[go: up one dir, main page]

JPS61181008A - Manufacture of dielectric ceramics - Google Patents

Manufacture of dielectric ceramics

Info

Publication number
JPS61181008A
JPS61181008A JP60022167A JP2216785A JPS61181008A JP S61181008 A JPS61181008 A JP S61181008A JP 60022167 A JP60022167 A JP 60022167A JP 2216785 A JP2216785 A JP 2216785A JP S61181008 A JPS61181008 A JP S61181008A
Authority
JP
Japan
Prior art keywords
porcelain
firing
temperature
press
dielectric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP60022167A
Other languages
Japanese (ja)
Other versions
JPH0261762B2 (en
Inventor
和順 松本
日向 健裕
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP60022167A priority Critical patent/JPS61181008A/en
Publication of JPS61181008A publication Critical patent/JPS61181008A/en
Publication of JPH0261762B2 publication Critical patent/JPH0261762B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は、誘電体磁器の製法に関し、特に無負荷Qが高
い低損失の高周波用として好適な誘電体磁器の製法に関
する。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a method for manufacturing dielectric ceramics, and particularly to a method for manufacturing dielectric ceramics suitable for high frequency use with high no-load Q and low loss.

[従来技術] 一般に、マイクロ波やミリ波などの高周波領域の信号回
路に使用される誘電体共振器°や誘電体基板には、高い
無負荷Qを宥する誘電体磁器を用いることが望まれる。
[Prior art] Generally, it is desirable to use dielectric ceramics that can accommodate a high no-load Q for dielectric resonators and dielectric substrates used in signal circuits in high frequency ranges such as microwaves and millimeter waves. .

ところで、近年、通信に使用される周波数の高周波化が
とみに進み、SHF帯を用いた衛星放送も実用化の段階
に入りつつあるため、一層高い無負荷Qを有する低損失
誘電体磁器の開発が強く求められている。
By the way, in recent years, the frequency used for communication has rapidly increased, and satellite broadcasting using the SHF band is entering the stage of practical use, so the development of low-loss dielectric ceramics with even higher no-load Q is required. It is strongly required.

従来、高周波用の低損失誘電体磁器として用いられてい
るものの無負荷Qは、3000〜7000程度であり、
ようやく近年になってこの値を超えるものが製造される
ようになった。
The no-load Q of the materials conventionally used as low-loss dielectric porcelain for high frequencies is approximately 3000 to 7000.
Only in recent years have products exceeding this value been manufactured.

Bao−MgO−Ta2O5系誘電体磁器においては、
従来知られている、特に他の添加物を含まないBao−
MgO−Ta2O5系磁器は無負荷Qが4.000程度
と低い(特開昭53−60544号公報)、別の添加元
素を配合したBaO−MgO−Ta2O5系磁器でも、
無負荷Qは、例えば特開昭54−77000号公報に開
示の3Bass xMgOll(1−x)ZnOIIT
a2O5の組成の磁器が4360、特開昭54−714
00号公報に開示の3BaO−xMgO−(1−7)N
 b2Os ・yTm2Oes (1)Mn成(7)m
器カ4090と低くて、これらの磁器はSHF帯通信用
材料としては適当でない。
In Bao-MgO-Ta2O5-based dielectric ceramic,
Conventionally known Bao-
MgO-Ta2O5-based porcelain has a low no-load Q of about 4.000 (Japanese Unexamined Patent Publication No. 53-60544), and even BaO-MgO-Ta2O5-based porcelain containing other additive elements
The unloaded Q is, for example, 3Bass
Porcelain with a composition of a2O5 is 4360, published in JP-A-54-714.
3BaO-xMgO-(1-7)N disclosed in Publication No. 00
b2Os ・yTm2Oes (1) Mn formation (7) m
Due to the low strength of 4090 mm, these porcelains are not suitable as materials for SHF band communications.

