[go: up one dir, main page]

JPH05345662A - Production of forsterite ceramic - Google Patents

Production of forsterite ceramic

Info

Publication number
JPH05345662A
JPH05345662A JP18176692A JP18176692A JPH05345662A JP H05345662 A JPH05345662 A JP H05345662A JP 18176692 A JP18176692 A JP 18176692A JP 18176692 A JP18176692 A JP 18176692A JP H05345662 A JPH05345662 A JP H05345662A
Authority
JP
Japan
Prior art keywords
forsterite
powder
porcelain
tio
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18176692A
Other languages
Japanese (ja)
Other versions
JP3083645B2 (en
Inventor
Hirotane Sugiura
裕胤 杉浦
Takehisa Fukui
武久 福井
Yutaka Higashida
豊 東田
Tsutomu Kadooka
勉 角岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FINE CERAMICS CENTER
Original Assignee
FINE CERAMICS CENTER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FINE CERAMICS CENTER filed Critical FINE CERAMICS CENTER
Priority to JP04181766A priority Critical patent/JP3083645B2/en
Publication of JPH05345662A publication Critical patent/JPH05345662A/en
Application granted granted Critical
Publication of JP3083645B2 publication Critical patent/JP3083645B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Insulating Materials (AREA)

Abstract

PURPOSE:To provide a process for producing a forsterite ceramic having low dielectric loss in microwave region by using a sintering temperature of 1300-1350 deg.C which is comparable to the sintering temperature of conventional process. CONSTITUTION:A raw material powder obtained by mixing MgO with SiO2 at a molar ratio of 2:1 is calcined and crushed to obtain forsterite powder. The powder is mixed with a binder and TiO2 powder and press-formed to obtain a formed product. A forsterite ceramic is produced by degreasing and sintering the formed product. In each step to produce the raw material powder and to produce the forsterite ceramic from the raw material powder, the impurities contained in the sintered forsterite ceramic are controlled to be <=0.10% Al2O3, <=0.5% CaO, <=0.05% Fe2O3, <=0.40% ZrO2 and <=0.01% other impurities, the average particle diameter of the forsterite powder is adjusted to <=3mum and the amount of TiO2 mixed to the forsterite powder is controlled to <=10%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明はフォルステライト磁器
の作製方法に関し、詳しくはマイクロ波に対して低誘電
損失のフォルステライト磁器を得る改良方法に係わるも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing forsterite porcelain, and more particularly to an improved method for obtaining forsterite porcelain having a low dielectric loss with respect to microwaves.

【0002】[0002]

【従来の技術】一般に、マイクロ波領域で使用される誘
電体セラミックスに要求される特性のひとつに、当該領
域での誘電損失が小さいことがあげられる。誘電損失は
誘電体に交流電場を加えたときに熱として失われるエネ
ルギーの量を表し、高周波においてはその値が小さいこ
とが特に重要となる。フォルステライトは、MgOとS
iO2 の反応生成物よりなり、元来比較的優れた高周波
特性を持っている。
2. Description of the Related Art Generally, one of the characteristics required for dielectric ceramics used in the microwave region is that the dielectric loss in the region is small. The dielectric loss represents the amount of energy lost as heat when an AC electric field is applied to the dielectric, and it is particularly important that the value is small at high frequencies. Forsterite is MgO and S
It is composed of a reaction product of iO 2 , and originally has relatively excellent high frequency characteristics.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、フォル
ステライトの磁器を作製する場合は原料のMgOやSi
2 に混入している不純物や種々の目的で添加される元
素によって、最終的な生成物の磁器焼結体中にフォルス
テライト以外の相が形成され、電気特性に影響を与える
問題がある。また、フォルステライト磁器を得る従来の
焼結温度は1300℃程度であるが、従来より抵誘電損
失のフォルステライト磁器を得る場合にあっても、焼結
温度が高くないことが望まれる。
However, when manufacturing forsterite porcelain, the raw materials MgO and Si are used.
Due to impurities mixed in O 2 and elements added for various purposes, a phase other than forsterite is formed in the final product porcelain sinter, which has a problem of affecting electrical characteristics. Further, although the conventional sintering temperature for obtaining a forsterite porcelain is about 1300 ° C., it is desired that the sintering temperature is not high even when obtaining a forsterite porcelain having a lower dielectric loss than the conventional one.

【0004】そこで、本発明者はフォルステライトに関
する研究において、原料(粉末)及びフォルステライト
磁器を得る各工程において混入する不純物を制御し、か
つフォルステライト粉末の粒度を制御することにより、
フォルステライト磁器の電気特性、とくにマイクロ波領
域での誘電損失を小さくし得る知見を得た。また、本発
明者はフォルステライトの研究において、フォルステラ
イトの原料にTiO2 を添加することにより低い誘電損
失を損なうことなく焼結温度を下げ得ること及び誘電率
を調整し得ることの知見を得た。本発明はこの知見に基
づいてなされたものである。
Therefore, the present inventor, in his research on forsterite, controls the impurities mixed in each step of obtaining the raw material (powder) and the forsterite porcelain and controlling the particle size of the forsterite powder.
We have found that the electrical characteristics of forsterite porcelain, especially the dielectric loss in the microwave region, can be reduced. In addition, the present inventor has found in the study of forsterite that by adding TiO 2 to the raw material of forsterite, it is possible to lower the sintering temperature without impairing the low dielectric loss and to adjust the dielectric constant. It was The present invention was made based on this finding.

