[go: up one dir, main page]

JPS61118609A - Apparatus for measuring non-spherical surface - Google Patents

Apparatus for measuring non-spherical surface

Info

Publication number
JPS61118609A
JPS61118609A JP23982184A JP23982184A JPS61118609A JP S61118609 A JPS61118609 A JP S61118609A JP 23982184 A JP23982184 A JP 23982184A JP 23982184 A JP23982184 A JP 23982184A JP S61118609 A JPS61118609 A JP S61118609A
Authority
JP
Japan
Prior art keywords
rotor
displacement detection
displacement
rotating body
rocking arm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP23982184A
Other languages
Japanese (ja)
Inventor
Katsumasa Yamaguchi
勝正 山口
Yukio Sakagaito
坂垣内 征雄
Takeo Sato
佐藤 健夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP23982184A priority Critical patent/JPS61118609A/en
Publication of JPS61118609A publication Critical patent/JPS61118609A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B5/00Measuring arrangements characterised by the use of mechanical techniques
    • G01B5/20Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

PURPOSE:To perform measurement with high accuracy, by such a simple structure that a slidable displacement detection apparatus is provided to the rocking arm attached to the highly accurate rotor provided to a base and calculating the position of a displacement detection apparatus on the rocking arm and the angle of the rotor. CONSTITUTION:The highly accurate rotor 2 provided to a base 1 is rotated by a motor 4 through a pulley 5 and a rotary angle is calculate from a rotary encoder 9. The shaking arm 6 horizontally rotated in integral relation to the rotor 2 is fixed to the rotor 2 and graduations 10 are provided to the rocking arm. A displacement detection apparatus 7 is slid on the rocking arm 6 along with a scale head 11 while contacted with the specimen 15 to be inspected held by a specimen holding member 14 and the the rotor 2 is rotated. The curve of the specimen 15 to be inspected in the plane as a displacement meter 8 by the value of the graduations 10 and the value from the rotary encoder 9. The height of the displacement meter 8 is successively changed to calculate the curve every time. By this method, the three-dimensional curved surface of a non-spherical surface can be calculated with high accuracy by a simple apparatus.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、被検試料の非球面形状を測定する非球面測定
装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an aspheric surface measuring device for measuring the aspheric shape of a test sample.

従来の技術 従来の非球面測定装置には、光学的に測定する2 ペー
ジ ものとして光の干渉縞やホログラムを用いる方式があり
、機械的に測定するものとして超精密三次元測定機があ
る。
2. Description of the Related Art Conventional aspherical surface measuring devices include systems that use optical interference fringes or holograms for optical measurements, and ultra-precision three-dimensional measuring machines for mechanical measurements.

発明が解決しようとする問題点 しかしながら上記光学的測定方式では、被検試料の非球
面形状において基準球面からの偏差量が大きくなると測
定が不可能となり、まだ被検試料の表面が粗面である場
合には測定不可能であるという問題があった。
Problems to be Solved by the Invention However, with the above-mentioned optical measurement method, if the amount of deviation from the reference spherical surface in the aspherical shape of the test sample becomes large, measurement becomes impossible, and the surface of the test sample is still rough. In some cases, there was a problem in that it was impossible to measure.

寸だ上記超精密三次元測定機ではレーザ測長機を用いて
三軸制御を行っているので、非常に高価なものとなって
いた。
The above-mentioned ultra-precision three-dimensional measuring machine uses a laser length measuring machine for three-axis control, making it extremely expensive.

そこで、本発明は、被検試料の基準球面からの偏差量が
大きい場合でも、壕だ被検試料の表面が粗面である場合
でも高精度に測定することができ、また構造が簡単でコ
ストの低下を図ることができるようにした非球面測定装
置を提供しようとするものである。
Therefore, the present invention enables highly accurate measurement even when the deviation amount of the test sample from the reference spherical surface is large, even when the surface of the test sample is rough, and has a simple structure and low cost. It is an object of the present invention to provide an aspheric surface measuring device that can reduce the .