B ao−MgO−Ta2O5系磁器の無負荷Qを高め
るために、 B a (Mgx73T a2/3 ) 
03を主成分とするペロブスカイト構造酸化物に少量の
Mnを添加して焼結する方法が提案され(特開昭58−
2O6003号公報)、この方法によれば確かに高い無
負荷Qを有する誘電体磁器が得られるが、Mnのような
異種元素を添加することは、製造工程の複雑化を招く上
に、添加工程において不要なさらには磁器特性に悪影響
を及ぼす不純物が混入する恐れを伴なう、さらに、製品
の品質管理上、添加量の制御や添加物の均一分布などに
特別の注意が必要となる不利があり、この方法は量産に
適しない方法である。
In order to increase the no-load Q of B ao-MgO-Ta2O5 based porcelain, B a (Mgx73T a2/3)
A method was proposed in which a small amount of Mn was added to a perovskite structure oxide mainly composed of 03 and sintered (Japanese Unexamined Patent Application Publication No. 1983-1999).
2O6003), this method certainly yields dielectric porcelain with a high unloaded Q, but adding a different element such as Mn not only complicates the manufacturing process, but also In addition, there is a risk that unnecessary impurities may be mixed in that have a negative effect on the porcelain properties, and furthermore, in terms of product quality control, special attention is required to control the amount of additives and uniform distribution of additives. However, this method is not suitable for mass production.

ところで、従来、Bao−MgO−Ta2O5系誘電体
磁器の製造はいずれも通常の焼成方法。
By the way, conventionally, Bao-MgO-Ta2O5-based dielectric porcelain has been manufactured using a normal firing method.

すなわち所定の組成を有する加圧成形物をおよそ100
0〜1500℃の温度で焼成する方法により行われてい
るが、その場合焼成温度までの昇温過程は特に重要とは
されず、急速な加熱により磁器が破損するのを恐れて、
加圧成形物を入れた炉の温度を室温から所望温度まで徐
々に上げるものであった。その結果、大体2〜b 速度で加熱が行われるのが普通であった。この従来の焼
成方法自体、昇温過程に数時間という長い時間を必要と
し、生産能率向上の妨げとなるという欠点を有するもの
であった。
That is, about 100 press-molded products having a predetermined composition are
This is done by firing at a temperature of 0 to 1,500 degrees Celsius, but in this case, the process of raising the temperature to the firing temperature is not particularly important, and for fear that the porcelain will be damaged by rapid heating,
The temperature of the furnace containing the press-molded product was gradually raised from room temperature to the desired temperature. As a result, heating was typically carried out at a rate of approximately 2-b. This conventional firing method itself has the disadvantage that it requires a long time of several hours for the temperature raising process, which hinders improvement in production efficiency.

本発明者ほかは、上述した従来のBaO−MgO−Ta
2O5系磁器の製法が有する問題を解決するために、加
圧成形物を1500−1700℃の温度まで100〜b 急速−昇温し焼成する方法を先に提案した(特願昭59
−228557号)、この製法によるとSHF帯通信材
料としても十分に高い無負荷Qを有する誘電体磁器が短
時間で得られ、しかもMn等の添加元素を使用しないの
で製造工程の複雑化を回避でき品質管理が容易であると
いう利点があるが、個々の製品において各部分の焼成度
にバラツキがあり、特に磁器の内部が外側よりも収縮す
る傾向が大きいため変形が生じ、研削等の後処理が必要
となることが多い、また、各製品間においても焼成度の
バラツキが大きいため均一な比誘電率、無負荷Q等の特
性を有する製品が得難く、これらの問題のために製品の
歩留りが低くなりがちである。
The present inventors and others have developed the above-mentioned conventional BaO-MgO-Ta
In order to solve the problems associated with the manufacturing method of 2O5-based porcelain, we first proposed a method in which a pressure-molded product is rapidly heated to a temperature of 1500-1700°C by 100°C and then fired (Japanese Patent Application No. 1983).
-228557), this manufacturing method allows dielectric porcelain with a sufficiently high unloaded Q to be used as an SHF band communication material to be obtained in a short time, and also avoids complicating the manufacturing process because it does not use additive elements such as Mn. However, the degree of firing of each part of each product varies, and the inside of the porcelain tends to shrink more than the outside, resulting in deformation and post-processing such as grinding. In addition, since there are large variations in the degree of firing between products, it is difficult to obtain products with uniform dielectric constant, no-load Q, etc., and these problems reduce the yield of products. tends to be low.

