JPS61117130A - Preparation of parent material for optical fiber - Google Patents
Preparation of parent material for optical fiberInfo
- Publication number
- JPS61117130A JPS61117130A JP23918784A JP23918784A JPS61117130A JP S61117130 A JPS61117130 A JP S61117130A JP 23918784 A JP23918784 A JP 23918784A JP 23918784 A JP23918784 A JP 23918784A JP S61117130 A JPS61117130 A JP S61117130A
- Authority
- JP
- Japan
- Prior art keywords
- target
- optical fiber
- porous
- base material
- preform
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
- C03B37/0142—Reactant deposition burners
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/60—Relationship between burner and deposit, e.g. position
- C03B2207/62—Distance
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/60—Relationship between burner and deposit, e.g. position
- C03B2207/66—Relative motion
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。(57) [Summary] This bulletin contains application data before electronic filing, so abstract data is not recorded.
Description
【発明の詳細な説明】
[発明の背景と目的]
本発明は、気相軸付(VAD)法による光ファイバ母材
の製造元法に関するものである。DETAILED DESCRIPTION OF THE INVENTION [Background and Objects of the Invention] The present invention relates to a method for manufacturing an optical fiber preform by a vapor deposition (VAD) method.
VAD法による光ファイバ母材の製造方法は著しくけ産
性にすぐれ広く知られている。この製造方法においては
、ベースガラスとなる5iCJ!を等の原料ガスと屈折
率を制御するためのGeCf4及びPOCJI3等の原
料ガスとを、固定された石英管バーナから酸水素ガスと
共に挿入し、酸水素炎等の熱により反応させてガラス微
粉末を生成させる。そして、この生成されたガラス微粉
末を、ターゲットの先端に順次堆積させると共に、ター
ゲット自身を回転させながら順次引き上げ、バーナとタ
ーゲット最先端のガラス微粉末の堆積面間の距離を一定
に保つように制御しながら多孔質母材(スートロッド)
を製造している。そして、多孔質母材最先端の堆積条件
の微妙な差により最終ガラスの半径方向あるいは長手方
向の屈折率分布を制御している。このため、バーナとタ
ーゲット最先端間の距離はもとより、その堆積条件は、
光ファイバ母材から製作される光ファイバの伝送特性、
特にマルチモード、グレーティド型光フ7・イバの伝送
帯域特性に大きな影響を及ぼすので重要である。The method of manufacturing an optical fiber preform by the VAD method is widely known for its excellent productivity. In this manufacturing method, 5iCJ! which becomes the base glass! Raw material gases such as GeCf4 and POCJI3 for controlling the refractive index are inserted together with oxyhydrogen gas from a fixed quartz tube burner, and reacted with heat from an oxyhydrogen flame to form glass fine powder. to be generated. Then, the generated glass fine powder is sequentially deposited on the tip of the target, and the target itself is rotated and pulled up one after another to keep the distance between the burner and the glass fine powder deposition surface at the tip of the target constant. Controlled porous matrix (soot rod)
is manufactured. The refractive index distribution in the radial or longitudinal direction of the final glass is controlled by subtle differences in the deposition conditions at the leading edge of the porous matrix. For this reason, not only the distance between the burner and the leading edge of the target but also the deposition conditions are
Transmission characteristics of optical fibers made from optical fiber base materials,
This is especially important because it has a large effect on the transmission band characteristics of multimode and graded optical fibers.
従来、この最先端部分の堆積条件を一定に調節するには
各種の方法が提案され、そして、例えば、最先端部の反
応温度制御に関しては、現在±1℃〜2℃の範囲に調節
できる技術はほぼ確立し再現性もよくなってきている。Conventionally, various methods have been proposed for adjusting the deposition conditions at the leading edge to a constant level, and, for example, with regard to controlling the reaction temperature at the leading edge, there is currently a technology that allows adjustment within the range of ±1°C to 2°C. has been almost established and reproducibility is improving.
