさし、
この状態でゲル化させた。ゲル化匝容器と棒を抜き管状
のゲルにし次。60〜80℃の温度で乾燥させドライゲ
ル(外径14日φ、内掻!A、5IIImφ、長さ14
0wJが得られた。
Example 5 Purified commercially available ethyl silicate 208F (1 mol) with 10
180 g of 2N hydrochloric acid was added, and the mixture was vigorously stirred for hydrolysis. Finely powdered silica (Aerosil 0X5) is added to this sol.
0: Product name of Aerosil's surface 4som','r product] 752? (1.22 mol) was added under stirring and made into a more uniform sol by ultrasonic waves or centrifugation. This sol was added to a polypropylene cylindrical container (inner diameter 2 (1 wφ, length 200 sm), Insert a polypropylene crack hole (external 1L5mmφ, depth 200mm) in the center,
It was gelled in this state. Next, remove the gelling container and rod and make it into a tubular gel. Dry gel at a temperature of 60 to 80°C (outer diameter 14 days φ, inner scratch A, 5IIImφ, length 14
0 wJ was obtained.

ドライゲルの管内に5重量パーセントのゲルマニウムイ
ンプロポキシドのプロパノール溶[−加え、10分間拡
散させ友。室温で2日乾燥させt後、80℃で5日乾燥
させた。電気炉に入れ室温から500℃まで昇稿し脱炭
素の工程をし、950℃で塩素ガスを流し脱水酸基の工
8をし、1050℃で1時間酸素ガスを流し脱塩素の工
程をし、ヘリウムガスを流しながら1400℃まで昇温
してガラス化し友。以上によりGeの拡散し念中央部分
と、外側のGeの全く含有していない部分を有する2重
構造の管状石英ガラス(外径10wφ。
Add 5 weight percent germanium impropoxide in propanol to the dry gel tube and allow to diffuse for 10 minutes. After drying at room temperature for 2 days, it was dried at 80° C. for 5 days. Place it in an electric furnace and raise it from room temperature to 500℃ for the decarbonization process, then run chlorine gas at 950℃ to remove hydroxyl groups, then run oxygen gas at 1050℃ for 1 hour to perform the dechlorination process. The temperature is raised to 1,400℃ while flowing helium gas to vitrify it. As a result of the above, a tubular quartz glass with a double structure (outer diameter 10 wφ) has a central part where Ge is diffused and an outer part which does not contain any Ge.

内径2.5wφ、長さ1oom)が得られた。これft
線引きするとステップインデックス型の石英ファイバが
得られた。伝送損失は’0OdB/mであった。
An inner diameter of 2.5 wφ and a length of 1 oom was obtained. This ft
Upon drawing, a step index type quartz fiber was obtained. The transmission loss was '0 OdB/m.

