JPS5870101A - Measuring device for radius of curvature - Google Patents
Measuring device for radius of curvatureInfo
- Publication number
- JPS5870101A JPS5870101A JP16917981A JP16917981A JPS5870101A JP S5870101 A JPS5870101 A JP S5870101A JP 16917981 A JP16917981 A JP 16917981A JP 16917981 A JP16917981 A JP 16917981A JP S5870101 A JPS5870101 A JP S5870101A
- Authority
- JP
- Japan
- Prior art keywords
- measuring
- curvature
- stylus
- measured
- electric micrometer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 8
- 239000010959 steel Substances 0.000 claims abstract description 8
- 238000005259 measurement Methods 0.000 claims description 16
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 claims description 6
- 241001422033 Thestylus Species 0.000 abstract description 10
- 238000001514 detection method Methods 0.000 description 4
- 238000006073 displacement reaction Methods 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005489 elastic deformation Effects 0.000 description 2
- 238000005452 bending Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B5/00—Measuring arrangements characterised by the use of mechanical techniques
- G01B5/20—Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures
- G01B5/213—Measuring arrangements characterised by the use of mechanical techniques for measuring contours or curvatures for measuring radius of curvature
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- A Measuring Device Byusing Mechanical Method (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Description
【発明の詳細な説明】
本発明は玉軸受の軌道などの円弧又は円の曲率半径を正
確かつ迅速に測定する測定装置に関する。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a measuring device that accurately and quickly measures the radius of curvature of an arc or circle such as a ball bearing orbit.
従来円や円弧形状等の曲率半径を測るのに測微計など回
転式の形状測定機が一般に使用されている。このような
回転式の測定機で扛、測定針の回転半径を被測足面の曲
率半径に合致させ、オた測定針のり転中心すなわち基準
回転スピンドルの回転中心位置を被測足面の曲率中心位
置に合致させる作業を行なわなければならなかった。つ
まり基準回転スピンドルを回転させながら、測定針と被
測足面との相対変位が目的とする精度に達するまで、順
次測定様の倍率を上げながら、芯出しと回転半径の調整
作業を繰返し十分に合致したところて、被測足面の曲率
半径の測定に入るが、その作業は非常に煩雑で時間もか
がり、更に熟練を要した。またどのような形状としてト
レースするかにより、測定結果に測定者の個人差が影響
し、特に玉軸受の軌道は円の約十の円弧を対象とするた
め・目撃半径の調整次第で測定値力゛大幅に変岱。Conventionally, rotary shape measuring instruments such as micrometers have been generally used to measure the radius of curvature of circles, arc shapes, etc. With such a rotary measuring device, the rotation radius of the measuring needle matches the radius of curvature of the foot surface to be measured, and the center of rotation of the measuring needle, that is, the rotation center position of the reference rotating spindle, is set to the curvature of the foot surface to be measured. I had to do some work to match the center position. In other words, while rotating the reference rotating spindle, the centering and rotation radius adjustments are repeated repeatedly while increasing the measurement magnification until the relative displacement between the measuring needle and the foot surface to be measured reaches the desired accuracy. When a match is reached, the radius of curvature of the foot surface to be measured is measured, but the work is extremely complicated and time-consuming, and requires skill. Also, depending on what kind of shape is traced, individual differences in the measurer will affect the measurement result.In particular, since the orbit of a ball bearing covers about ten arcs of a circle, the measured value force may vary depending on the adjustment of the sighting radius. ``Significant change.
する。さらに同一箇所を同じ測定者が再び測定した場合
の再現性も悪く、実際に曲率半径が約4藺の玉軸受外輪
を用いて、タリロンドを使用した場合の繰返し測定誤差
を調査したところ、測定値の標準偏差値が1.5〜8P
と大きくばらつくことが判明した。do. Furthermore, the reproducibility is poor when the same point is measured again by the same person, and when we actually investigated the repeat measurement error when using a Talyrond using a ball bearing outer ring with a radius of curvature of about 4, we found that the measured value The standard deviation value of is 1.5~8P
It was found that there was a large variation.