【0005】すなわち、本発明の課題は、マイクロ波領
域での誘電損失が10-4以下の小さな値でかつ、誘電率
が8前後になし得るフォルステライト磁器の作製方法を
提供することにある。そして、本発明の他の課題は、焼
結温度がたとえば1300℃の従来と同等であり、誘電
損失が、たとえば7.0×10-5程度の小さい値のフォ
ルステライト磁器の作製方法を提供することにある。
That is, an object of the present invention is to provide a method for producing a forsterite porcelain which has a small dielectric loss in the microwave region of 10 −4 or less and a dielectric constant of about 8. Another object of the present invention is to provide a method for producing a forsterite porcelain having a sintering temperature equivalent to that of the conventional one of 1300 ° C. and a dielectric loss of a small value of about 7.0 × 10 −5. Especially.

【0006】[0006]

【課題を解決するための手段】上記した課題を達成する
ために、請求項1の発明は、MgOとSiO2 を2対1
のモル比で混合した原料粉末を、仮焼きし、粉砕してフ
ォルステライトの粉末とし、該粉末にバインダ及びTi
2 の粉末を混合し加圧成形して成形品となし、該成形
品を脱脂及び焼結してフォルステライト磁器を作製する
方法であって、前記原料粉末、及び該原料粉末から前記
フォルステライト磁器を得る各工程において、フォルス
テライト磁器の磁器焼結体に含まれる不純物をAl2
3 0.10%(wt%の意味、以下の各%もこの意味
で使用する。)以下、CaO0.05%以下、Fe2
3 0.05%以下、ZrO2 0.40%以下、その
他 0.01%以下、に制御すること、及び、前記フォ
ルステライトの粉末の粒度分布を平均粒径3μm以下に
すること、及び、前記TiO2 を10%以下量において
混合すること、を特徴とする。
In order to achieve the above object, the invention of claim 1 uses MgO and SiO 2 in a ratio of 2: 1.
The raw material powders mixed in a molar ratio of calcination are calcined and crushed into forsterite powder, and the binder and Ti are added to the powder.
A method for producing a forsterite porcelain by mixing O 2 powder and press-molding to form a molded article, and degreasing and sintering the molded article, comprising the raw material powder and the forsterite from the raw material powder. In each step of obtaining a porcelain, impurities contained in a porcelain sintered body of forsterite porcelain were Al 2 O.
3 0.10% or less (meaning wt%, the following% s are also used in this sense), CaO 0.05% or less, Fe 2 O
3 0.05% or less, ZrO 2 0.40% or less, and other 0.01% or less, and controlling the particle size distribution of the forsterite powder to an average particle size of 3 μm or less, and TiO 2 is mixed in an amount of 10% or less.

【0007】そして、請求項2の発明は、請求項1にお
いてTiO2 を5%以下量混合することを特徴とする。
The invention of claim 2 is characterized in that TiO 2 is mixed in an amount of 5% or less in claim 1.

【0008】前記仮焼きは、たとえば1000〜120
0℃で2〜4時間行なわれる。仮焼きによってほぼフォ
ルステライトの良好な単一相が合成される。1000℃
より低温及び1200℃より高温はフォルステライトを
良好に合成しない。仮焼きしたフォルステライトの粉砕
は、たとえばウレタンボールを用いたボールミルにて行
なうことができる。粉砕の工程においてTiO2 粉末と
バインダが加えられ、各粉末の粉砕と混合が同時に行な
われる。バインダはポリビニルアルコール,メチルセル
ロースなどの有機質の糊料が用いられ、成形に必要な量
が添加される。TiO2 粉末の添加量はフォルステライ
ト粉末に対し0.5〜10%の範囲とされる。この範囲
において誘電損失を、たとえば7.0×10-5前後の値
に保ったまま焼結温度を1300℃となすことができ
る。また、TiO2 の添加量が0.5〜約5%において
は誘電損失を10-4以下に抑えたまま、誘電率を8前後
まで調整することができる。粉砕はフォルステライト粉
末及びTiO2 粉末の粒度分布を平均粒径3μm以下に
することを主体とする。フォルステライト粉末及びTi
2 粉末の粒度が大きいと、フォルステライト粉末によ
る成形品の焼結性が悪くなり高密度の焼結体が得られな
い。粉砕工程において各粉末は混合状態にされる。
The calcination is, for example, 1000 to 120.
It is carried out at 0 ° C. for 2 to 4 hours. By calcination, a good single phase of almost forsterite is synthesized. 1000 ° C
Lower temperatures and higher than 1200 ° C do not synthesize forsterite well. The calcined forsterite can be pulverized by, for example, a ball mill using urethane balls. In the step of pulverization, TiO 2 powder and binder are added, and pulverization and mixing of each powder are performed simultaneously. As the binder, an organic paste such as polyvinyl alcohol or methyl cellulose is used, and the amount necessary for molding is added. The amount of TiO 2 powder added is in the range of 0.5 to 10% with respect to the forsterite powder. In this range, the sintering temperature can be set to 1300 ° C. while maintaining the dielectric loss at a value of around 7.0 × 10 −5 . Further, when the amount of TiO 2 added is 0.5 to about 5%, the dielectric constant can be adjusted to about 8 while the dielectric loss is suppressed to 10 −4 or less. The crushing is mainly performed so that the particle size distribution of the forsterite powder and the TiO 2 powder is set to an average particle size of 3 μm or less. Forsterite powder and Ti
If the particle size of the O 2 powder is large, the sinterability of the molded product made of forsterite powder deteriorates, and a high-density sintered body cannot be obtained. In the crushing process, each powder is mixed.