〔発明が解決しようとする問題点] 本発明は、直接には、特願昭59−2.28557号に
開示の製法の改良によりその問題点である、各製品ごと
および製品間の焼成度の均一性を高め、誘電体特性のバ
ラツキを低減し、もって製品の歩留りの向上を目的とす
るものである。
[Problems to be Solved by the Invention] The present invention directly solves the problem by improving the manufacturing method disclosed in Japanese Patent Application No. 59-2.28557, which is the degree of firing for each product and between products. The purpose is to improve uniformity, reduce variations in dielectric properties, and thereby improve product yield.

本発明の製法は、当然ながら、従来のBaO−MgO−
Ta2O5系誘電体磁器の問題点である。無負荷Qが低
い、製造工程が複雑で製品の品質管理が容易でない、製
造時間が長い等の問題の解決を目的とするものでもある
The production method of the present invention naturally differs from the conventional BaO-MgO-
This is a problem with Ta2O5-based dielectric ceramics. It is also intended to solve problems such as low no-load Q, complicated manufacturing process that makes product quality control difficult, and long manufacturing time.

[問題点を解決するための手段] 本発明は、上記問題点を解決するものとして、一般式:
 xBaO@yMgo・zTa2 os ’T’表わさ
れ、ただし、0.5≦x≦0.7.0.15≦y≦0.
25,0.15≦z≦0.25で、x+y+z=1であ
る組成を有する加圧成形物を、1500〜1700℃の
温度まで100〜bの製法において、加熱、焼成時に加
圧成形物を耐火性粉末で包むことを特徴とする製法を提
供する。
[Means for Solving the Problems] The present invention solves the above problems by using the general formula:
xBaO@yMgo・zTa2 os 'T', where 0.5≦x≦0.7.0.15≦y≦0.
25, A press-molded article having a composition where 0.15≦z≦0.25 and x+y+z=1 is heated to a temperature of 1500-1700°C in the manufacturing method of 100-b, during heating and firing. Provided is a manufacturing method characterized by wrapping with refractory powder.

本発明に用いられる耐火性粉末としては、前記組成の加
圧成形物と焼成温度において反応しないものであればい
ずれの粉末も採用することができる。このような反応し
ない耐火性粉末としては、例えばアルミナ、ジルコニア
、マグネシア、ハフニア、イツトリア等のセラミック粉
末を挙げることができる。これらの耐火性粉末の粒度は
特に限定されないが、好ましくは約10gm〜約inm
程度の粒径を有するものが使用される。粉末の粒度が小
さ過ぎると焼成中に粉末粒子同士が焼結して磁器を粉末
中から取出しにくくなることがあり、また粉末の粒度が
大き過ぎると加圧成形物を四人性粉末で包む効果が十分
に得られないことがある。
As the refractory powder used in the present invention, any powder can be used as long as it does not react with the press-molded product having the above composition at the firing temperature. Examples of such non-reactive refractory powders include ceramic powders such as alumina, zirconia, magnesia, hafnia, and ittria. The particle size of these refractory powders is not particularly limited, but is preferably about 10 gm to about inm.
Particles having a particle size of about 100% are used. If the particle size of the powder is too small, the powder particles may sinter together during firing, making it difficult to take out the porcelain from the powder.If the particle size of the powder is too large, the effect of enveloping the press-formed object in the powder will be poor. Sometimes we just can't get enough.

加圧成形物を耐火性粉末で包む方法は特に限定されず、
加圧成形物全体が一定以上の厚さの耐火性粉末層により
完全に包み込まれる状態であればいずれの方法でもよい
0例えば、焼成用の白金製ポートに耐火性粉末を入れ、
その粉末中に処理すべき加圧成形物を完全に埋設する方
法は簡易かつ確実な方法である。いずれの方法の場合で
も、加圧成形物全体が十分な厚さの耐火性粉末層により
包まれていることが必要で、耐火性粉末層が一部でも薄
過ぎると本発明の効果を十分に得ることは難かしい、ま
た、厚過ぎると粉末層の熱容量が過大となって急速昇温
の効果が低減される。耐火性粉末層の好ましい厚さは、
耐火性粉末の粒度、昇温速度、焼成温度、加圧成形物の
大きさ等により一部には言えないが、一般に2〜5mm
である。
The method of wrapping the press-molded product with fire-resistant powder is not particularly limited.
Any method may be used as long as the entire pressure-molded product is completely surrounded by a layer of refractory powder of a certain thickness or more. For example, by putting refractory powder into a platinum port for firing,
The method of completely embedding the press-molded product to be treated in the powder is a simple and reliable method. In either method, it is necessary that the entire pressure-molded product is surrounded by a sufficiently thick layer of refractory powder, and if even a portion of the layer of refractory powder is too thin, the effect of the present invention may not be fully achieved. Moreover, if it is too thick, the heat capacity of the powder layer will become excessive and the effect of rapid temperature rise will be reduced. The preferred thickness of the refractory powder layer is
Although this cannot be said depending on the particle size of the refractory powder, heating rate, firing temperature, size of the press-molded product, etc., it is generally 2 to 5 mm.
It is.