これらの点を解決する來め〆、゛近年測定−からの出力
電圧全電気的に処理することにより芯出し及び半径合せ
作業を自動化する試みもなさ扛ているが、これらは測定
針と被測定面の相対変位が測定機検知範囲のごく狭い部
分に入っている場合にのみ可能であり、その範囲に入れ
るまでにはやはり手動動作で芯出しを行なわな°すnば
ならない。In order to solve these problems, there have been no attempts in recent years to automate the centering and radius alignment work by processing the output voltage from measurement entirely electrically; This is possible only if the relative displacement of the surface falls within a very narrow range of the measuring device's detection range, and manual centering must still be performed before it falls within that range.
また従来のものにいずれの場合も複雑な機械装置や電気
回路を必要としているため装置が高価とな!ll″また
熟練者でないと操作できないという欠点があった。In addition, conventional methods require complex mechanical devices and electrical circuits, making them expensive! Another drawback was that it could only be operated by an experienced person.
また、さらに例えば玉軸受の外輪で、外周に大きなフラ
ンジが付いたものとか、軌道が端面から深いところに位
置する場合は、回転させる触針が被測定物のフランジと
か端面のような周囲に干渉してしまい、測定が不可能と
なる。この解決案として周囲に干渉しないよう長く曲り
くねった特別の触針全製作することが考えられるが、こ
のものでに触針の振れを米たし、精度の高い測定が困難
となる。In addition, for example, if the outer ring of a ball bearing has a large flange on the outer periphery, or if the raceway is located deep from the end surface, the rotating stylus may interfere with the flange or end surface of the object to be measured. This makes measurement impossible. One possible solution to this problem would be to manufacture a special stylus that is long and curved so as not to interfere with the surroundings, but this would cause the stylus to run out, making highly accurate measurements difficult.
本発明はこのような従来の問題点を解決するためになさ
れたもので、固定された2個の鋼球と、その中央におい
て鋼球の中心を結ぶ直線に対して垂直方向に円滑に出入
りする測定針とが配置された3点式の測定子と測定針の
移動量を検出するレバ一式電気マイクロメータ等の触針
金具えた測定具を有し、こ扛らが自在継手に保持キ扛て
いて、自在継手の他端と共に装置の本体に固定されてい
る受台に被測定物を置き、測定子をその測定面に接触さ
せたときのマスターゲージに対する測定針の出入り量か
ら簡単な計算で測定面の曲率半径を求めるようにした円
および円弧等の曲率半径の測定装置に関するものである
。The present invention was made in order to solve such conventional problems, and has two fixed steel balls that smoothly move in and out at the center in a direction perpendicular to a straight line connecting the centers of the steel balls. It has a three-point measuring element with a measuring needle arranged on it, and a measuring tool equipped with a stylus metal such as a lever-set electric micrometer that detects the amount of movement of the measuring needle, and these are held in a universal joint. A simple calculation can be made from the amount of movement of the measuring needle into and out of the master gauge when the object to be measured is placed on a pedestal that is fixed to the main body of the device along with the other end of the universal joint, and the measuring point is brought into contact with the measuring surface. The present invention relates to a device for measuring the radius of curvature of circles, arcs, etc., which determines the radius of curvature of a measurement surface.
次に本発明により被測定物の円又は円弧等の曲率半径を
測定する原理について説明する。Next, the principle of measuring the radius of curvature of a circle or arc of an object to be measured according to the present invention will be explained.
第1図に示すように半径Rの円弧部に直径りの円を2個
接触させ、円どうしの中心距離24とし、2個の円の接
線と、この接線に平行な円弧への接線との小さい方の距
離’6hとすると、距離、2hに(1)また(1]式i
Rについて解くと(11)式となる。As shown in Figure 1, two circles of diameter are brought into contact with an arc of radius R, the center distance between the circles is 24, and the tangents of the two circles and the tangent to the arc parallel to these tangents are If the smaller distance is '6h, then (1) or (1) equation i for the distance, 2h.