しかし、多孔質母材の長尺化に伴い、ターゲット引上げ
機構、あるいは回転機構の微細な振動が製造中の多孔質
母材に伝わり、これが多孔質母材の共撮現象を引き起こ
し、ひいては堆積条件に最も重要な多孔質母材最先端部
とバーナとの位置関係に変化を与え、各種の調節効果も
無意味になると言う問題を引き起こしている。However, as the length of the porous base material becomes longer, minute vibrations of the target pulling mechanism or rotation mechanism are transmitted to the porous base material during manufacture, which causes a co-photography phenomenon of the porous base material, which in turn affects the deposition conditions. This changes the positional relationship between the burner and the most important tip of the porous base material, causing a problem in which various adjustment effects become meaningless.
第2図は、従来のVAD法による光ファイバ母材の製造
方法の実施装置の縦断面図である。図において、1はタ
ーゲット、2はチャンバ、3は堆積したガラス微粉末か
らなる多孔質母材(スート)、4は多孔質母材3の最高
温度点の多孔質母材先端部、5は反応温度側・窓用窓、
6は紫外線温度測定器、7は酸水素力ス流帝調節装置で
ある。8は酸水素バーナの石英管バーナ、9はチャンバ
台。FIG. 2 is a longitudinal cross-sectional view of an apparatus for implementing a method for manufacturing an optical fiber preform by the conventional VAD method. In the figure, 1 is the target, 2 is the chamber, 3 is the porous base material (soot) made of deposited glass fine powder, 4 is the tip of the porous base material at the highest temperature point of the porous base material 3, and 5 is the reaction Temperature side/window window,
6 is an ultraviolet temperature measuring device, and 7 is an oxyhydrogen force flow control device. 8 is a quartz tube burner of an oxyhydrogen burner, and 9 is a chamber stand.
10は排気口である。石英管バーナ8は、その中心部バ
ーナから、原料ガスの5tCJ!a、Gecla 、P
OCj!:+等を送入し外管のバーナからは酸素及び水
素あるいはアルゴン、窒素等を送入する複合バーナ構造
となっている。10 is an exhaust port. The quartz tube burner 8 produces 5tCJ of raw material gas from its central burner! a, Gecla, P.
OCj! It has a composite burner structure in which oxygen and hydrogen, argon, nitrogen, etc. are introduced from the outer tube burner.
光ファイバ母材の製造の場合は、石英管バーナ8に、原
料ガス並びに酸素及び水素その他のガスを送入しながら
、酸水素炎中で原料ガスを反応させてガラス微粉末を生
成させこれを回転駆動されでいるターゲット1の先端に
順次堆積させると共に、ターゲット1を徐々に引き上げ
る。このようにして、一般には多孔質母材3を形成して
いる。In the case of manufacturing an optical fiber base material, the raw material gas and oxygen, hydrogen, and other gases are fed into the quartz tube burner 8, and the raw material gas is reacted in an oxyhydrogen flame to generate fine glass powder. The target 1 is sequentially deposited on the tip of the target 1 which is being rotated, and the target 1 is gradually pulled up. In this way, the porous base material 3 is generally formed.
また、燃焼に用いられた酸素及び水素、並びに反応調節
に用いられたアルゴン、窒素等のガス。Also, oxygen and hydrogen used for combustion, and gases such as argon and nitrogen used for reaction control.
あるいは生成されたガラス微粉末の一部等は、IIJi
気口10から排出されてチャンバ2内は常に一定の圧力
に保たれている。また、同時に赤外線潤度測定器6によ
り、堆積条件に最も重要な多孔質母 ゛材先端部
4の温度を監視し、これを燃焼用の酸水素ガス流用調節
装置7にフィードバックし酸水素ガス流量を調節し、堆
積条件の安定化を計るようにしている。Alternatively, a part of the generated glass fine powder etc. can be
Air is discharged from the air port 10, and the pressure inside the chamber 2 is always maintained at a constant pressure. At the same time, an infrared moisture measuring device 6 monitors the temperature of the tip 4 of the porous base material, which is most important for the deposition conditions, and feeds this back to the oxyhydrogen gas flow control device 7 for combustion to control the oxyhydrogen gas flow rate. We are trying to stabilize the deposition conditions by adjusting the
しかし、上記したように、多孔質母材の長尺化に伴い、
多孔質母材を保持しているターゲット1の回転、引上げ
の運動にしたがい振動が多孔質母材3にも伝わり、この
ために、反応温度の正確な測定ができなかったり、反応
温度を制御しても長4手方向の伝送特性にばらつきが生
じる等の問題があった。However, as mentioned above, as the porous base material becomes longer,
As the target 1 holding the porous base material rotates and pulls up, vibrations are also transmitted to the porous base material 3, making it impossible to accurately measure the reaction temperature or to control the reaction temperature. However, there were problems such as variations in transmission characteristics in the four longitudinal directions.