実施列6 I#製し次市販のケイ酸エチル2080r(1゜モル〕
にQ、02規定の塩酸1800dを加え、激しく攪拌し
加水分解し几。このゾルに微粉末シリカ(Aerosi
l oXso :アエロジル社の表面積50イ/2のも
のの商品名ンを7529(12,2モル)撹拌下刀口え
、超音波や遠心分離により均一なゾルとした。このゾル
に(11規定のアノモニア水を滴下しPHを4.3にf
A螢した。このゾル五5jを円筒状容器(内径50鴫φ
、長さ2000fi)に加え、その軸の回りに回転しな
がらゲル化させ管状のゲル(外径50■φ、内径200
φ、長さ2000 m )とし几。管状のゲルを適当な
穴あきの容器に入れ10℃で乾燥させドライゲル(外径
58■φ、内径1’5mwφ、長さ1500■〕を得た
。ドライゲルを電気炉に入れ、1000℃まで昇7品し
10時間保持し焼結ゲルとした。焼結ゲルの管内VC5
0C50重上バーセントマニウム゛エトキシドのエタノ
ール溶液を加え、100分間拡散させ友。室温で1時間
乾燥させた後、50℃で2日乾燥し、80℃で2日間乾
燥させた。電気炉に入れ、室温から4000まで昇現し
脱炭素の工程をし、700℃から1000℃の間に塩素
ガスを流し脱水酸基の工程をし、1050℃で1時間酸
素ガス?、流し脱塩素の工程をし、ヘリウムガスを流し
ながら1400℃まで昇温してガラス化した。
Example row 6 Commercially available ethyl silicate 2080r (1 mmol) made from I#
Add 1800 d of Q.02 normal hydrochloric acid to the solution, stir vigorously and hydrolyze. Finely powdered silica (Aerosi) is added to this sol.
10Xso: A product name of 7529 (12.2 mol) manufactured by Aerosil Co., Ltd. with a surface area of 50 I/2 was mixed with a stirrer, and a homogeneous sol was made by ultrasonication or centrifugation. Add (11N) ammonia water dropwise to this sol to adjust the pH to 4.3.
A firefly. This sol 5j is placed in a cylindrical container (inner diameter 50φ
, length 2000fi), and gelled while rotating around its axis to form a tubular gel (outer diameter 50mmφ, inner diameter 200mm).
φ, length 2000 m). A tubular gel was placed in a suitable perforated container and dried at 10°C to obtain a dry gel (outer diameter 58 φ, inner diameter 1'5 mw φ, length 1500 µ).The dry gel was placed in an electric furnace and heated to 1000°C for 7 days. The product was kept for 10 hours to form a sintered gel.The inside of the tube of the sintered gel was VC5.
Add an ethanol solution of 0C50% manium ethoxide and diffuse for 100 minutes. After drying at room temperature for 1 hour, it was dried at 50°C for 2 days, and then at 80°C for 2 days. Place it in an electric furnace, raise it from room temperature to 4000°C to perform the decarbonization process, flow chlorine gas between 700°C and 1000°C to perform the dehydrogenation process, and then heat it to 1050°C for 1 hour using oxygen gas. Then, a dechlorination step was performed, and the temperature was raised to 1400° C. while flowing helium gas to vitrify the material.

以上によりGeの拡散し几、中央部分と、外側のGeの
全く含有していない部分を有する2N構造の管状石英ガ
ラス(外径25m+φ、内径10嘲φ。
As described above, a tubular quartz glass with a 2N structure (outer diameter 25 m + φ, inner diameter 10 mm) having a central portion where Ge is diffused and an outer portion containing no Ge at all.

長さ1000■〕が得られた。これを線引きするとステ
ップインデックス型の石英ファイバが得られた。伝送損
失は80dB/Ianであつ念。
A length of 1000 cm] was obtained. When this was drawn, a step index type quartz fiber was obtained. The transmission loss is 80dB/Ian.

実施例7 精製し友市販のケイ酸エチル4,4Iにエタノール6.
71.水1.5 j 、アンモニア水Q、1jを加え攪
拌し一夜放置した後、エバポレーターで濃縮し2.5)
にした。これに塩酸を滴下しPI(を4.0に調整した
。〔このゾルをAとする〕 ま友、精製し次市販のケイ酸エチル1.9Jに002規
定の塩酸[lL6を加え加水分解した。(このゾルをB
とする) 上記AゾルとBゾルを混合し攪拌してからアンモニア水
を滴加しPHを4.5にした。このゾル五5jを円筒状
容6(内径50wφ、長さ2000鎮〕にフロえ、その
軸の回りに回転しながらゲル化させ管状のゲル(外径5
0鴫φ、内径20鴫φ。
Example 7 Purified Shishitomo commercially available ethyl silicate 4,4I and ethanol 6.
71. Add 1.5 j of water and 1 j of ammonia water, stir, and leave overnight. Concentrate with an evaporator. 2.5)
I made it. Hydrochloric acid was added dropwise to this to adjust the PI to 4.0. [This sol is referred to as A] Mayu purified and then added 002N hydrochloric acid [1L6] to 1.9J of commercially available ethyl silicate for hydrolysis. (This sol is B
The above A sol and B sol were mixed and stirred, and then aqueous ammonia was added dropwise to adjust the pH to 4.5. Float this sol 5j in a cylindrical volume 6 (inner diameter 50wφ, length 2000 mm), and gel it while rotating around its axis to form a tubular gel (outer diameter 5
0 φ, inner diameter 20 φ.