本発明の方法に用いられる加圧成形物は、常法にしたが
って、所要組成のBaO−MgO−Ta2O5磁器が得
られるような割合で1例えば、炭加バリウムll化マグ
ネシウムおよび五酸化二タンタルを配合し、仮焼により
すべて酸化物に転化したものを加圧成形したものである
。加圧成形方法には特に制限はないが、等方圧加圧によ
る方法が好ましい、また、加圧成形の圧力は特に限定は
しないが1000kg/cゴ以上が好ましい。
The press-molded product used in the method of the present invention is prepared by mixing, for example, barium carbide magnesium llide and ditantalum pentoxide in proportions such that BaO-MgO-Ta2O5 porcelain with the required composition is obtained according to a conventional method. The material was then completely converted into oxide through calcination and then pressure molded. Although there are no particular limitations on the pressure molding method, a method using isostatic pressure is preferred, and the pressure of pressure molding is not particularly limited, but is preferably 1000 kg/cm or more.

前記加圧成形物の組成は前記一般式で表わされ、x、y
および2は前記に定義のとおりでなければならず、x、
yおよび2のいずれか1つでも前記の範囲内にない場合
には、得られる磁器は。
The composition of the press-molded product is represented by the general formula, x, y
and 2 must be as defined above, x,
If any one of y and 2 is not within the above range, the resulting porcelain will be.

緻密でなく、機械的強度が低くかつ無負荷Qも低い、x
、yおよび2は、好ましくは、それぞれ0.56≦x≦
0.64.0.18≦y≦0.22および0.18≦z
≦0.22の範囲である。
Not dense, has low mechanical strength and low no-load Q, x
, y and 2 are preferably 0.56≦x≦, respectively.
0.64.0.18≦y≦0.22 and 0.18≦z
The range is ≦0.22.

本発明の方法における昇温速度は、100〜l5OO℃
、好マシくは2O0〜1600℃、テすることが必要で
ある。昇温速度が100℃未満では、焼結が不十分であ
るために得られる磁器の無負荷が低く、また1600℃
を越えると磁器が割れてしまうことがある。このような
急速昇温は種々の方法により実施することができる。例
えば、縦型炉の加熱された炉芯管内へ耐熱衝撃性を有す
る白金製支持体(例、ボート)を用いて上方から耐火性
粉末で包んだ加圧成形物を吊り下げ降ろす方法、同じく
炉芯管内へ白金製支持台に載せて下方から押し上げ入れ
る方法、赤外線もしくはキセノンランプもしくは太陽光
線などを用いたイメージ炉により急速加熱する方法等を
挙げることができる。最初に挙げた、加熱された炉芯管
内へ吊り下げ降す方法が簡単で好適な方法である。
The temperature increase rate in the method of the present invention is 100 to 1500°C
, preferably at 200 to 1600°C. If the heating rate is less than 100°C, sintering will be insufficient and the resulting porcelain will have a low unloaded state.
Exceeding this may cause the porcelain to crack. Such rapid temperature increase can be carried out by various methods. For example, a method in which a press-formed product wrapped in refractory powder is suspended from above using a thermal shock-resistant platinum support (e.g., a boat) into the heated furnace core tube of a vertical furnace; Examples include a method in which the core tube is placed on a platinum support and pushed up from below, and a method in which it is rapidly heated with an image furnace using infrared rays, a xenon lamp, or sunlight. The first method of suspending the metal into the heated furnace core tube is a simple and suitable method.