【0009】前記成形品は適宜な加圧成形手段により、
用途に応じた所定形状にされる。成形品は脱脂処理にお
いてバインダ等の有機質の配合物が焼結除去される。脱
脂温度は有機質の配合物を除去に焼失させる程度とさ
れ、たとえば、300〜500℃で4〜7時間である。
脱脂後は続いて焼結される。焼結は1300〜1400
℃で1〜3時間程度、望ましくは1300℃,2時間,
であり、この焼結条件を外れると磁器の良好な電気特
性、とくにマイクロ波に対しての低誘電損失、が得られ
ない。なお、ここでいうマイクロ波は周波数数百MHZ
〜数百GHZ 、およそ300MHZ 〜300GHZ の範
囲を指す。
[0009] The above-mentioned molded product is formed by an appropriate pressure molding means.
It has a predetermined shape according to the application. In the molded product, the organic compound such as the binder is sintered and removed in the degreasing process. The degreasing temperature is set to such a degree that the organic compound is burnt out for removal, and is, for example, 300 to 500 ° C. for 4 to 7 hours.
After degreasing, it is subsequently sintered. Sintered 1300 to 1400
1 to 3 hours at ℃, preferably 1300 ℃, 2 hours,
Therefore, if the sintering conditions are not satisfied, good electrical characteristics of the porcelain, particularly low dielectric loss with respect to microwaves, cannot be obtained. In addition, the microwave here is frequency several hundred MH Z
To hundreds of GH Z, it refers to the range of approximately 300MH Z ~300GH Z.

【0010】本発明においては、原料粉末及びTiO2
粉末、及びこれらからフォルステライト磁器を得るため
の各諸工程において、フォルステライト磁器の磁器焼結
体に極力、不純物が入らないように配慮される。原料粉
末の調整はもちろん、TiO2 粉末及びバインダとの混
合,粉砕,成形等の各処理工程は、不純物の混入しない
材質及び手段が用いられる。
In the present invention, the raw material powder and TiO 2
In each step of obtaining the powder and the forsterite porcelain from them, it is taken into consideration that impurities will not enter the porcelain sintered body of the forsterite porcelain as much as possible. In addition to adjusting the raw material powder, materials and means that do not mix impurities are used in each processing step such as mixing with the TiO 2 powder and the binder, crushing, and molding.

【0011】[0011]

【作用】原料粉末は仮焼きによりフォルステライトに合
成され、合成されたフォルステライトは粉砕することに
より粉末とされる。フォルステライト磁器を作製する
際、原料粉末及びTiO2 粉末等からの不純物の混入を
制御することより、高純度のフォルステライトが合成さ
れ、さらにフォルステライト磁器を得る各工程におい
て、不純物の混入量を制御することより、高純度の磁器
焼結体を得る。
The raw material powder is synthesized into forsterite by calcination, and the synthesized forsterite is pulverized into powder. When producing forsterite porcelain, high-purity forsterite is synthesized by controlling the mixture of impurities from the raw material powder, TiO 2 powder, etc., and the amount of impurities mixed in each step of obtaining forsterite porcelain is controlled. By controlling, a highly purified porcelain sinter can be obtained.

【0012】原料粉末に配合したTiO2 は成形品の焼
結温度を下げる作用をなす。また、フォルステライト粉
末を平均粒径3μm以下の粒度分布を持つ粉末にするこ
とより、ガラス相の排除による焼結性の低下を防ぎ、従
来と同等の焼結温度で緻密化させ高密度の磁器焼結体と
なし得る。このため本発明にて得られるフォルステライ
ト磁器の結晶は、フォルステライト相以外の相が排除さ
れ、かつ粒界におけるガラス相が排除された高純度のも
のとなる。
TiO 2 mixed with the raw material powder has the function of lowering the sintering temperature of the molded product. Further, by making the forsterite powder into a powder having an average particle size of 3 μm or less, deterioration of sinterability due to elimination of the glass phase is prevented, and densification is performed at a sintering temperature equivalent to that of the prior art, and high density porcelain It can be made into a sintered body. Therefore, the crystal of the forsterite porcelain obtained in the present invention has a high purity in which the phases other than the forsterite phase are excluded and the glass phase at the grain boundaries is excluded.

【0013】[0013]

【実施例】次に、本発明の第1の実施例を、図1〜図5
を参照して説明する。まず、原料粉末とするための高純
度のMgO粉末とSiO2 粉末、及び添加剤とするTi
2 粉末を用意する。MgO粉末及びSiO2 粉末の粒
度は細かい方が望ましいが、本例では平均粒径0.09
μm、(比表面積26.03m2 /g)のMgO粉末、
及び平均粒径0.82、(比表面積1.78m2 /g)
のSiO2 粉末を用いた。なお、MgO粉末及びSiO
2 粉末の粒度は仮焼きにおいて充分反応する程度のもの
でよい。本例に用いたMgO粉末及びSiO2 粉末のI
CP発光分光分析による含有不純物の分析結果は表1に
示す通りである。TiO2 粉末においても細かい粒度の
ものが望ましいが、本例では平均粒径0.68μmのル
チル型結晶の粉末を用いた。本例TiO2 粉末1CP分
析による含有不純物の分析結果は表2に示す通りであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, a first embodiment of the present invention will be described with reference to FIGS.
Will be described. First, high-purity MgO powder and SiO 2 powder for use as raw material powder, and Ti as an additive
Prepare O 2 powder. It is desirable that the particle size of the MgO powder and the SiO 2 powder is small, but in this example, the average particle size is 0.09.
μm, MgO powder having a (specific surface area of 26.03 m 2 / g),
And average particle size 0.82, (specific surface area 1.78 m 2 / g)
SiO 2 powder was used. Incidentally, MgO powder and SiO
2 The particle size of the powder may be such that it reacts sufficiently during calcination. I of MgO powder and SiO 2 powder used in this example
Table 1 shows the analysis results of the contained impurities by CP emission spectroscopy. Although it is desirable that the TiO 2 powder has a fine grain size, in this example, a rutile type crystal powder having an average grain size of 0.68 μm was used. The results of analysis of the impurities contained in the TiO 2 powder 1CP analysis of this example are shown in Table 2.