長さ2000 wm )とした。管状のゲルを適当な穴
あきの容器に入れ60℃で乾燥させドライゲル(外径4
0m1Iφ、内径161wφ、長さ1600m)を得た
。ドライゲルを電気炉に入れ、1050℃まで昇温し1
時間保持し焼結ゲルとした。
The length was 2000 wm). Place the tubular gel in a suitable perforated container and dry it at 60°C to form a dry gel
0 m1 Iφ, inner diameter 161 wφ, length 1600 m) was obtained. Place the dry gel in an electric furnace and raise the temperature to 1050°C.
It was held for a period of time to form a sintered gel.

焼結ゲルの管内に50重喧パーセントのゲルマニウムイ
ソプロポキシドのエタノール溶液をフロえ180分間拡
散させた。室温で50分間乾燥させ7’C後、40℃で
5時間乾燥した後90℃で5日間乾燥させた。電気炉に
入れ、室温から300℃まで昇温し脱炭素の工程をし、
900℃で塩素ガスt−流し脱水酸基の工程をし、10
00℃で1時間酸素ガスを流し脱塩素の工程をし、ヘリ
ウムガスを流しながら1500℃まで昇温してガラス化
し几。以上によりGeの拡散した中央部分と、外側のG
oの全く含有していない部分を有する2重構造の管状石
英ガラス(外径26II!lφ、内径10■φ、長さ1
0106Oが得られ念。これを線引きするとステップイ
ンデックス型の石英ファイIくが得られた。伝送損失は
5dB/ゆであった。
A 50% germanium isopropoxide solution in ethanol was poured into the sintered gel tube and allowed to diffuse for 180 minutes. After drying at room temperature for 50 minutes at 7'C, drying at 40C for 5 hours and then drying at 90C for 5 days. Place it in an electric furnace and raise the temperature from room temperature to 300℃ for a decarbonization process.
At 900°C, chlorine gas was flown to perform the dehydration process, and the process was carried out for 10
The dechlorination process was carried out by flowing oxygen gas at 00°C for 1 hour, and the temperature was raised to 1500°C while flowing helium gas to vitrify it. As a result of the above, the central part where Ge is diffused and the outer G
Tubular quartz glass with a double structure (outer diameter 26II! lφ, inner diameter 10■φ, length 1
I hope I get 0106O. When this was drawn, a step index type quartz fiber was obtained. The transmission loss was 5 dB/y.

実施例8 実施例7と同様にして得られtドライゲル(外径40m
aφ、内径16晴φ、長さ1600■〕を電気炉に入れ
、1000℃まで昇温し焼結ゲルとした。
Example 8 Dry gel obtained in the same manner as Example 7 (outer diameter 40 m)
aφ, inner diameter 16 mm diameter, length 1600 mm] was placed in an electric furnace and heated to 1000° C. to form a sintered gel.

へ1結ゲルの管内に5型破パーセントのゲルマニウムエ
トキシドのエタノール溶液を加え、5時間拡散させ念。
Add an ethanol solution of germanium ethoxide with a mold breakage percentage of 5 to the gel tube and let it diffuse for 5 hours.

ヱ湛で5時間、40℃で10時間。5 hours at Etan, 10 hours at 40℃.

60℃で1日間乾、桑させた。電気炉に入れ、400℃
で脱脱素の工程、1000Cで脱水#1tSの工程、1
100℃で脱塩素の工程、1450℃で真空中でガラス
化し友。以上により、ガラス管の内面から外面に向けて
除々に屈接率力1小さくなるという管状石英ガラス(外
径26■φ、内径10+wφ。
It was dried at 60°C for 1 day and allowed to mulch. Place in electric furnace and heat to 400℃
Step of dehydration #1tS at 1000C, 1
Dechlorination process at 100℃, vitrification in vacuum at 1450℃. As a result of the above, a tubular quartz glass (outer diameter 26 φ, inner diameter 10+w φ) in which the refractive index force gradually decreases by 1 from the inner surface to the outer surface of the glass tube.