また、本発明における焼成温度は1500〜1700℃
、好ましくは1550〜1650℃の間でなければなら
ない、この温度が1500℃未満であると焼結が不十分
であるため、得られる磁器の機械的強度が低く、無負荷
Qも低い。焼成温度が1.700℃を超えると、処理さ
れる磁器が、高温安定性が高いために焼成工程に磁器の
保持容器としてよく使用される白金製容器と反応して得
られる磁器の特性が低下する。
Furthermore, the firing temperature in the present invention is 1500 to 1700°C.
, preferably between 1550 and 1650°C; if this temperature is less than 1500°C, the sintering will be insufficient, and the resulting porcelain will have low mechanical strength and low unloaded Q. If the firing temperature exceeds 1.700°C, the treated porcelain will react with the platinum container, which is often used as a holding container for porcelain during the firing process due to its high high temperature stability, and the properties of the resulting porcelain will deteriorate. do.

加圧成形物の温度が1500〜1700℃の範囲の所望
温度に達した後の保持時間は昇温速度等に応じて適宜選
択する必要があるが特に制限はない。一般には、30分
以上の保持が好ましい。
The holding time after the temperature of the press-molded product reaches a desired temperature in the range of 1,500 to 1,700°C needs to be appropriately selected depending on the rate of temperature increase, etc., but is not particularly limited. Generally, holding for 30 minutes or more is preferred.

本発明の方法は、窒素ガス、アルゴン等の不活性雰囲気
または空気、酸素ガス等の醸化性雰囲気において行うこ
とが好ましい。
The method of the present invention is preferably carried out in an inert atmosphere such as nitrogen gas or argon, or a nurturing atmosphere such as air or oxygen gas.

[実施例] 以下1本発明を実施例により具体的に説明するが、本発
明の範囲をこれらに限定するものではない。
[Example] The present invention will be specifically explained below using an example, but the scope of the present invention is not limited to these.

以下の実施例および比較例では、加圧成形物の加熱、焼
成を次に述べる方法で行なった。
In the following Examples and Comparative Examples, heating and firing of the press-molded products were performed in the following manner.

縦型高温炉の炉芯管均熱部を予め所望の焼成温度に設定
しておく、耐火性粉末を白金製ポートに入れ、その上に
処理する加圧成形物を置きさらに加圧成形物が完全に埋
設されるように耐火性粉末でその上を覆い包み込んだ、
この白金製ポートを炉芯管上端からその均熱部へと降下
、挿入してゆく、被処理物の昇温速度は、白金線の他端
に接続されているケーブルに取り付けられている速度可
変のモーターにて白金製ポートの降下速度を変化するこ
とにより制御することができる。
The furnace core tube soaking section of the vertical high-temperature furnace is set in advance to the desired firing temperature.The refractory powder is put into the platinum port, and the press-formed product to be treated is placed on top of it. The top was covered with refractory powder and wrapped to ensure complete burial.
This platinum port is lowered and inserted from the upper end of the furnace core tube into its soaking section.The heating rate of the object to be treated is variable at a speed attached to a cable connected to the other end of the platinum wire. It can be controlled by changing the lowering speed of the platinum port using the motor.