問題点を解決するための手段 上記問題点を解決するための本発明の技術的な3、、。Means to solve problems Technical point 3 of the present invention for solving the above problems.

手段ハ、ベースと、このベースに高精度に回転し得るよ
うに支持された回転体と、この回転体を回転させる駆動
装置と、」二記回転体に取付けられた揺動腕と、この揺
動腕に沿って直線状に移動可能に支持された変位検出装
置と、上記回転体の回転角度を読取る読取手段と、上記
変位検出装置の揺動腕」二での位置を読取る読取手段と
、上記変位検出装置により検出される非球面の被検試料
を保持する試料保持部材とを備えたものである。
Means 3) a base, a rotating body supported by the base so as to be able to rotate with high precision, and a drive device for rotating the rotating body; 2) a swinging arm attached to the rotating body; a displacement detection device supported so as to be linearly movable along the movable arm; a reading means for reading the rotation angle of the rotating body; and a reading means for reading the position of the displacement detection device at the swing arm. and a sample holding member that holds an aspherical test sample to be detected by the displacement detection device.

作  用 この技術的手段による作用は次のように々る。For production The effects of this technical means are as follows.

変位検出装置を揺動腕に沿って移動させ、この位置を読
取手段により読取りながら回転体の中心と変位検出装置
の原点この距離と、被検試料の基準曲率半径が等しくな
るように設定する。次に被検試料を試料保持部材に保持
させる。次に回転体及び揺動腕を回転させ、変位検出装
置を移動させて被検試料の表面を走査する。而して上記
基準曲率半径と、変位検出装置により得た基準球面から
の偏差と、読取手段により得た回転体の回転角度、即ち
変位検出装置の移動角度より被検試料の非球面形状を測
定することができる。
The displacement detection device is moved along the swinging arm, and while reading this position with the reading means, the distance between the center of the rotating body and the origin of the displacement detection device is set to be equal to the reference radius of curvature of the test sample. Next, the sample to be tested is held by the sample holding member. Next, the rotating body and the swinging arm are rotated, and the displacement detection device is moved to scan the surface of the test sample. Then, the aspherical shape of the test sample is measured from the reference radius of curvature, the deviation from the reference spherical surface obtained by the displacement detection device, and the rotation angle of the rotating body obtained by the reading means, that is, the movement angle of the displacement detection device. can do.

実施例 以下、本発明の実施例を図面に基づいて詳細に説明する
。第1図及び第2図に示すようにベース1の中央部に回
転体として回転テーブル2が支持部材3により高精度で
回転可能に支持されている。
Embodiments Hereinafter, embodiments of the present invention will be described in detail based on the drawings. As shown in FIGS. 1 and 2, a rotary table 2 as a rotating body is rotatably supported by a support member 3 at the center of a base 1 with high precision.

この回転テーブル2はベース1上に取付けられた駆動源
4及び伝達機構5よりなる駆動装置により回転される。
The rotary table 2 is rotated by a drive device including a drive source 4 and a transmission mechanism 5 mounted on the base 1.

回転テーブル2上には揺動腕6の中央部が取付けられて
回転テーブル2と一体に回転するととができる。揺動腕
6上には変位検出装置7がこの揺動腕6に沿って直線状
に移動可能に支持されている。この変位検出装置7はそ
の内部に変位計8が組込寸れている。ベース1の中央部
下面には回転テーブル2に連繋された読取手段であるロ
ータリーエンコーダー9が取付けられ、このロータリー
エンコーダー9により回転テーブル2の回転角度、即ち
変位検出装置7の変位計8の移動角度を読取ることがで
きる。変位検出装置7の6ページ 位置の読取手段として揺動腕6の側面にリニヤスケール
10が、変位検出装置7の側方にリニヤスケールヘッド
11がそれぞれ取付けられている。
The central part of the swinging arm 6 is mounted on the rotary table 2 so that it can rotate together with the rotary table 2. A displacement detection device 7 is supported on the swing arm 6 so as to be movable linearly along the swing arm 6. This displacement detecting device 7 has a displacement gauge 8 incorporated therein. A rotary encoder 9, which is a reading means connected to the rotary table 2, is attached to the lower surface of the center of the base 1, and the rotary encoder 9 determines the rotation angle of the rotary table 2, that is, the movement angle of the displacement meter 8 of the displacement detection device 7. can be read. A linear scale 10 is attached to the side of the swinging arm 6 as a reading means for the 6th page position of the displacement detector 7, and a linear scale head 11 is attached to the side of the displacement detector 7.