Solving for R yields equation (11).
h $2 D
””2+8h”2 ・・・・・・・・・・・・・・・
(if)上記の原理を検出部に適用したものを第2図
に示しである。第2図において直径りの球(1)を2個
Iの距離をおいて板(2)等に固定し、2個の球(11
の中心を通る平面内の中央に、2個の球の接線に垂直方
向に円滑に出入りする測定針(3)を配置して3点式測
定子(嘔)が構成されている。この測定子(4)の測定
針(3)および2個の球(1)を曲率半径Rの円又は円
弧に垂直に接触させたときの、球(1)に対する測定針
(3)の突出量ht!(1)式で求められる。h $2 D ””2+8h”2 ・・・・・・・・・・・・・・・
(if) FIG. 2 shows an application of the above principle to a detection section. In Figure 2, two diameter balls (1) are fixed to a plate (2) etc. at a distance of I, and two balls (11
A three-point measuring tip (3) is constructed by arranging a measuring needle (3) that smoothly moves in and out in a direction perpendicular to the tangents of the two spheres at the center of a plane passing through the center of the ball. The amount of protrusion of the measuring needle (3) with respect to the ball (1) when the measuring needle (3) of this measuring element (4) and the two balls (1) are brought into perpendicular contact with a circle or arc with a radius of curvature R ht! It is determined by equation (1).
曲率半径がR十ΔRの円または円弧の場合、突出量か△
h変化したとすれば、(iii)式が成立する。In the case of a circle or arc with a radius of curvature R + ΔR, the amount of protrusion or △
If h changes, equation (iii) holds true.
なお、被測定面は凸面であっても上述の一連の式は成立
し、Rは負の値をとる。Note that even if the surface to be measured is a convex surface, the above-mentioned series of equations hold true, and R takes a negative value.
第3図は本発明の測定装置の一実施例を示している。3
点式測定子(4)の下向には2個の鋼球(1)が固定さ
れ鋼球(1)間の中央の測定針(3)の上端にはレバ一
式電気マイクロメーターヘッド(5)の触針(切が当接
し、測定針(3)の出入り量は電気マイクロメーターヘ
ッド等の触針(6)で検出さ扛電気マイクロメータの指
示計(7)に表示さnる。3点式測定子(4)と、測定
針(3)の移動量を検出する触針(6) e具えた電気
マイクロメーターヘッド(5)とから構成される測定具
は自在継手(8)の一端に取付けられ、自在継手(8)
のもう一方の端部は本体(9)に取付けられている。FIG. 3 shows an embodiment of the measuring device of the present invention. 3
Two steel balls (1) are fixed to the downward direction of the point type measuring head (4), and a lever-equipped electric micrometer head (5) is attached to the upper end of the measuring needle (3) in the center between the steel balls (1). The stylus (cut) contacts the measuring needle (3), and the amount of inflow and outflow of the measuring needle (3) is detected by the stylus (6) of the electric micrometer head, etc., and is displayed on the indicator (7) of the electric micrometer. 3 points A measuring tool consisting of a type measuring head (4) and an electric micrometer head (5) equipped with a stylus (6) that detects the amount of movement of the measuring needle (3) is attached to one end of the universal joint (8). Mounted and universal (8)
The other end of is attached to the main body (9).
本体(9) Kはまたvまたは平面形状の受台α0が取
付けられていて被測定物C11が受台αQの上に置かれ
るようになっている。The main body (9) K is also attached with a v or planar pedestal α0, so that the object to be measured C11 is placed on the pedestal αQ.
本発明の測定装置で曲率半径を測定するにはまず受台α
0の上に図示しないあらかじめ曲率半径がわかっている
マスターゲージを載置して3点式測定子(4)をのせて
測定針(3)ヲマスターゲージの軌道など測定箇所に接
触させて球(1)の接線からの突出量りにおけるレバ一
式電気マイクロメータの指示計の検出量を零セントする
。次に被測定物Q1t″受台α1上に置き、測定針(3
)を@測定面に接触させれば、自在継手(8)で支持さ
れた部分の自重だけで3点式測定子(4)に最も安定し
た測足状・態に落ち着く。To measure the radius of curvature with the measuring device of the present invention, first
Place a master gauge (not shown) whose radius of curvature is known in advance on top of the ball, place the 3-point probe (4) on top of the ball ( 1) Set the detection amount of the indicator of the lever set electric micrometer in measuring the protrusion from the tangent line to zero cents. Next, place the object to be measured Q1t'' on the pedestal α1, and place the measuring needle (3
) is brought into contact with the measuring surface, the three-point measuring head (4) will settle into the most stable foot measuring state/condition with only the weight of the part supported by the universal joint (8).