実施例 原料として、それぞれ純度99.9%である炭酸バリウ
ム、酸化バリウムおよび五酸化二タンタルの粉末を使用
し、まずこれら3種の物質を所定の割合で混合した。す
なわち、実施例1〜28の各実施例においては、得られ
る磁器の組成を表わす一般式xBaOs yMgo11
zTa2O5におけるx、yおよび2がそれぞれ第1表
に示す数値となるように秤取しくx、y、zは、それぞ
れ0.5≦x≦0.7,0.15≦y≦0.25.0.
15≦z≦0.25の範囲である)、純水とともにポリ
エチレン製ポットに入れ、表面を樹脂コートしたポール
を用いて、16時時間式混合した。この混合物をポット
より取出し、l゛2O℃で12時間乾燥した後、700
kg/crn’の圧力で加圧成形して塊とし、混合物中
の炭醜塩を酸化物とするために、白金板上で空気中90
0〜1300℃で2時間仮焼した。仮焼後、アルミナ乳
鉢で塊を粉砕し、42メツシユの篩を通して粒度を整え
た。得られた粉末を圧力500kg/cm’で直径10
mm、厚さ約5mmの円板状に一次成形した後、圧力2
O00kg/cm″の等方圧で圧縮し成形物とした。得
られた加圧成形物を前述のように白金製ポート中で耐火
性粉末で包み、焼成に供した。耐火性粉末としてアルミ
ナ、ジルコニアまたはマグネシアの粉末を用い、昇温速
度が100〜b 0−1700℃の範囲内で、焼成温度における保持時間
が30分〜4時間の範囲内となるように条件を設定して
処理した。各実施例における耐火性粉末の種類および粒
径、昇温速度、焼成温度および焼成温度での保持時間は
第1表に示すとおりである。なお、実施例12〜17の
加圧成形物は一つの白金製ポートに一緒に入れて同時に
焼成処理した。実施例18〜23も同様に同時に処理し
た。他の実施例では個別に焼成処理した。
Powders of barium carbonate, barium oxide, and ditantalum pentoxide, each having a purity of 99.9%, were used as raw materials for the example, and these three substances were first mixed at a predetermined ratio. That is, in each of Examples 1 to 28, the general formula xBaOs yMgo11 representing the composition of the obtained porcelain is used.
The x, y, and 2 in zTa2O5 are measured so that they are the values shown in Table 1. 0.
(15≦z≦0.25) was placed in a polyethylene pot together with pure water, and mixed for 16 hours using a pole whose surface was coated with resin. This mixture was taken out from the pot and dried at 120°C for 12 hours.
kg/crn' pressure to form a lump, and in order to convert the carbon salt in the mixture into an oxide, it was heated on a platinum plate in air at 90°C.
Calcining was performed at 0 to 1300°C for 2 hours. After calcining, the mass was crushed in an alumina mortar and passed through a 42-mesh sieve to adjust the particle size. The obtained powder was crushed to a diameter of 10 mm at a pressure of 500 kg/cm'.
After primary forming into a disk shape with a thickness of about 5 mm, pressure 2
It was compressed under an isostatic pressure of 000 kg/cm'' to form a molded product.The resulting press-molded product was wrapped in a refractory powder in a platinum port as described above and subjected to firing.The refractory powder was alumina, Using zirconia or magnesia powder, conditions were set such that the heating rate was within the range of 100 to 0-1700°C and the holding time at the firing temperature was within the range of 30 minutes to 4 hours. The type and particle size of the refractory powder, temperature increase rate, firing temperature, and holding time at the firing temperature in each example are shown in Table 1.The press-molded products of Examples 12 to 17 were They were put together into two platinum ports and fired at the same time. Examples 18 to 23 were also fired at the same time. Other examples were fired individually.

得られた磁器の比誘電率(ε)および無負荷Q(Qu)
を誘電体共振器法によりIIGH2付近の周波数におい
て測定した。得られた結果を第1表に示す。
Relative permittivity (ε) and unloaded Q (Qu) of the obtained porcelain
was measured at a frequency near IIGH2 using the dielectric resonator method. The results obtained are shown in Table 1.

第1表において、変形度は次の基準で評価した。In Table 1, the degree of deformation was evaluated based on the following criteria.

○・・・磁器の変形がまったくない。○...There is no deformation of the porcelain at all.

Δ・・・磁器の変形が生じている。Δ... Deformation of the porcelain has occurred.

×・・・磁器の変形が著しく生じている。×: Significant deformation of the porcelain occurs.

なお、変形の著しい磁器の(およびQuの測定は、研削
等の機械加工により成形を施した後に行なった。
Note that the measurements of porcelain (and Qu), which are significantly deformed, were performed after shaping by machining such as grinding.

比較例 第1表に示すように、耐火性粉末で成形体を包まないこ
と以外は実施例と同様にして比較例1〜12の磁器を製
造した。比較例1〜6と比較例7〜12はそれぞれ加圧
成形物を一緒に白金製ポートに入れ同時に焼成処理した
Comparative Examples As shown in Table 1, porcelains of Comparative Examples 1 to 12 were produced in the same manner as in the Examples except that the molded bodies were not wrapped in refractory powder. In Comparative Examples 1 to 6 and Comparative Examples 7 to 12, the press-molded products were placed together in a platinum port and fired at the same time.