長さ1060■)が得られた。これを中実化し、靜引き
するとグレーデッドインデックス型の石英ファイバか得
られた。伝送損失は5dB//ffであったO 実施例9 MCVLI法で得られた・g状の多孔質母材の管内にゲ
ルマニウムプロポキシドのベンゼン溶gt−加え拡散さ
せた。室温で一夜乾燥させ、200℃で1日乾燥させた
。電気炉に入れ、500℃で脱炭素の工程、1000℃
で塩素ガスによる脱水酸基の工程、1050℃で酸素ガ
ス圧よる脱塩素の工程、1600℃でヘリウム中で焼結
しガラス【ヒした。以上により、シングルモード用ステ
ップインデックス型ファイバ母材が得らし之。
A length of 1060 cm) was obtained. When this was solidified and evaporated, a graded index type quartz fiber was obtained. The transmission loss was 5 dB//ff. Example 9 A solution of germanium propoxide in benzene was added and diffused into a tube of a g-shaped porous base material obtained by the MCVLI method. It was dried at room temperature overnight and at 200°C for one day. Decarbonization process at 500℃ in electric furnace, 1000℃
Then, the glass was sintered in helium at 1,600°C, followed by a dechlorination process using oxygen gas pressure at 1,050°C. Through the above steps, a single-mode step-index type fiber base material was obtained.

実施例10 ovpo法、およびVAD法で得られ念管状の多孔質母
材の管内にアルミニウムイノプロポキシドのプロパノー
ル溶液を加え拡散させた。室温で一夜、100℃で2日
間乾燥させ几。電気炉に入れ、400℃で脱炭素の工程
、950℃で塩素ガスによる脱水酸基の工程、1050
℃で酸素ガスによる脱4累の工程、ヘリウムガス中で1
600℃まで昇湛し9!8結しガラス化した。このガラ
ス管’に中実(ヒし、ステップインデックス型のファイ
バ母材が得られた。
Example 10 A propanol solution of aluminum inopropoxide was added and diffused into a tube-shaped porous base material obtained by the ovpo method and the VAD method. Dry at room temperature overnight and at 100°C for 2 days. Placed in an electric furnace, decarbonized at 400°C, dehydroxylated with chlorine gas at 950°C, 1050
Dequaternation step with oxygen gas at ℃, 1 step in helium gas
It was boiled to 600°C, 9!8 degrees solidified, and vitrified. A solid, step-index type fiber matrix was obtained in this glass tube.

以上火桶例で述べてきたように、本発明の手法を用いれ
ば容易にステップインデックス、グレーデツドイ7デツ
クス、シングルモード用のファイバ母材が製造できるこ
と力;分かる。本発明の手法は、このようなファイバ母
材ばかりでなく、セルフォックレンズ等の各種の光学部
品の製造に応用できることは明らかである。
As described above using the fire barrel example, it can be seen that step index, grade 7 index, and single mode fiber base materials can be easily manufactured using the method of the present invention. It is clear that the method of the present invention can be applied not only to such a fiber base material but also to the manufacture of various optical components such as Selfoc lenses.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、石英ガラスの屈折率
を高める元素のアルコキシドの溶gt−管状高純変多孔
質母材の内面より拡散させ、適当な条件で脱水および焼
[1−することで、各種の屈折率分布を有する石英ファ
イバ母材が製造できる。
As described above, according to the present invention, a molten alkoxide of an element that increases the refractive index of quartz glass is diffused from the inner surface of a tubular high-purity modified porous base material, and is dehydrated and calcined under appropriate conditions. In this way, quartz fiber base materials having various refractive index distributions can be manufactured.

これにより、ゾル−ゲル法でも屈折率分布を有する光フ
ァイバ用母材が製造できるようになり、光ファイバの低
コスト化に功献するようになる。さらに、従来の光7フ
イバ母材の製造法の屈折率分布の制御方法を簡単にする
ことができるという効果を有する。
As a result, it becomes possible to manufacture an optical fiber base material having a refractive index distribution using the sol-gel method, which contributes to the cost reduction of optical fibers. Furthermore, it has the effect that the method for controlling the refractive index distribution in the conventional manufacturing method of optical fiber base material can be simplified.