【0014】[0014]

【表1】 [Table 1]

【0015】[0015]

【表2】 [Table 2]

【0016】なお、表1及び表2において、成分量の数
値単位は%であり、−印は0.001%以下量含有する
ことを表わす。
In Tables 1 and 2, the numerical unit of the component amount is%, and the-mark indicates that the content is 0.001% or less.

【0017】次いで、図1に示す各工程にしたがって本
例のフォルステライト磁器を作製する。MgOとSiO
2 がモル比2:1となる様にMgO粉末とSiO2 粉末
を秤量し、蒸留水を加え、ウレタンボールを用いてボー
ルミルで20時間混合し混合物とした。混合物は約10
0℃で24時間乾燥し原料粉末とする。次いで原料粉末
は1200℃で3時間仮焼きしてフォルステライトが合
成された仮焼き品を得た。この仮焼き品はTiO2 粉末
及びバインダと共にボールミールに入れ、粉砕・混合の
処理をした。
Next, the forsterite porcelain of this example is manufactured according to the steps shown in FIG. MgO and SiO
MgO powder and SiO 2 powder were weighed so that the molar ratio of 2 was 2: 1, distilled water was added, and urethane balls were mixed for 20 hours in a ball mill to obtain a mixture. Mixture is about 10
Dry at 0 ° C. for 24 hours to obtain a raw material powder. Then, the raw material powder was calcined at 1200 ° C. for 3 hours to obtain a calcined product in which forsterite was synthesized. This calcined product was put into a ball meal together with TiO 2 powder and a binder, and pulverized and mixed.

【0018】すなわち、仮焼き品に対し、ポリビニルア
ルコール(バインダ)の添加量は1.0%とし、TiO
2 粉末の添加量は無添加及び0.5〜30.0%の添加
量として各区の試料を用意した。そして、TiO2 粉末
の無添加の区をC,TiO2粉末0.5%添加区をS
l,TiO2 粉末1.0%添加区をS2,TiO2 粉末
2.0%添加区をS3,TiO2 粉末5.0%添加区を
S4,TiO2 粉末10.0%添加区をS5,TiO2
粉末30.0%添加区をS6として無添加区と添加区6
区の計7区の試料を用意した。なお、この7区の各試料
は図1の「粉砕・混合」以下の工程にしたがって同様に
処理した。粉砕・混合はZrO2 ボールを用いて24時
間処理し、しかる後、100℃で24時間乾燥して、T
iO2 及びバインダが混合された各フォルステライト粉
末(仮焼き粉末)とした。
That is, the addition amount of polyvinyl alcohol (binder) was 1.0% with respect to the calcined product, and TiO 2 was added.
The samples of each section were prepared with no addition of the two powders and an addition amount of 0.5 to 30.0%. Then, the ward no addition of TiO 2 powder C, and TiO 2 powder 0.5% addition group S
1, TiO 2 powder 1.0% addition section is S2, TiO 2 powder 2.0% addition section is S3, TiO 2 powder 5.0% addition section is S4, TiO 2 powder 10.0% addition section is S5, TiO 2
Powder 30.0% addition group as S6, no addition group and addition group 6
Samples of a total of 7 zones were prepared. In addition, each sample of these 7 sections was similarly processed according to the process after "crushing and mixing" of FIG. Grinding and mixing is performed by using a ZrO 2 ball for 24 hours, and then dried at 100 ° C. for 24 hours, and then T
Each forsterite powder (calcined powder) was prepared by mixing iO 2 and a binder.

【0019】TiO2 粉末2.0%添加区S3の粒度分
布は図2に示す通りである。なお、図2において、右の
たて目盛は棒グラフの尺度を示し、左の縦目盛(%)は
線グラフの尺度を示す。図2のグラフに示されるよう
に、添加区S3は粉末の50%が粒径1μm以下のもの
であった。
The particle size distribution of the TiO 2 powder 2.0% addition area S3 is as shown in FIG. In FIG. 2, the vertical scale on the right shows the scale of the bar graph, and the vertical scale (%) on the left shows the scale of the line graph. As shown in the graph of FIG. 2, 50% of the powder in the addition zone S3 had a particle size of 1 μm or less.