第1表の結果から、実施例の場合には得られる磁器に変
形がまったく生ぜず、均一に焼成されていることがわか
る。また、同時に処理した実施例12〜17および実施
例18〜23のそれぞれで得られた磁器のεとQuはバ
ラツキが極めて小さく、均一な特性を有する磁器が製造
されていることがわかる。これに対し、比較例では個々
の磁器が変形しており焼成が不均一であることがわかり
、また、同時に焼成したものの間でもεとQuのバラツ
キが大きくて製品間においても焼成が不均一であること
がわかる。
From the results in Table 1, it can be seen that in the case of Examples, the obtained porcelain was not deformed at all and was fired uniformly. Furthermore, it can be seen that the ε and Qu of the porcelains obtained in Examples 12 to 17 and Examples 18 to 23, which were treated at the same time, had extremely small variations, and that porcelains with uniform characteristics were manufactured. On the other hand, in the comparative example, it was found that the individual porcelains were deformed and the firing was uneven, and even among the pieces fired at the same time, there was a large variation in ε and Qu, and the firing was uneven between the products. I understand that there is something.

[発明の効果] 実施例の結果から明らかなように、本発明により得られ
るBao−MgO−Ta2O5系誘電体磁器は、Mnの
ような元素の添加を行わずに、高い無負荷Qを有し、特
に衛星通信等に好適な周波数11GHz付近において比
誘電率が約23以上、無負荷Qが9000以上と高く高
周波用低損失誘電体磁器として優れている。また、本発
明の製造方法は製造工程が簡単であり、しかも急速昇温
焼成に依っているため、昇温時間が従来数時間を要して
いたところを数分間に短縮でき、焼成工程を極めて簡便
なものとし、かつ迅速化できる効果がある。
[Effect of the invention] As is clear from the results of the examples, the Bao-MgO-Ta2O5-based dielectric ceramic obtained by the present invention has a high no-load Q without adding elements such as Mn. In particular, it has a high dielectric constant of about 23 or more and an unloaded Q of 9000 or more at a frequency around 11 GHz, which is suitable for satellite communications, etc., making it excellent as a low-loss dielectric ceramic for high frequencies. In addition, the manufacturing method of the present invention has a simple manufacturing process and relies on rapid temperature raising firing, so the heating time that conventionally required several hours can be shortened to several minutes, making the firing process extremely simple. It has the effect of being simple and speedy.

さらに1本発明の製法により得られる側々の磁器は全体
に均一に焼成されているため変形が生ぜず、したがって
研削工程などの後処理なしにそのまま誘電体共振器など
の高周波用低損失誘電体磁器として実用に供することが
できる。また、製品間においても焼成度の均一性が高い
丸め、製品間における誘電体特性のバラツキが小さい、
よって、均一な品質の磁器が得られるため品質管理が容
易で、製品の歩留りが高い。
Furthermore, since the side porcelain obtained by the manufacturing method of the present invention is fired uniformly throughout, no deformation occurs, and therefore it can be used as a low-loss dielectric for high frequency applications such as dielectric resonators without post-processing such as grinding. It can be put to practical use as porcelain. In addition, the degree of firing is highly uniform between products, and the variation in dielectric properties between products is small.
Therefore, since porcelain of uniform quality can be obtained, quality control is easy and the product yield is high.

Claims (1)

【特許請求の範囲】 一般式:xBaO・yMgO・zTa_2O_5で表わ
され、ただし、0.5≦x≦0.7、 0.15≦y≦0.25、0.15≦z≦0.25で、
x+y+z=1である組成を有する加圧成形物を、15
00〜1700℃の温度まで100〜1600℃/分の
昇温速度で加熱し焼成する誘電体磁器の製法において、
加熱、焼成時に加圧成形物を耐火性粉末で包むことを特
徴とする製法。
[Claims] General formula: xBaO・yMgO・zTa_2O_5, where 0.5≦x≦0.7, 0.15≦y≦0.25, 0.15≦z≦0.25 in,
A pressure-molded product having a composition of x+y+z=1 is
In the manufacturing method of dielectric porcelain, which involves heating and firing at a heating rate of 100 to 1600°C/min to a temperature of 00 to 1700°C,
A manufacturing method characterized by wrapping the press-molded product in refractory powder during heating and firing.
JP60022167A 1985-02-07 1985-02-07 Manufacture of dielectric ceramics Granted JPS61181008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60022167A JPS61181008A (en) 1985-02-07 1985-02-07 Manufacture of dielectric ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60022167A JPS61181008A (en) 1985-02-07 1985-02-07 Manufacture of dielectric ceramics