これらリニヤスケール10とリニヤスケールヘッド11
により変位検出装置7の揺動腕6に対する位置を読取る
ことができる。ベース10両端部には支柱12が立設さ
れ、これら支柱12間には水平方向に案内部材13が架
設されている。この案内部材13には試料保持部材14
が案内部材13に沿って直線状に移動可能に支持されて
いる。この試料保持部材14には被検試料15が上記変
位計8に対向するように取外し可能に保持される。
These linear scales 10 and linear scale heads 11
The position of the displacement detection device 7 with respect to the swinging arm 6 can be read by this. Supports 12 are erected at both ends of the base 10, and a guide member 13 is horizontally installed between these supports 12. This guide member 13 includes a sample holding member 14.
is supported so as to be linearly movable along the guide member 13. A test sample 15 is removably held in the sample holding member 14 so as to face the displacement meter 8 .

次に上記実施例の作用について説明する。変位検出装置
7を揺動腕6に沿って移動させ、この位置をリニヤスケ
ール10とリニヤスケールヘッド11で読取りながら回
転テーブル2及び揺動腕6の中心位置16と変位検出装
置7の変位計8の原点この距離と、被検試料150基準
曲率半径R(第3図参照)が等しくなるように設定する
。次に被検試料15を試料保持部材14に保持させ、6
ページ 被検試料16が変位計8に接触し、変位側8の読取数値
が零に々るまで試料保持部材14を案内部材13に沿っ
て移動させる。次に駆動源4の駆動により動力伝達機構
5を介して回転テーブル2及び揺動腕6を回転させ、こ
れに伴い第3図に示すように変位計8を基準球面17に
沿って移動させ、この変位計8により被検試料15の表
面を走査する。この走査により基準曲率半径Rを有する
被検試料15に対する変位計8の移動角度θにおける基
準球面17からの偏差δを変位計8の出力から得ること
ができる。そして変位計8の移動角度θは回転テーブル
2の回転角度θとしてロータリーエンコーダー9の出力
から得ることができる。従って上記基準曲率半径R9回
転角度θ及び偏差δにより第4図に示すようへに測定結
果を得ることができる。
Next, the operation of the above embodiment will be explained. The displacement detection device 7 is moved along the swinging arm 6, and while reading this position with the linear scale 10 and the linear scale head 11, the center position 16 of the rotary table 2 and the swinging arm 6 and the displacement meter 8 of the displacement detection device 7 are detected. This distance is set to be equal to the reference radius of curvature R of the test sample 150 (see FIG. 3). Next, the test sample 15 is held by the sample holding member 14, and
The sample holding member 14 is moved along the guide member 13 until the page test sample 16 contacts the displacement meter 8 and the read value on the displacement side 8 reaches zero. Next, the rotary table 2 and the swinging arm 6 are rotated by the driving of the drive source 4 via the power transmission mechanism 5, and accordingly the displacement meter 8 is moved along the reference spherical surface 17 as shown in FIG. This displacement meter 8 scans the surface of the test sample 15. Through this scanning, the deviation δ from the reference spherical surface 17 at the movement angle θ of the displacement meter 8 with respect to the test sample 15 having the reference radius of curvature R can be obtained from the output of the displacement meter 8. The movement angle θ of the displacement meter 8 can be obtained from the output of the rotary encoder 9 as the rotation angle θ of the rotary table 2. Therefore, the measurement results as shown in FIG. 4 can be obtained using the reference radius of curvature R9, the rotation angle θ, and the deviation δ.