以   上that's all

Claims (12)

【特許請求の範囲】[Claims] (1)以下の工程からなることを特徴とする光ファイバ
用母材の製造方法。 a)管状の高純度シリカ多孔質体を製造する工程 b)屈折率を高める元素のアルコキシドあるいはその溶
液を前記高純度シリカ多孔質体の管内に加え、前記高純
度シリカ多孔質体中に拡散させる工程 c)拡散後の前記高純度シリカ多孔質体を乾燥する工程 d)乾燥後の前記高純度シリカ多孔質体を焼結する工程
(1) A method for manufacturing an optical fiber base material, which is characterized by comprising the following steps. a) Step of manufacturing a tubular high-purity porous silica body b) Adding an alkoxide of an element that increases the refractive index or a solution thereof into the tube of the high-purity porous silica body and diffusing it into the high-purity porous silica body. Step c) Drying the high-purity silica porous body after diffusion d) Sintering the high-purity silica porous body after drying
(2)前記管状の高純度シリカ多孔質体を製造する工程
が以下の工法からなることを特徴とする特許請求の範囲
第1項記載の光ファイバ用母材の製造方法。 a)アルキルシリケートを酸性あるいは塩基性あるいは
中性で加水分解しゾルとする工程 b)ゾルを円筒状容器に加えその中心に棒をさしこみ、
ゲル化後に棒を抜きとることにより管状のゲルを作成し
乾燥しドライゲルとする工程、もしくは、ゾルを円筒状
容器に加え、その軸を中心に回転させながらゲル化させ
管状のゲルを作成し乾燥しドライゲルとする工程
(2) The method for manufacturing an optical fiber preform according to claim 1, wherein the step of manufacturing the tubular high-purity silica porous body comprises the following method. a) Process of hydrolyzing alkyl silicate in acidic, basic or neutral conditions to form a sol b) Adding the sol to a cylindrical container and inserting a rod into the center,
After gelation, the rod is removed to create a tubular gel and dried to form a dry gel, or the sol is added to a cylindrical container and gelled while rotating around its axis to create a tubular gel and dried. Dry gel process
(3)前記b)の工程により得られる高純度シリカ多孔
質体であるドライゲル60℃〜1400℃の適当な温度
まで加熱処理することを特徴とする特許請求の範囲第2
項記載の光ファイバ用母材の製造方法。
(3) The dry gel, which is a high-purity silica porous material obtained by the step b), is heat-treated to an appropriate temperature of 60°C to 1400°C.
A method for producing an optical fiber base material as described in .
(4)前記管状の高純度シリカ多孔質体を製造する工程
が以下の工程からなることを特徴とする特許請求の範囲
第1項記載の光ファイバ用母材の製造方法。 a)微粉末シリカを水あるいは、アルキルシリケートの
酸性加水分解ゾルに加え分散し、シリカゾルとする工程 b)シリカゾルを円筒状容器に加え、その中心に棒をさ
しこみゲル化後に棒を抜きとることにより管状のゲルを
作成し乾燥しドライゲルとする工程、もしくはシリカゾ
ルを円筒状容器に加え、その軸を中心に回転させながら
ゲル化させ管状のゲルを作成し乾燥しドライゲルとする
工程
(4) The method for manufacturing an optical fiber preform according to claim 1, wherein the step of manufacturing the tubular high-purity porous silica body comprises the following steps. a) Step of adding and dispersing finely powdered silica to water or acidic hydrolyzed sol of alkyl silicate to form a silica sol b) Adding silica sol to a cylindrical container, inserting a rod into the center of the container, and pulling out the rod after gelation. The process of creating a tubular gel and drying it to make a dry gel, or the process of adding silica sol to a cylindrical container and gelling it while rotating around its axis to create a tubular gel and drying it to make a dry gel.
(5)前記b)の工程により得られる高純度シリカ多孔
質体であるドライゲルを60〜1500℃の適当な温度
まで加熱処理することを特徴とする特許請求の範囲第4
項記載の光ファイバ用母材の製造方法。
(5) The dry gel, which is a high-purity silica porous material obtained in step b), is heat-treated to an appropriate temperature of 60 to 1500°C.
A method for producing an optical fiber base material as described in .
(6)前記a)の工程により得られるシリカゾルにアン
モニア水を滴下し、PH値を3〜6に調整することを特
徴とする特許請求の範囲第4項もしくは第5項に記載の
光ファイバ用母材の製造方法。
(6) For the optical fiber according to claim 4 or 5, wherein ammonia water is added dropwise to the silica sol obtained in step a) to adjust the pH value to 3 to 6. Method of manufacturing base material.
(7)前記管状の高純度シリカ多孔質体を製造する工程
が以下の工程からなることを特徴とする特許請求の範囲
第1項記載の光ファイバ用母材の製造方法。 a)アルキルシリケートを塩基性試薬で加水分解して得
られるシリカ微粒子を溶液中に含む第一の溶液と、アル
キルシリケートを酸性試薬で加水分解して得られる第二
の溶液とを、所定の割合で混合して得られるゾル溶液に