そしてマスターゲージに対する値△hl電気マイクロメ
ータ指示計(7)から読み取り、(iii)式で曲率を
求めるか、あるいは指示計(7)の出力を直接コンピュ
ータに入力して曲率を計算す扛ばよい。Then, read the value △hl for the master gauge from the electric micrometer indicator (7) and calculate the curvature using formula (iii), or input the output of the indicator (7) directly into a computer to calculate the curvature. .
本発明によtば、測定針(3)の移動量をレバ一式の電
気マイクロメータ等の触針(6)で検出すること(1つ
により第3図に示すように被測足物柑である玉軸受外輪
軌道等の内面の測定が可能となり、また軌道の位置がさ
らに奥まったところにある場合は測定子(4)の首を長
くすればよいことになる。測定針(3)の移動量を検出
する触針(6)はレバ一式電気マイクロメータの触針の
他スモールテスターを用いるか、またはてこを用いて測
定針(3)の変位を90゛3折り曲げあと直線方向に検
出してもよい。また、大径の軸受外輪とか、内輪のよう
に被測定面が外筒にあるものについては、被測定面の曲
率中心方向に空間的に十分余裕があるので測定針(3)
の移動蓋を直接ダイヤルケージなどで検出してもよいこ
とはいう1でもない。According to the present invention, the amount of movement of the measuring needle (3) is detected by a stylus (6) such as an electric micrometer of a set of levers. It becomes possible to measure the inner surface of a certain ball bearing outer ring raceway, etc., and if the raceway is located further back, the neck of the measuring point (4) can be made longer.Movement of the measuring needle (3) The stylus (6) for detecting the amount can be used with a small tester other than the stylus of a lever-equipped electric micrometer, or by using a lever to detect the displacement of the measuring needle (3) in the linear direction after bending it 90°3. Also, for large-diameter bearings where the surface to be measured is in the outer cylinder, such as the outer ring or inner ring, there is sufficient space in the direction of the center of curvature of the surface to be measured, so use the measuring needle (3).
It is also possible to detect the moving lid directly with a dial cage or the like.
又、本発明では測定子(4)を自在継手(8)で保持し
ているので、次のような効果を奏することができる。Further, in the present invention, since the measuring element (4) is held by the universal joint (8), the following effects can be achieved.
1)自在継手で支持された部分の自重だけで測定が可能
なため、測定子先端の球(1)の測定荷重による弾性変
形量が一定となり、測定条件が′同じになるため、測定
荷重による測定誤差が生じない。1) Since measurement is possible using only the weight of the part supported by the universal joint, the amount of elastic deformation due to the measurement load of the ball (1) at the tip of the probe is constant, and the measurement conditions are the same, so the amount of elastic deformation due to the measurement load is No measurement errors occur.
2)また3点式測定子(4)は自在継手のYY軸と22
軸の交点n’2中心とした球面上を移動するため、例え
ば玉軸受内輪軌道のような馬の枝状の曲面であっても横
方向に清り落ちることなく、安定した測定状態が保てる
。2) Also, the 3-point measuring head (4) is connected to the YY axis of the universal joint and 22
Since it moves on a spherical surface centered on the intersection point n'2 of the axes, stable measurement conditions can be maintained without lateral deterioration even on a horse-branch-shaped curved surface such as the inner raceway of a ball bearing.
3)さらに、■ブロック状の受台で被測定物を保持する
ことにより、自在継手(8)と相俟って測定値の繰返し
再現性がよく、実験によると0.3μm以内となる。ま
た多数の被測定物を連続して測定する場合の一個あたり
所要時間は、従来10〜15分もかかつていたが本発明
によると、5秒前後で測定でき、ラインでの曲率半径の
連続測定が可能となる。3) Furthermore, by holding the object to be measured with a block-shaped pedestal, together with the universal joint (8), the repeatability of the measured value is good, and according to experiments, it is within 0.3 μm. In addition, when measuring a large number of objects in succession, the time required for each object conventionally took 10 to 15 minutes, but according to the present invention, it can be measured in about 5 seconds, allowing continuous measurement of the radius of curvature on a line. becomes possible.