【0020】混合処理後の各添加区C及びS1〜S6の
粉末は各区ごとに円柱形に成形した。成形は、まず30
0kg/cm2 の一軸成形(仮成形)し、次いで300
0kg/cm2 でCIP成形(本成形)して成形品とし
た。次いで、各成形品は加熱炉に入れ、400℃で6時
間加熱して脱脂した後、昇温し、1400℃で2時間焼
成して、各添加区C及びS1〜S6に対応する円柱形の
各フォルステライト磁器C及びS1〜S6を得た。各フ
ォルステライト磁器C及びS1〜S6の焼結性はいずれ
も良好であった。
After the mixing treatment, the powders of each addition section C and S1 to S6 were formed into a cylindrical shape in each section. Molding is first 30
Uniaxial molding (temporary molding) of 0 kg / cm 2 and then 300
CIP molding (main molding) was performed at 0 kg / cm 2 to obtain a molded product. Next, each molded product is placed in a heating furnace, heated at 400 ° C. for 6 hours to degrease, then heated and baked at 1400 ° C. for 2 hours to give a cylindrical shape corresponding to each addition section C and S1 to S6. Each forsterite porcelain C and S1 to S6 were obtained. The sinterability of each of the forsterite porcelains C and S1 to S6 was good.

【0021】この各フォルステライト磁器C及びS1〜
S6のかさ密度及び誘電特性(誘電率ε及び誘電損失t
anδ)は表3に示す通りである。
Each of the forsterite porcelains C and S1
Bulk density and dielectric properties of S6 (dielectric constant ε and dielectric loss t
an δ) is as shown in Table 3.

【0022】[0022]

【表3】 [Table 3]

【0023】従来フォルステライト磁器イ,ロ,ハは、
その作製工程においてフォルステライト粉末の粒度分布
が考慮されず、かつ磁器焼結体中の不純物含有量が、A
23 0.10%,CaO 0.05%,Fe2
3 0.05%,ZrO20.04%,の少くとも1つ
を超えるものである。そして、表3における誘電率ε及
び誘電損失tanδは、両端短絡型誘電体円柱共振器法
にて測定した値であり、本例フォルステライト磁器C,
S1〜S6は15.8〜18.7GHZ で測定し、従来
フォルステライト磁器イ,ロ,ハは9.3〜10.0G
Z で測定した場合のものである。表3より本例のフォ
ルステライト磁器S1〜6は従来のイ,ロ,ハより、誘
電損失が1オーダー小さいことが認められた。また、本
例のフォルステライト磁器S1〜S6はフォルステライ
ト磁器Cよりもかさ密度が大きいことが認められた。
Conventional forsterite porcelain a, b and c are
In the manufacturing process, the particle size distribution of the forsterite powder is not taken into consideration, and the content of impurities in the porcelain sintered body is A
l 2 O 3 0.10%, CaO 0.05%, Fe 2 O
3 0.05%, ZrO 2 0.04%, at least one. Then, the dielectric constant ε and the dielectric loss tan δ in Table 3 are values measured by the both-end short-circuit type dielectric cylinder resonator method, and are the forsterite porcelain C ,
S1~S6 was measured at 15.8~18.7GH Z, conventional forsterite porcelain Lee, b, c are 9.3~10.0G
This is when measured by H Z. From Table 3, it was confirmed that the forsterite porcelains S1 to S6 of this example had a dielectric loss of one order smaller than the conventional a, b, and c. Further, it was confirmed that the forsterite porcelains S1 to S6 of this example had a bulk density higher than that of the forsterite porcelain C.

【0024】本例フォルステライト磁器S1〜S6の抵
抗率(3端子法による測定)と、熱膨張率及び膨張係数
(昇温10℃/min,最高温度800℃,標準試料ア
ルミナを使用)は、いずれも従来市販のフォルステライ
ト磁器とほぼ同等であった。したがって、本例の各フォ
ルステライト磁器S1〜S6はマイクロ波用の絶縁材と
して好ましいものである。
The resistivities of the forsterite porcelains S1 to S6 (measured by the three-terminal method), the coefficient of thermal expansion and the coefficient of expansion (temperature increase of 10 ° C./min, maximum temperature of 800 ° C., using standard sample alumina) are as follows. Both were almost equivalent to the conventional commercially available forsterite porcelain. Therefore, each of the forsterite porcelains S1 to S6 of this example is preferable as an insulating material for microwaves.

【0025】次に、本発明の第2の実施例を説明する。
前記した第1の実施例において添加区C,S1〜S6の
各試料を多数用意し、図1の工程要領に準じて各成形品
を1200,1250,1300,1350,140
0,1450,1500℃の各温度にて2時間焼成し
て、各添加区C及びS1〜S6に対応する円柱形の各フ
ォルステライト磁器C及びS1〜S6を製造した。次い
で製造した各フォルステライト磁器C及びS1〜S6の
かさ密度を測定し、各焼結温度とかさ密度の関係を調べ
た。この結果は図3に示す通りであった。なお、図3中
のグラフTは市販のフォルステライトよりフォルステラ
イト磁器を得た場合のものである。図3において、S
1,S2,S3のグラフのかさ密度は焼結温度が130
0℃と1400℃においてほぼ同じであることより、T
iO2 の添加量が0.5〜2.0%において焼結温度を
約100℃低温となし得ることが認められる。また、T
iO2 の添加量が5%(S4のグラフ参照)あたりか
ら、フォルステライトより密度の高いTiO2 (ルチル
型の密度ρ=4.24g/cm3 )の添加による緻密体
の密度の増加がみられる。しかし、TiO2 が5%以上
の添加区(S5,S6のグラフ参照)においては130
0℃で緻密化せず、焼結温度は約50℃高くなった。
Next, a second embodiment of the present invention will be described.
In the first embodiment described above, a large number of samples of the addition sections C, S1 to S6 were prepared, and the molded articles were made into 1200, 1250, 1300, 1350, 140 according to the process procedure of FIG.
By firing for 2 hours at each temperature of 0,1450 and 1500 ° C., cylindrical forsterite porcelains C and S1 to S6 corresponding to the addition zones C and S1 to S6 were manufactured. Then, the bulk densities of the manufactured forsterite porcelains C and S1 to S6 were measured, and the relationship between each sintering temperature and the bulk density was investigated. The result was as shown in FIG. The graph T in FIG. 3 shows the case where forsterite porcelain is obtained from commercially available forsterite. In FIG. 3, S
The bulk density of the graphs of 1, S2 and S3 is that the sintering temperature is 130
Since it is almost the same at 0 ° C and 1400 ° C, T
It is recognized that the sintering temperature can be lowered to about 100 ° C. when the added amount of iO 2 is 0.5 to 2.0%. Also, T
From about 5% addition of iO 2 (see graph of S4), increase in density of dense body due to addition of TiO 2 having higher density than forsterite (rutile type density ρ = 4.24 g / cm 3 ). Be done. However, when TiO 2 is added in an amount of 5% or more (see graphs of S5 and S6), 130
The densification did not occur at 0 ° C, and the sintering temperature increased by about 50 ° C.