塩基性試薬を加え、PH値を3〜6に調整しゾルとする
工程 b)ゾルを円筒状容器に加えその中心に棒をさしこみ、
ゲル化後に棒を抜きとることにより管状のゲルを作成し
乾燥しドライゲルとする工程、もしくは、ゾルを円筒状
容器に加え、その軸を中心に回転させながらゲル化させ
管状のゲルを作成し乾燥しドライゲルとする工程
(7) The method for manufacturing an optical fiber preform according to claim 1, wherein the step of manufacturing the tubular high-purity silica porous body comprises the following steps. a) A first solution containing silica fine particles obtained by hydrolyzing an alkyl silicate with a basic reagent and a second solution obtained by hydrolyzing an alkyl silicate with an acidic reagent at a predetermined ratio. Step b) Add a basic reagent to the sol solution obtained by mixing and adjust the pH value to 3 to 6 to make a sol. b) Add the sol to a cylindrical container and insert a rod into the center.
After gelation, the rod is pulled out to create a tubular gel and dried to form a dry gel, or the sol is added to a cylindrical container and gelled while rotating around its axis to create a tubular gel and dried. Dry gel process
(8)前記b)の工程により得られる高純度シリカ多孔
質体であるドライゲルを60〜1500℃の適当な温度
まで加熱処理することを特徴とする特許請求の範囲第7
項記載の光ファイバ用母材の製造方法。
(8) Claim 7, characterized in that the dry gel, which is a high-purity silica porous material obtained in step b) above, is heat-treated to an appropriate temperature of 60 to 1500°C.
A method for producing an optical fiber base material as described in .
(9)前記屈折率を高める元素のアルコキシドが、Ge
(OR)_4、P(OR)_3、Ti(OR)_4、A
l(OR)_3、(Rはアルキル基を示す)のいずれか
であることを特徴とする特許請求の範囲第1項〜第8項
のいずれかに記載の光ファイバ用母材の製造方法
(9) The alkoxide of the element that increases the refractive index is Ge
(OR)_4, P(OR)_3, Ti(OR)_4, A
l(OR)_3, (R represents an alkyl group), the method for manufacturing an optical fiber preform according to any one of claims 1 to 8.
(10)前記屈折率を高める元素のアルコキシドの溶媒
が、エタノール、メタノール、アセトン、ベンゼン、プ
ロパノール、ブタノール等の有機溶剤であることを特徴
とする特許請求の範囲第1項〜第8項のいずれかに記載
の光ファイバ用母材の製造方法。
(10) Any one of claims 1 to 8, wherein the solvent for the alkoxide of the element that increases the refractive index is an organic solvent such as ethanol, methanol, acetone, benzene, propanol, or butanol. A method for manufacturing an optical fiber base material according to claim 1.
(11)前記乾燥後の高純度シリカ多孔質体を焼結する
工程が次の工程からなることを特徴とする特許請求の範
囲第1項記載の光ファイバ用母材の製造方法。 a)室温から300℃までの熱処理による脱物理吸着水
の工程 b)300℃から600℃までの熱処理による脱炭素の
工程、 c)600℃から1100℃までの熱処理中に塩素ガス
を通じることによる脱水酸基の工程d)900℃から1
200℃までの熱処理中に酸素ガスを通じることによる
脱塩素の工程 e)1000℃から1500℃までの熱処理中にヘリウ
ムガスを通じるか減圧にすることによる緻密化の工程
(11) The method for manufacturing an optical fiber preform according to claim 1, wherein the step of sintering the dried high-purity porous silica body comprises the following step. a) Decarbonization process by heat treatment from room temperature to 300°C b) Decarbonization process by heat treatment from 300°C to 600°C c) By passing chlorine gas during heat treatment from 600°C to 1100°C Dehydroxylation step d) 900°C to 1
Dechlorination step by passing oxygen gas during heat treatment up to 200°C e) Densification step by passing helium gas or reduced pressure during heat treatment from 1000°C to 1500°C
(12)管状の光ファイバ用母材を中実化することによ
り、ロッド状の光ファイバ用母材とすることを特徴とす
る特許請求の範囲第1項〜第11項のいずれかに記載の
光ファイバ用母材の製造方法。
(12) A rod-shaped optical fiber preform is obtained by solidifying a tubular optical fiber preform. A method of manufacturing a base material for optical fiber.
JP15917385A 1985-07-18 1985-07-18 Production of base material for optical fiber Pending JPS6221728A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15917385A JPS6221728A (en) 1985-07-18 1985-07-18 Production of base material for optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15917385A JPS6221728A (en) 1985-07-18 1985-07-18 Production of base material for optical fiber