さらに図4に示すように、三点式測定子(4)と被測定
物(11)を被測定物α〜のほぼ曲率中心1わりに相対
的に揺動回転できる構造とすれば、形状のくずnが検出
されるばかりでなく、アンギュラ玉軸受など傾むいた位
置にある軌道の曲率半径が容易に測定できるといった効
果を奏する。Furthermore, as shown in Fig. 4, if the three-point measuring head (4) and the object to be measured (11) are structured to be able to swing and rotate relative to each other about approximately the center of curvature of the object to be measured α~, the shape of the scrap n will be reduced. Not only can it be detected, but it also has the effect of easily measuring the radius of curvature of a track in an inclined position, such as in an angular contact ball bearing.
被測定物(lI漫の曲率中心と揺動回転の中心(0)が
多少ずれていても、三点式測定子(4)ハ自在継手に支
えらnているため、変位に十分追従し、さらに三点式測
定子(4)の被測定物との接触部は球面のため、良好な
滑りが得られるので安定した測定状態が保てる。Even if the center of curvature of the object to be measured (lI) and the center of oscillating rotation (0) are slightly misaligned, the three-point measuring head (4) is supported by the universal joint, so it can sufficiently follow the displacement. Since the contact portion of the probe (4) with the object to be measured is a spherical surface, good sliding can be obtained and a stable measurement state can be maintained.
以上のような次第で従来の触針の回転半径と回転中心を
繰返し微調整して曲率半径を測可するものに較べて、本
発明によると非常に短時間で熟練を必要とせすかつ個人
差を伴わないで形状も含めて曲率半径の高精度の測定か
可能となる。As described above, compared to the conventional method in which the radius of curvature can be measured by repeatedly fine-tuning the rotation radius and center of rotation of the stylus, the present invention requires skill in a very short period of time and reduces individual differences. It becomes possible to measure the radius of curvature with high precision, including the shape, without the need for
第1図は本発明の詳細な説明図、第2図および第4図に
本発明の原理を検出部に適用したものの説明図、第3図
は本発明の実施例の一部を切欠いた斜視図である。
(1)・・・鋼 球 (3)・・・測定針(4)
・・・三点式測定子 (6)・・・触 針(8)・・・
自在継手 (9)・・・本 体Ql)、・、受 台
91・・・被測定物代理人弁理士 河 内
潤 二
!PJ1間
寮2日
¥3図Fig. 1 is a detailed explanatory diagram of the present invention, Figs. 2 and 4 are explanatory diagrams of the principle of the present invention applied to a detection section, and Fig. 3 is a partially cutaway perspective view of an embodiment of the present invention. It is a diagram. (1)...Steel ball (3)...Measuring needle (4)
...Three-point probe (6)...Stylus (8)...