Publications (2)

Publication Number Publication Date
JPS61181008A true JPS61181008A (en) 1986-08-13
JPH0261762B2 JPH0261762B2 (en) 1990-12-21

Family

ID=12075253

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60022167A Granted JPS61181008A (en) 1985-02-07 1985-02-07 Manufacture of dielectric ceramics

Country Status (1)

Country Link
JP (1) JPS61181008A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246898A (en) * 1990-04-19 1993-09-21 Matsushita Electric Industrial Co., Ltd. Dielectric ceramics
WO2015076005A1 (en) * 2013-11-20 2015-05-28 株式会社村田製作所 Method for sintering ceramics and method for producing multilayer ceramic electronic component
US20160376198A1 (en) * 2015-06-29 2016-12-29 Tdk Corporation Dielectric composition and electronic component
US20160379732A1 (en) * 2015-06-29 2016-12-29 Tdk Corporation Dielectric composition and electronic component

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5246898A (en) * 1990-04-19 1993-09-21 Matsushita Electric Industrial Co., Ltd. Dielectric ceramics
WO2015076005A1 (en) * 2013-11-20 2015-05-28 株式会社村田製作所 Method for sintering ceramics and method for producing multilayer ceramic electronic component
JPWO2015076005A1 (en) * 2013-11-20 2017-03-16 株式会社村田製作所 Ceramic firing method and multilayer ceramic electronic component manufacturing method
US20160376198A1 (en) * 2015-06-29 2016-12-29 Tdk Corporation Dielectric composition and electronic component
US20160379732A1 (en) * 2015-06-29 2016-12-29 Tdk Corporation Dielectric composition and electronic component
US9748018B2 (en) * 2015-06-29 2017-08-29 Tdk Corporation Dielectric composition and electronic component
US9745225B2 (en) * 2015-06-29 2017-08-29 Tdk Corporation Dielectric composition and electronic component

Also Published As

Publication number Publication date
JPH0261762B2 (en) 1990-12-21

Similar Documents

Publication Publication Date Title
JPS61107609A (en) Manufacture of high frequency dielectric porcelain
CN111470864B (en) Silicon-based temperature-stable microwave dielectric ceramic material and preparation method thereof
JP3285620B2 (en) Method for producing translucent yttrium-aluminum-garnet sintered body
CN111153694B (en) Microwave dielectric ceramic material and preparation method thereof
JPH05345662A (en) Production of forsterite ceramic
JPS61181008A (en) Manufacture of dielectric ceramics
JPH0542762B2 (en)
CN112299837A (en) Low-dielectric microwave dielectric ceramic material and temperature-frequency characteristic regulation and control method thereof
CN115321960B (en) Alumina ceramic and preparation method and application thereof
JPH07187760A (en) Production of sintered artificial jewel
CN111018524B (en) Low-loss trigonal tungstate-based microwave dielectric ceramic and preparation method thereof
JP2620288B2 (en) Method for producing translucent spinel sintered body
WO2004106261A1 (en) High-frequency porcelain composition, process for producing the same and planar high-frequency circuit
US3989794A (en) Process of manufacturing ferrite bodies of low porosity
JP2543221B2 (en) Dielectric porcelain
JP3083638B2 (en) How to make forsterite porcelain
CN114956798B (en) high-Q-value low-temperature-drift low-K ceramic filter material and preparation method thereof
JPH0782025A (en) Translucent yttrium-aluminum-garnet sintered body and method for producing the same
JPH035357A (en) Dielectric ceramic and its production
JP2611405B2 (en) Method for producing zirconia refractories
JP2005239446A (en) Porcelain composition and method for producing the same
JPH0654604B2 (en) Dielectric porcelain
JPH08198664A (en) Alumina-base sintered body and its production
JP2796905B2 (en) Method for producing transparent microwave dielectric
JP4097019B2 (en) Dielectric porcelain composition