そして試験の結果、被検試料15の非球面形状を0.2
μm以下の高精度で測定することができ鮎上記実施例に
あっては、第1図における中心点16から有半の領域1
では被検試料の凸面を測定7 ベーン することができ、中心点16から左半の領域■では被検
試料の凹面を測定することができる。
As a result of the test, the aspherical shape of test sample 15 was 0.2
In the above embodiment, a half area 1 from the center point 16 in FIG.
In this case, the convex surface of the test sample can be measured (7 vane), and the concave surface of the test sample can be measured in the region (2) on the left half from the center point 16.

なお、変位計8は非接触変位計を用いることにより被検
試料15の非球面形状を非接触で測定することができ、
このとき上記構成からも明らかなように変位計8が常に
試料面に対し法線方向に向くので、非接触変位計に特有
の試料面の傾きによる誤差を無くすることができる。
Note that the displacement meter 8 can measure the aspherical shape of the test sample 15 without contact by using a non-contact displacement meter.
At this time, as is clear from the above configuration, since the displacement meter 8 always faces in the normal direction to the sample surface, it is possible to eliminate errors due to the inclination of the sample surface, which is unique to non-contact displacement meters.

発明の効果 以上の説明より明らかなように本発明によれば、高精度
で回転する回転体と一体に回転する揺動腕に被検試料の
基準曲率半径に設定し得るように変位検出装置を支持し
、回転体と揺動腕の回転に伴い変位検出装置により試料
保持部材に保持した被検試料の非球面を走査し、回転体
の回転角度と変位検出装置の位置をそれぞれ読取手段に
より読取り、非球面の偏差を変位検出装置により読取る
ようにしている。従って非球面の偏差量が大きい場合で
も、捷だ被検試料の表面が粗面である場合でも高精度で
測定することができ、壕だ構造が簡単であるので、コス
トの低下を図ることができる。
Effects of the Invention As is clear from the above explanation, according to the present invention, a displacement detection device is provided on the swinging arm that rotates together with the rotating body that rotates with high precision so as to be able to set the reference radius of curvature of the test sample. As the rotating body and swing arm rotate, the displacement detection device scans the aspherical surface of the sample held in the sample holding member, and the rotation angle of the rotating body and the position of the displacement detection device are read by the reading means. , the deviation of the aspherical surface is read by a displacement detection device. Therefore, even if the deviation amount of the aspherical surface is large, even if the surface of the test sample is rough, it can be measured with high accuracy.The trench structure is simple, so it is possible to reduce costs. can.

【図面の簡単な説明】[Brief explanation of drawings]

第1図乃至第4図は本発明の非球面測定装置の一実施例
を示し、第1図は一部切欠側面図、第2図は一部切欠平
面図、第3図は測定原理説明図、第4図は測定結果を示
す図である。 1・・・・ベース、2・・・・回転テーブル(回転体)
、4・・・・駆動源、6・・・・揺動腕、7・・・・変
位検出装置、8・・・・・・変位計、9・・・・・・ロ
ータリーエンコーダー(読取手段)、10・・・・・リ
ニヤスケール(読取手段)、11・・・・・・リニヤス
ケールヘッド(読取手段)、13・・・・・・案内部材
、14・・・・・試料保持部材、15・・・・・・被検
試料。
Figures 1 to 4 show an embodiment of the aspherical surface measuring device of the present invention, with Figure 1 being a partially cutaway side view, Figure 2 being a partially cutaway plan view, and Figure 3 being a diagram explaining the measurement principle. , FIG. 4 is a diagram showing the measurement results. 1...Base, 2...Rotary table (rotating body)
, 4... Drive source, 6... Rocking arm, 7... Displacement detection device, 8... Displacement meter, 9... Rotary encoder (reading means) , 10... Linear scale (reading means), 11... Linear scale head (reading means), 13... Guide member, 14... Sample holding member, 15・・・・・・Test sample.