【0026】次に、本例にて製造した各フォルステライ
ト磁器C及びS1〜S6の誘電率及び誘電損失を測定
し、TiO2 の添加量と誘電率及び誘電損失の関係を調
べた。この結果、TiO2 の添加量と誘電率の関係は図
4にグラフGに示す通りであり、TiO2 の添加量と誘
電損失の関係は図5の▲印に示す通りであった。なお、
図4,図5においてTは市販のフォルステライト磁器の
値を示し、CはTiO2無添加のフォルステライト磁器
の値を示す。図4において、フォルステライトより高誘
電率のTiO2 の添加によりフォルステライト磁器の誘
電率はTiO2 の添加量に比例して増加することが認め
られた。図5において、誘電損失は添加量10%までは
ゆるやかに増加するが、10%と30%の間で急激な増
加がみられた。
Next, the dielectric constant and dielectric loss of each of the forsterite porcelains C and S1 to S6 manufactured in this example were measured, and the relationship between the added amount of TiO 2 and the dielectric constant and dielectric loss was investigated. As a result, the relationship between the added amount of TiO 2 and the dielectric constant is as shown by the graph G in FIG. 4, and the relationship between the added amount of TiO 2 and the dielectric loss is as shown by the triangle mark in FIG. In addition,
4 and 5, T represents the value of a commercially available forsterite porcelain, and C represents the value of a TiO 2 -free forsterite porcelain. In FIG. 4, it was found that the addition of TiO 2 having a higher dielectric constant than that of forsterite increases the dielectric constant of the forsterite porcelain in proportion to the addition amount of TiO 2 . In FIG. 5, the dielectric loss gradually increased up to the addition amount of 10%, but a sharp increase was observed between 10% and 30%.

【0027】すなわち、本実施例によれば、 (a)TiO2 を10%以下量の範囲で添加することよ
り、誘電損失を10-4以下に抑えたまま誘電率を8前後
まで調整することができること。 (b)TiO2 5.0%以下量の添加により誘電損失を
7.0×10-5前後の値のまま焼結温度を約100℃下
げることができること、が認められた。
That is, according to this example, (a) TiO 2 was added in an amount of 10% or less to adjust the dielectric constant to about 8 while suppressing the dielectric loss to 10 -4 or less. What you can do. (B) It was confirmed that the sintering temperature can be lowered by about 100 ° C. while maintaining the dielectric loss at a value of around 7.0 × 10 −5 by adding 5.0% or less of TiO 2 .

【0028】[0028]

【発明の効果】請求項1の発明は、原料粉末,及び該原
料粉末から前記フォルステライト磁器を得る各工程にお
いて、フォルステライト磁器の磁器焼結体に含まれる不
純物をAl2 3 0.10%以下、CaO 0.05
%以下、Fe2 3 0.05%以下、ZrO2 0.
40%以下、その他 0.01%以下、に制御するこ
と、及び、フォルステライトの粉末の粒度分布を平均粒
径3μm以下にすること、及び、TiO2 を10%以下
量において混合すること、としたので、マイクロ波領域
での誘電損失が小さく、マイクロ波用の絶縁材として好
ましいフォルステライト磁器を得ることができる。すな
わち、請求項1の発明によれば高純度のフォルステライ
ト粉末を得る一方、磁器を製作する各工程から不純物の
混入を制御するので不純物の少い磁器を得ることがで
き、また、フォルステライト粉末の粒度分布を平均粒径
3μm以下とするので、緻密化した高密度の物性をする
ことができ、かつ、TiO2 を10%以下量において混
合すること、としたので、これらによって、誘電損失を
10-4以下に抑えたまま誘電率を8程度にすることがで
きる。請求項2の発明は、TiO2 の添加量を5%以下
量とするので、誘電損失を、たとえば7.0×10-5
値のままで、焼結温度を従来と同様に約1300℃程度
で得ることができる。
According to the invention of claim 1, in each step of obtaining the raw material powder and the forsterite porcelain from the raw material powder, impurities contained in the porcelain sintered body of the forsterite porcelain are Al 2 O 3 0.10. % Or less, CaO 0.05
% Or less, Fe 2 O 3 0.05% or less, ZrO 2 0.
40% or less, other 0.01% or less, and controlling the particle size distribution of forsterite powder to an average particle size of 3 μm or less, and mixing TiO 2 in an amount of 10% or less. Therefore, the dielectric loss in the microwave region is small, and a forsterite porcelain preferable as an insulating material for microwaves can be obtained. That is, according to the invention of claim 1, while obtaining a high-purity forsterite powder, it is possible to obtain a porcelain with a small amount of impurities because the mixing of impurities is controlled from each step of manufacturing a porcelain, and the forsterite powder is also obtained. Since the average particle size distribution of 3 is not more than 3 μm, it is possible to achieve a dense and high-density physical property and to mix TiO 2 in an amount of 10% or less. The dielectric constant can be set to about 8 while being suppressed to 10 −4 or less. In the invention of claim 2, since the amount of TiO 2 added is 5% or less, the dielectric loss remains at a value of, for example, 7.0 × 10 −5 , and the sintering temperature is about 1300 ° C. as in the conventional case. Can be obtained in degrees.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明第1実施例のフォルステライト磁器を得
る工程図。
FIG. 1 is a process diagram for obtaining a forsterite porcelain according to a first embodiment of the present invention.