本発明は、上記の状況に鑑みなされたものであり、伝送
特性の長手方向の安定化が得られると共に再現性を向上
できる光ファイバ母材の製造方法を提供することを目的
としたものである。The present invention was made in view of the above-mentioned circumstances, and aims to provide a method for manufacturing an optical fiber preform that can stabilize transmission characteristics in the longitudinal direction and improve reproducibility. .
[発明の概要]
本発明の光ファイバ母材の製造方法は、酸素及び水素を
酸水素バーナに送入し生成させた酸水素炎中で塩化珪素
及び塩化ゲルマニウム等の原料ガスを反応させ生成され
たガラス微粉末をターゲット先端に堆積させて多孔質母
材を形成し、該多孔質母材を加熱透明化して光ファイバ
母材を製造する場合に、上記多孔質母材の上記堆積接続
中、上・2多孔質母材の堆積面を支持する上記ターゲッ
トを防振台に固定すると共に、上記ターゲット下方に配
設された上記酸水素バーナを回転させながら逐次下方へ
移動させて上記ターゲットに上記多孔質母材を堆積する
方法である。[Summary of the Invention] The method for producing an optical fiber preform of the present invention involves reacting raw material gases such as silicon chloride and germanium chloride in an oxyhydrogen flame generated by feeding oxygen and hydrogen into an oxyhydrogen burner. When manufacturing an optical fiber preform by depositing glass fine powder on the tip of a target to form a porous preform and heating and making the porous preform transparent, during the deposition and connection of the porous preform, The target supporting the deposition surface of the upper and second porous base materials is fixed to a vibration isolating table, and the oxyhydrogen burner disposed below the target is rotated and moved downward one by one to deposit the upper and lower porous base materials. This is a method of depositing a porous matrix.
[実施例]
以下、本発明の光ファイバ母材の製造方法を実施例を用
い従来の光ファイバ母材の製造方法を実施するH置と同
部品は同符号で示し同部分の構造の説明は省略し第1図
により説明する。第1は実施装置の縦断面図である。本
実施例の従来の製造方法と異なるところは、従来の方法
は、ターゲット1は回転駆動されながら上方へ引上げら
れ石英管バーナ8が固定されているのに対し、本実施例
は、ターゲット1が耐振構造の保持具に固定保持され、
その代りに石英管バーナ8が回転駆動されながら下方へ
下げられるようになっている点である。第1図において
、11は回転バーナホルダ。[Example] Hereinafter, using an example of the method for manufacturing an optical fiber preform of the present invention, the same parts as those in the H position for implementing the conventional method for manufacturing an optical fiber preform will be denoted by the same reference numerals, and the structure of the same part will be explained. The explanation will be omitted with reference to FIG. The first is a longitudinal sectional view of the implementation device. The difference between this embodiment and the conventional manufacturing method is that in the conventional method, the target 1 is pulled upward while being rotated and the quartz tube burner 8 is fixed, whereas in this embodiment, the target 1 is Fixed and held in a vibration-resistant structure holder,
Instead, the quartz tube burner 8 is rotated and lowered. In FIG. 1, 11 is a rotating burner holder.