Claims (1)

【特許請求の範囲】[Claims] ベースと、このベースに高精度に回転し得るように支持
された回転体と、この回転体を回転させる駆動装置と、
上記回転体に取付けられた揺動腕と、この揺動腕に沿っ
て直線状に移動可能に支持された変位検出装置と、上記
回転体の回転角度を読取る読取手段と、上記変位検出装
置の揺動腕上での位置を読取る読取手段と、上記変位検
出装置により検出される非球面の被検試料を保持する試
料保持部材とを備えたことを特徴とする非球面測定装置
a base, a rotating body supported by the base so as to be able to rotate with high precision, and a drive device that rotates the rotating body;
a swinging arm attached to the rotating body; a displacement detecting device supported so as to be linearly movable along the swinging arm; a reading means for reading the rotation angle of the rotating body; An aspherical surface measuring device comprising: a reading means for reading a position on a swinging arm; and a sample holding member for holding an aspherical test sample to be detected by the displacement detecting device.
JP23982184A 1984-11-14 1984-11-14 Apparatus for measuring non-spherical surface Pending JPS61118609A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23982184A JPS61118609A (en) 1984-11-14 1984-11-14 Apparatus for measuring non-spherical surface

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23982184A JPS61118609A (en) 1984-11-14 1984-11-14 Apparatus for measuring non-spherical surface

Publications (1)

Publication Number Publication Date
JPS61118609A true JPS61118609A (en) 1986-06-05

Family

ID=17050348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23982184A Pending JPS61118609A (en) 1984-11-14 1984-11-14 Apparatus for measuring non-spherical surface

Country Status (1)

Country Link
JP (1) JPS61118609A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288130A (en) * 2010-08-10 2011-12-21 南通大学 Curve displacement sensor system and application thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589012A (en) * 1981-07-08 1983-01-19 Tokyo Seimitsu Co Ltd Measuring device for arc shape
JPS59200911A (en) * 1983-04-28 1984-11-14 Toshiba Corp Device for measuring size of disc

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS589012A (en) * 1981-07-08 1983-01-19 Tokyo Seimitsu Co Ltd Measuring device for arc shape
JPS59200911A (en) * 1983-04-28 1984-11-14 Toshiba Corp Device for measuring size of disc

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102288130A (en) * 2010-08-10 2011-12-21 南通大学 Curve displacement sensor system and application thereof

Similar Documents

Publication Publication Date Title
US5669150A (en) Coordinate measuring machine having articulated arm
JPH03180711A (en) Probe and method, apparatus and guide means for calibrating continuously measuring probe
US5649368A (en) Method for calibrating a coordinate measuring apparatus having two pivot axes
CN109520417A (en) Lathe geometric error and turntable corner position error calibrating installation and method
US6425188B1 (en) Optoelectric apparatus for the dimension and/or shape checking of pieces with complex tridimensional shape
JPS63292005A (en) Detecting apparatus of amount of movement corrected from running error
US5616917A (en) Device for measuring an angle between pivotally-connected members
JP3531882B2 (en) Measurement error correction device for CMM
JPS61118609A (en) Apparatus for measuring non-spherical surface
CN100398990C (en) Rotary Ball Diameter Measuring Instrument and Measuring Method
JP5032741B2 (en) 3D shape measuring method and 3D shape measuring apparatus
JP4646520B2 (en) Three-dimensional shape measuring method and apparatus
US4520569A (en) Component measuring instrument
CN115507722B (en) A device for measuring geometric dimensions of blades
CN207894371U (en) A kind of multi-faceted altimeter of precision workpiece
JPH08233686A (en) Eccentricity measuring method and measuring device of aspheric surface
JPS63128219A (en) Aspherical shape measuring machine
JP4072265B2 (en) Rotation axis tilt measurement method
JPH04268433A (en) Measuring apparatus for aspherical lens eccentricity
JP2579726B2 (en) Contact probe
CN110017795A (en) A kind of relative type motor swing-arm profilometry and detection method for mirror surface inspection
JPS5870101A (en) Measuring device for radius of curvature
JPH09166420A (en) Outer diameter measuring device for circular members
JP3497126B2 (en) Measuring instrument spindle support structure
US3885318A (en) Surface profile testing instrument