【図2】フォルステライト粉末の粒度分布を示すグラ
フ。
FIG. 2 is a graph showing the particle size distribution of forsterite powder.

【図3】TiO2 を添加したフォルステライト磁器の焼
結性を示すグラフ。
FIG. 3 is a graph showing the sinterability of forsterite porcelain to which TiO 2 is added.

【図4】TiO2 を添加したフォルステライト磁器の誘
電率を示すグラフ。
FIG. 4 is a graph showing the dielectric constant of forsterite porcelain to which TiO 2 is added.

【図5】TiO2 を添加したフォルステライト磁器の誘
電損失を示すグラフ。
FIG. 5 is a graph showing the dielectric loss of forsterite porcelain to which TiO 2 is added.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 MgOとSiO2 を2対1のモル比で混
合した原料粉末を、仮焼きし、粉砕してフォルステライ
トの粉末とし、該粉末にバインダ及びTiO2 の粉末を
混合し加圧成形して成形品となし、該成形品を脱脂及び
焼結してフォルステライト磁器を作製する方法であっ
て、 前記原料粉末、及び該原料粉末から前記フォルステライ
ト磁器を得る各工程において、フォルステライト磁器の
磁器焼結体に含まれる不純物をAl2 3 0.10%
以下、CaO 0.05%以下、Fe2 3 0.05
%以下、ZrO2 0.40%以下、その他 0.01
%以下、に制御すること、及び、 前記フォルステライトの粉末の粒度分布を平均粒径3μ
m以下にすること、及び、前記TiO2 を10%以下量
において混合すること、 を特徴としたフォルステライト磁器の作製方法。
1. A raw material powder in which MgO and SiO 2 are mixed at a molar ratio of 2: 1 is calcined and crushed into forsterite powder, and a binder and TiO 2 powder are mixed and pressed. A method of forming a molded product into a molded product, degreasing and sintering the molded product to produce a forsterite porcelain, comprising the steps of obtaining the raw powder and the forsterite porcelain from the raw powder in each step. Impurity contained in porcelain porcelain sintered body was Al 2 O 3 0.10%
Below, CaO 0.05% or less, Fe 2 O 3 0.05
% Or less, ZrO 2 0.40% or less, other 0.01
% Or less, and the particle size distribution of the forsterite powder is 3 μm in average particle size.
m or less, and mixing the TiO 2 in an amount of 10% or less, a method for producing a forsterite porcelain.
【請求項2】 請求項1においてTiO2 を5%以下量
混合することを特徴としたフォルステライト磁器の作製
方法。
2. A method for producing a forsterite porcelain according to claim 1, wherein TiO 2 is mixed in an amount of 5% or less.
JP04181766A 1992-06-15 1992-06-15 How to make forsterite porcelain Expired - Lifetime JP3083645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04181766A JP3083645B2 (en) 1992-06-15 1992-06-15 How to make forsterite porcelain

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04181766A JP3083645B2 (en) 1992-06-15 1992-06-15 How to make forsterite porcelain

Publications (2)

Publication Number Publication Date
JPH05345662A true JPH05345662A (en) 1993-12-27
JP3083645B2 JP3083645B2 (en) 2000-09-04

Family

ID=16106517

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04181766A Expired - Lifetime JP3083645B2 (en) 1992-06-15 1992-06-15 How to make forsterite porcelain

Country Status (1)

Country Link
JP (1) JP3083645B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004106261A1 (en) * 2003-05-30 2004-12-09 Nagoya Industrial Science Research Institute High-frequency porcelain composition, process for producing the same and planar high-frequency circuit
JP2006089357A (en) * 2004-09-27 2006-04-06 Nippon Carbide Ind Co Inc Manufacturing method of ceramic substrate
JP2006335633A (en) * 2005-06-06 2006-12-14 Murata Mfg Co Ltd Dielectric ceramic and lamination type electronic component
US7208434B2 (en) * 2003-12-12 2007-04-24 Electronics And Telecommunications Research Institute Dielectric ceramic composition of forsterite system for microwave and millimeter-wave application and method for forming the same
JP2011162417A (en) * 2010-02-15 2011-08-25 Ube Industries Ltd Dielectric ceramic for high frequency, method for producing the same, and high frequency circuit element using the same
JP2011162419A (en) * 2010-02-15 2011-08-25 Ube Industries Ltd Dielectric ceramic for high frequency, method for producing the same and high frequency circuit element using the same
JP2011162418A (en) * 2010-02-15 2011-08-25 Ube Industries Ltd Dielectric ceramic for high frequency, method for producing the same and high frequency circuit element using the same
JP2013166687A (en) * 2012-01-20 2013-08-29 Tdk Corp Dielectric ceramic and electronic component using the same
CN111138176A (en) * 2020-01-06 2020-05-12 山东国瓷功能材料股份有限公司 Magnesium silicate based microwave dielectric ceramic material and preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0685045U (en) * 1993-05-19 1994-12-06 株式会社松本機械製作所 centrifuge
RU2443658C1 (en) * 2010-08-23 2012-02-27 Открытое акционерное общество "Научно-исследовательский институт "Феррит-Домен" Ceramic material