12は回転ガス導入入口であり、反応ガス等は回転ガス
導入人口12を介し回転バーナホルダ11に支持される
石英管バーナ8に送入されるようになっている。回転バ
ーナホルダ11は駆動装置(図示せず)により回転駆動
されるようになっており、また、チVンバ台9.赤外線
温度測定器6等は連結された引下げ装置(図示せず)に
より徐々に引き下げられ、るようになっている。Reference numeral 12 denotes a rotary gas introduction inlet, and reaction gas and the like are introduced into the quartz tube burner 8 supported by the rotary burner holder 11 via the rotary gas inlet 12. The rotary burner holder 11 is rotatably driven by a drive device (not shown), and the chamber stand 9. The infrared temperature measuring device 6 and the like are gradually lowered by a connected lowering device (not shown).
そして、多孔質母材3の製造の場合は、ターゲット1が
停止しておりガラス微粉末がターゲット1の先端に逐次
堆積されるに伴い、ジャンパ2゜石英管バーナ8.赤外
線温度測定器6.酸水素ガス流分測定装置7等は矢印へ
方向に引き下げられ石英管バーナ8と多孔質母材先端部
4のガラス微粉末の堆積面との間の距離を一定に保つよ
うになっている。また、石英管バーナ8は回転バーナホ
ルダ11を介し同時に回転駆動されている。従って、多
孔質母材3が長尺化しても、ターゲット1が停止してい
るため、安定した反応の継続が可能となり、多孔質母0
材1の揺れ現象は極端に軽減され伝送特性の長手方向の
安定化が改善されることがあきらかとなった。また、再
現性も向」二できる。In the case of manufacturing the porous base material 3, the target 1 is stopped and glass fine powder is sequentially deposited on the tip of the target 1, and the jumper 2° quartz tube burner 8. Infrared temperature measuring device6. The oxyhydrogen gas flow measuring device 7 and the like are pulled down in the direction of the arrow to maintain a constant distance between the quartz tube burner 8 and the surface of the porous base material tip 4 on which the fine glass powder is deposited. Further, the quartz tube burner 8 is simultaneously driven to rotate via a rotary burner holder 11. Therefore, even if the porous base material 3 becomes longer, since the target 1 is stopped, stable reaction can continue, and the porous base material 3 becomes longer.
It became clear that the shaking phenomenon of material 1 was extremely reduced and the stabilization of the transmission characteristics in the longitudinal direction was improved. In addition, reproducibility can also be improved.
このように本実施例の光ファイバ母材の製造方法におい
ては、多孔質母材が堆積されるターゲットを停止させ、
石英管バーナを回転させるとともに引き下げるようにし
たので、ガラス微粉末の堆積作業中、多孔質母材の振動
現象を軽減できるため、伝送特性の長手方向の安定化及
び再現性を向上することができる。In this way, in the optical fiber preform manufacturing method of this embodiment, the target on which the porous preform is deposited is stopped,
Since the quartz tube burner is rotated and pulled down, it is possible to reduce the vibration phenomenon of the porous base material during the deposition of fine glass powder, thereby improving the stability and reproducibility of the transmission characteristics in the longitudinal direction. .
[発明の効果1
以上記述した如く本発明の光ファイバ母材の製造方法に
よれば、伝送特性の長手方向の安定化が得られると共に
再現性を向上できる効果を有するものである。[Advantageous Effects of the Invention 1] As described above, the method for manufacturing an optical fiber preform of the present invention has the effect of stabilizing the transmission characteristics in the longitudinal direction and improving reproducibility.