Publications (1)

Publication Number Publication Date
JPS6221728A true JPS6221728A (en) 1987-01-30

Family

ID=15687884

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15917385A Pending JPS6221728A (en) 1985-07-18 1985-07-18 Production of base material for optical fiber

Country Status (1)

Country Link
JP (1) JPS6221728A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015071500A (en) * 2013-10-01 2015-04-16 住友電気工業株式会社 Optical fiber preform manufacturing method, optical fiber preform, optical fiber, and multimode optical fiber

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015071500A (en) * 2013-10-01 2015-04-16 住友電気工業株式会社 Optical fiber preform manufacturing method, optical fiber preform, optical fiber, and multimode optical fiber

Similar Documents

Publication Publication Date Title
US4680046A (en) Method of preparing preforms for optical fibers
US5254508A (en) Sol-gel process for forming a germania-doped silica glass rod
CN1030221A (en) The photoconductive fiber making method
JPH06122530A (en) Refractive index gradient type glass and sol-gel method for manufacture thereof
US6442977B1 (en) Sol-gel process for fabricating germanium-doped silica article
JPS6221728A (en) Production of base material for optical fiber
KR20010091955A (en) Process for fabricating fluorine-doped sol-gel article
CA1318131C (en) Fabrication of high-silica glass article
JPH0582332B2 (en)
JPS6296339A (en) Method for manufacturing base material for optical fiber
JPS61232239A (en) Production of porous glass
JPS6345143A (en) Method for manufacturing base material for optical fiber
MacChesney et al. Optical fibres using sol-gel silica overcladding tubes
JPS61186235A (en) Method for manufacturing base material for optical fiber
JPS61106433A (en) Production of optical fiber base material
KR100549422B1 (en) Silica Glass Composition for Sol-Gel Process and Silica Glass Production Method Using the Same
JPS62230640A (en) Production of optical fiber preform
JPH054833A (en) Production of quartz-based glass preform
KR100248062B1 (en) Composition for forming silica glass and the method for preparing silica glass using the same
JPS5899134A (en) Production of optical fiber
JPS62288117A (en) Production of doped silica glass
KR100312230B1 (en) Manufacture method of metal doped silica glass
JPS62119131A (en) Production of base material for optical fiber
JPS6369729A (en) Method for manufacturing base material for optical fiber
JPS62230639A (en) Production of optical fiber preform