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7368407B2 (en) * 2003-05-30 2008-05-06 Yasufuku Ceramics Co., Ltd. High-frequency porcelain composition, process for producing the same and planar high-frequency circuit
WO2004106261A1 (en) * 2003-05-30 2004-12-09 Nagoya Industrial Science Research Institute High-frequency porcelain composition, process for producing the same and planar high-frequency circuit
JPWO2004106261A1 (en) * 2003-05-30 2006-07-20 財団法人名古屋産業科学研究所 High frequency porcelain composition, method for producing the same, and planar high frequency circuit
JP4579159B2 (en) * 2003-05-30 2010-11-10 株式会社ヤスフクセラミックス High frequency porcelain composition, method for producing the same, and planar high frequency circuit
EP1642874A1 (en) * 2003-05-30 2006-04-05 Nagoya Industrial Science Research Institute High-frequency porcelain composition, process for producing the same and planar high-frequency circuit
EP1642874A4 (en) * 2003-05-30 2008-07-09 Yasufuku Ceramics Co Ltd High-frequency porcelain composition, process for producing the same and planar high-frequency circuit
US7208434B2 (en) * 2003-12-12 2007-04-24 Electronics And Telecommunications Research Institute Dielectric ceramic composition of forsterite system for microwave and millimeter-wave application and method for forming the same
JP2006089357A (en) * 2004-09-27 2006-04-06 Nippon Carbide Ind Co Inc Manufacturing method of ceramic substrate
JP2006335633A (en) * 2005-06-06 2006-12-14 Murata Mfg Co Ltd Dielectric ceramic and lamination type electronic component
JP2011162417A (en) * 2010-02-15 2011-08-25 Ube Industries Ltd Dielectric ceramic for high frequency, method for producing the same, and high frequency circuit element using the same
JP2011162419A (en) * 2010-02-15 2011-08-25 Ube Industries Ltd Dielectric ceramic for high frequency, method for producing the same and high frequency circuit element using the same
JP2011162418A (en) * 2010-02-15 2011-08-25 Ube Industries Ltd Dielectric ceramic for high frequency, method for producing the same and high frequency circuit element using the same
JP2013166687A (en) * 2012-01-20 2013-08-29 Tdk Corp Dielectric ceramic and electronic component using the same
CN111138176A (en) * 2020-01-06 2020-05-12 山东国瓷功能材料股份有限公司 Magnesium silicate based microwave dielectric ceramic material and preparation method and application thereof
CN111138176B (en) * 2020-01-06 2022-01-25 山东国瓷功能材料股份有限公司 Magnesium silicate based microwave dielectric ceramic material and preparation method and application thereof

Also Published As

Publication number Publication date
JP3083645B2 (en) 2000-09-04

Similar Documents

Publication Publication Date Title
JPH05345662A (en) Production of forsterite ceramic
US4785375A (en) Temperature stable dielectric composition at high and low frequencies
JP3285620B2 (en) Method for producing translucent yttrium-aluminum-garnet sintered body
US2305327A (en) Ceramic material made of magnesium titanate and method of preparing the same
JP4524411B2 (en) Dielectric porcelain composition
JPH08319162A (en) Dielectric ceramic and its production
JP3083638B2 (en) How to make forsterite porcelain
JPH0542762B2 (en)
JP3083681B2 (en) MgO-SiO2-based porcelain and method of manufacturing the same
JP2003026471A (en) Dielectric porcelain composition for high frequency and method of manufacturing the same
KR100486121B1 (en) A Method for Producing Aluminum titanate- Zirconium titanate Ceramics with Low Thermal Expansion Behavior
JPS6272556A (en) Manufacture of fine polycrystal mgal2o4 spinel
JPH06215626A (en) Microwave dielectric porcelain composition and manufacture thereof
JPH07201223A (en) Microwave dielectric porcelain composite, and its manufacture
JPH0261762B2 (en)
JPH0782025A (en) Translucent yttrium-aluminum-garnet sintered body and method for producing the same
JPH08198664A (en) Alumina-base sintered body and its production
JP3245234B2 (en) Method for producing translucent yttrium-aluminum-garnet sintered body
JP2005239446A (en) Porcelain composition and method for producing the same
JPS62275067A (en) Manufacture of silicon nitride sintered body
JP3291780B2 (en) Dielectric porcelain composition
JPH05178663A (en) Production of dielectric ceramic for high-frequency
JP3243873B2 (en) Dielectric porcelain composition
JPH05286769A (en) Production of dielectric ceramic material
JP2005047728A (en) Production method for dielectric porcelain composition

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 11

Free format text: PAYMENT UNTIL: 20110630

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110630

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120630

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

EXPY Cancellation because of completion of term