第1 図は、本発明の光ファイバ母材の製造方法を実施
する装置の縦断面、第2図は従来の光ファイバ母材の製
造方法を実施する装置の縦断面図である。
1・・・ターゲット、2・・・チャンバ、3・・・多孔
質母材。
8・・・石英管バーナ、11・・・回転バーナホルダ。
12・・・回転ガス導入口部。
第 1 目FIG. 1 is a longitudinal cross-sectional view of an apparatus for carrying out the method for manufacturing an optical fiber preform of the present invention, and FIG. 2 is a longitudinal cross-sectional view of an apparatus for carrying out the conventional method for producing an optical fiber preform. 1...Target, 2...Chamber, 3...Porous base material. 8...Quartz tube burner, 11...Rotating burner holder. 12...Rotating gas inlet section. 1st item
Claims (1)
酸水素炎中で四塩化珪素及び四塩化ゲルマニウム等の原
料ガスを反応させ生成されたガラス微粉末をターゲット
先端に堆積させて多孔質母材を形成し、該多孔質母材を
加熱透明化して光ファイバ母材を製造する方法において
、上記多孔質母材の上記堆積継続中、上記多孔質母材の
堆積面を支持する上記ターゲットを防振台に固定すると
共に、上記ターゲット下方に配設された上記酸水素バー
ナを回転させながら逐次下方へ移動させ上記ターゲット
に上記多孔質母材を堆積することを特徴とする光ファイ
バ母材の製造方法。(1) Oxygen and hydrogen are sent to an oxyhydrogen burner to create a generated oxyhydrogen flame, and raw material gases such as silicon tetrachloride and germanium tetrachloride are reacted to produce fine glass powder, which is deposited on the tip of the target to create a porous hole. In the method for manufacturing an optical fiber preform by forming a porous preform and heating the porous preform to make it transparent, the above-mentioned member supporting the deposition surface of the porous preform while the deposition of the porous preform continues. An optical fiber motherboard characterized in that a target is fixed to a vibration isolating table, and the oxyhydrogen burner disposed below the target is sequentially moved downward while rotating to deposit the porous base material on the target. Method of manufacturing wood.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23918784A JPS61117130A (en) | 1984-11-13 | 1984-11-13 | Preparation of parent material for optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP23918784A JPS61117130A (en) | 1984-11-13 | 1984-11-13 | Preparation of parent material for optical fiber |
Publications (1)
Publication Number | Publication Date |
---|---|
JPS61117130A true JPS61117130A (en) | 1986-06-04 |
Family
ID=17041006
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP23918784A Pending JPS61117130A (en) | 1984-11-13 | 1984-11-13 | Preparation of parent material for optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS61117130A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010090017A (en) * | 2008-10-10 | 2010-04-22 | Fujikura Ltd | Apparatus and method for manufacturing optical fiber preform |
-
1984
- 1984-11-13 JP JP23918784A patent/JPS61117130A/en active Pending
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010090017A (en) * | 2008-10-10 | 2010-04-22 | Fujikura Ltd | Apparatus and method for manufacturing optical fiber preform |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4627867A (en) | Method for producing highly pure glass preform for optical fiber | |
JPS5927728B2 (en) | Manufacturing method of sooty glass rod | |
EP0231022B1 (en) | Apparatus for the production of porous preform of optical fiber | |
EP0163752B1 (en) | A method for the preparation of a synthetic quartz glass tube | |
JPS61117130A (en) | Preparation of parent material for optical fiber | |
JP2000034131A (en) | Apparatus for production of porous glass material and production method | |
JPS59174538A (en) | Manufacturing method of optical fiber base material | |
JPS6044258B2 (en) | synthesis torch | |
US20190112216A1 (en) | Fabrication apparatus and fabrication method for porous glass base material | |
JPH0239458B2 (en) | ||
JPH01239033A (en) | Production of optical fiber preform | |
EP0415341B1 (en) | Method for producing porous glass preform for optical fiber | |
JP3741832B2 (en) | Dispersion shifted fiber glass preform manufacturing method | |
JPH0629149B2 (en) | Porous base material sintering machine for optical fiber | |
JPS62167238A (en) | Production of base material for optical fiber | |
JP2960059B1 (en) | Method and apparatus for manufacturing porous glass preform, and concentric multi-tube burner used therein | |
JPS5925742B2 (en) | Method and device for manufacturing porous base material for optical fiber | |
JPS6210936B2 (en) | ||
JP2938605B2 (en) | Method of manufacturing preform for single mode optical fiber | |
JPH05319849A (en) | Method for producing silica porous base material | |
JP3706499B2 (en) | Production equipment for porous glass preform for optical fiber | |
JP3169503B2 (en) | Method for producing porous glass preform for optical fiber | |
JPH0583497B2 (en) | ||
JPS63107825A (en) | Production of synthetic quartz tube | |
JPS62108747A (en) | Preparation of porous glass base material |