Universal joint (9)...Main body Ql), cradle 91...Patent attorney representing the object to be measured Kawachi
Junji! PJ1 dormitory 2 days ¥3 figure
Claims (1)
心を結ぶ線に対して垂直方向に出入自在の測定針を設け
た3点式測定子と前記測定針の他端に接して測定針の移
動量を検出する触針とを有する測定具を本体に一端を固
定された自在継手の他端に固定し、本体に固定さnた被
測定物載置用の受台に前記測定針を対置したことを特徴
とする円弧又は円の曲率半径測定装置A three-point measuring head is provided with a measuring needle that can freely move in and out in a direction perpendicular to a line connecting the centers of both steel balls at the center of the interval between two fixed steel balls, and the other end of the measuring needle is in contact with the measuring needle. A measuring tool having a stylus for detecting the amount of movement of the measuring needle is fixed to the other end of a universal joint whose one end is fixed to the main body, and the measurement device is placed on a pedestal for placing the object to be measured which is fixed to the main body. A device for measuring the radius of curvature of an arc or circle, characterized by having needles placed opposite each other.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16917981A JPS5870101A (en) | 1981-10-22 | 1981-10-22 | Measuring device for radius of curvature |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP16917981A JPS5870101A (en) | 1981-10-22 | 1981-10-22 | Measuring device for radius of curvature |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS5870101A true JPS5870101A (en) | 1983-04-26 |
Family
ID=15881705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP16917981A Pending JPS5870101A (en) | 1981-10-22 | 1981-10-22 | Measuring device for radius of curvature |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5870101A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6175813B1 (en) | 1998-07-29 | 2001-01-16 | Kaydon Corporation | Circumferential diameter measuring apparatus and method |
CN106403761A (en) * | 2016-12-15 | 2017-02-15 | 陕西理工学院 | Detection tool suitable for rotary support inner raceways of multiple sizes |
CN107314731A (en) * | 2017-08-30 | 2017-11-03 | 平湖市宇达精密机械有限公司 | Detect the cubing and the detection method using the cubing of the cage out star wheel equation of the ecentre |
JP2021007954A (en) * | 2019-06-28 | 2021-01-28 | 大同マシナリー株式会社 | Bending system and curvature measuring device |
-
1981
- 1981-10-22 JP JP16917981A patent/JPS5870101A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6175813B1 (en) | 1998-07-29 | 2001-01-16 | Kaydon Corporation | Circumferential diameter measuring apparatus and method |
CN106403761A (en) * | 2016-12-15 | 2017-02-15 | 陕西理工学院 | Detection tool suitable for rotary support inner raceways of multiple sizes |
CN107314731A (en) * | 2017-08-30 | 2017-11-03 | 平湖市宇达精密机械有限公司 | Detect the cubing and the detection method using the cubing of the cage out star wheel equation of the ecentre |
JP2021007954A (en) * | 2019-06-28 | 2021-01-28 | 大同マシナリー株式会社 | Bending system and curvature measuring device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4866643A (en) | Method for automatic compensation of probe offset in a coordinate measuring machine | |
KR910005508B1 (en) | Computerized Kinetic Transducer Link System and Method for Measuring and Analyzing NC Machine Tool Precision Using the System | |
CN101539413B (en) | Method for calibrating the geometry of a multi-axis metrology system | |
US5671541A (en) | Accuracy verification devices for coordinate measuring machines | |
CN109737884B (en) | On-line monitoring device and method for static and dynamic deformation of shaft parts | |
CN107340098A (en) | A kind of four-point method measurement quality, barycenter and the inclined method of matter | |
US5649368A (en) | Method for calibrating a coordinate measuring apparatus having two pivot axes | |
EP0312761A1 (en) | Device for checking linear dimensions of parts | |
US6175813B1 (en) | Circumferential diameter measuring apparatus and method | |
JP2002005653A (en) | Method and apparatus for measurement of screw dimension | |
JPS5870101A (en) | Measuring device for radius of curvature | |
JPS608701A (en) | Portable inspecting and measuring device inspecting tooth form and tooth race of gear and inspecting and measuring method | |
CN112747666A (en) | Shafting is detection device in school | |
CN112945046A (en) | Plug gauge calibrating tool and method | |
CN105180779A (en) | Instrument and method for measuring angle deviation between inner and outer raceways of ferrule of integrated intersected cylindrical roller bearing | |
US3606686A (en) | Angular deviation gauge | |
JPH01202611A (en) | Three-dimensional measurement method and apparatus | |
JPS62135711A (en) | Measuring instrument for sphere | |
US7107695B2 (en) | Device and process for profile measurement | |
CN204963758U (en) | Inside and outside raceway angular discrepancy's of split type cross cylindrical roller bearing lasso measuring instrument | |
JPS63173908A (en) | Apparatus for measuring difference in level | |
CN218156016U (en) | High-precision grating measuring instrument | |
JP2603940B2 (en) | Calibration device for horizontal articulated robot | |
JPH0316009Y2 (en) | ||
JPH02159501A (en) | Dimensions measuring apparatus for spherical body |