JPH0239458B2 - - Google Patents
Info
- Publication number
- JPH0239458B2 JPH0239458B2 JP56113607A JP11360781A JPH0239458B2 JP H0239458 B2 JPH0239458 B2 JP H0239458B2 JP 56113607 A JP56113607 A JP 56113607A JP 11360781 A JP11360781 A JP 11360781A JP H0239458 B2 JPH0239458 B2 JP H0239458B2
- Authority
- JP
- Japan
- Prior art keywords
- core
- cladding
- soot
- optical fiber
- sintering chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000005253 cladding Methods 0.000 claims description 44
- 239000013307 optical fiber Substances 0.000 claims description 25
- 238000005245 sintering Methods 0.000 claims description 23
- 238000000034 method Methods 0.000 claims description 20
- 239000004071 soot Substances 0.000 claims description 20
- 239000011521 glass Substances 0.000 claims description 19
- 239000000463 material Substances 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 12
- 239000002994 raw material Substances 0.000 claims description 10
- 238000005192 partition Methods 0.000 claims description 8
- 230000005540 biological transmission Effects 0.000 description 11
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 10
- 239000002019 doping agent Substances 0.000 description 6
- 239000012808 vapor phase Substances 0.000 description 6
- 235000019988 mead Nutrition 0.000 description 4
- 238000004017 vitrification Methods 0.000 description 4
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 239000012159 carrier gas Substances 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- 230000003301 hydrolyzing effect Effects 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000007665 sagging Methods 0.000 description 3
- 235000012239 silicon dioxide Nutrition 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- VXEGSRKPIUDPQT-UHFFFAOYSA-N 4-[4-(4-methoxyphenyl)piperazin-1-yl]aniline Chemical compound C1=CC(OC)=CC=C1N1CCN(C=2C=CC(N)=CC=2)CC1 VXEGSRKPIUDPQT-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- YBMRDBCBODYGJE-UHFFFAOYSA-N germanium dioxide Chemical compound O=[Ge]=O YBMRDBCBODYGJE-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 2
- 239000005049 silicon tetrachloride Substances 0.000 description 2
- 235000008331 Pinus X rigitaeda Nutrition 0.000 description 1
- 235000011613 Pinus brutia Nutrition 0.000 description 1
- 241000018646 Pinus brutia Species 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229940119177 germanium dioxide Drugs 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- IEXRMSFAVATTJX-UHFFFAOYSA-N tetrachlorogermane Chemical compound Cl[Ge](Cl)(Cl)Cl IEXRMSFAVATTJX-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01413—Reactant delivery systems
- C03B37/0142—Reactant deposition burners
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01406—Deposition reactors therefor
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01446—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/012—Manufacture of preforms for drawing fibres or filaments
- C03B37/014—Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
- C03B37/01446—Thermal after-treatment of preforms, e.g. dehydrating, consolidating, sintering
- C03B37/0146—Furnaces therefor, e.g. muffle tubes, furnace linings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2201/00—Type of glass produced
- C03B2201/06—Doped silica-based glasses
- C03B2201/30—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi
- C03B2201/31—Doped silica-based glasses doped with metals, e.g. Ga, Sn, Sb, Pb or Bi doped with germanium
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2207/00—Glass deposition burners
- C03B2207/50—Multiple burner arrangements
- C03B2207/54—Multiple burner arrangements combined with means for heating the deposit, e.g. non-deposition burner
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Geochemistry & Mineralogy (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Description
【発明の詳細な説明】
本発明は、コア部とクラツド部との境界部分に
おける屈折率分布がだれないように企図した光フ
アイバ用母材の製造方法に関し、特に単一モード
伝送用光フアイバに利用して好適である。DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a base material for an optical fiber designed to prevent the refractive index distribution at the boundary between a core portion and a cladding portion from sagging, and particularly for a single mode transmission optical fiber. It is suitable for use.
単一モード伝送用光フアイバは伝送帯域が著し
く広いため、大容量の長距離通信伝送路としての
応用が期待されており、従来では内付け法やロツ
ドインチユーブ法や気相軸付け法等で製造されて
いる。 Optical fibers for single-mode transmission have extremely wide transmission bands, so they are expected to be used as large-capacity, long-distance communication transmission lines. Manufactured in
内付け法はジヤケツトとなる石英ガラス管の内
周面にクラツド部を形成し、次いでコア部を形成
したのち、コラツプス処理により光フアイバ用母
材を得るようにしたものであり、伝送損失の少な
い良質な光フアイバとすることが可能である。し
かし、この内付け法では長尺の光フアイバを製造
することが難しく、大量生産に向いていないこと
と相俟つて、酸水素炎で石英ガラス管を加熱する
ために本質的に水分の内部拡散による耐久性等へ
の悪影響を回避することができない欠点があつ
た。 The internal attachment method involves forming a cladding part on the inner peripheral surface of a quartz glass tube that will serve as a jacket, then forming a core part, and then collapsing it to obtain the base material for the optical fiber, resulting in less transmission loss. It is possible to use high quality optical fiber. However, with this internal attachment method, it is difficult to manufacture long optical fibers, and it is not suitable for mass production.In addition, since the quartz glass tube is heated with an oxyhydrogen flame, moisture essentially diffuses internally. There was a drawback that it was not possible to avoid the adverse effects on durability, etc.
又、ロツドインチユーブ法は気相軸付け法やプ
ラズマ法等によつて合成されたコア部となるガラ
ス棒を適当な径の石英ガラス管内に差し込み、コ
ラツプス処理により光フアイバ用母材を得るよう
にしたものであり、内付け法よりも長尺の光フア
イバを製造することができる。しかし、このロツ
ドインチユーブ法では石英ガラス管が直接クラツ
ド部となるため、残留水分量の非常に少ない無水
のものを使用しなければならず、著しく高価なも
のとなつてしまい、しかも伝送損失が比較的大き
い欠点がある。これは単一モード伝送用光フアイ
バの導波特性に由来するものであり、単一モード
伝送用光フアイバでは光ビームの相当量がコア部
のみならずクラツド部にみ伝搬するため、これが
コア部とクラツド部との境界面の不整や不純物の
影響を受けてしまうためである。 In addition, in the rod incubation method, a glass rod that serves as a core synthesized by a vapor phase axis method or a plasma method is inserted into a quartz glass tube of an appropriate diameter, and a base material for optical fiber is obtained by a collapse process. This makes it possible to manufacture longer optical fibers than with the internal attachment method. However, in this rod inch tube method, the quartz glass tube becomes the cladding part directly, so an anhydrous tube with a very low residual moisture content must be used, making it extremely expensive and causing transmission loss. However, there is a relatively large drawback. This is due to the waveguide characteristics of the optical fiber for single-mode transmission, and in a single-mode optical fiber, a considerable amount of the light beam propagates not only in the core but also in the cladding. This is because it is affected by irregularities in the interface between the cladding part and the cladding part and by impurities.
従つて、コア部とクラツド部とをほぼ同時に合
成してしまう気相軸付け法が品質的にも工業的に
も最も単一モード伝送用光フアイバの製造に向い
ていると考えられている。この気相軸付け法の原
理を表わす第1図に示すように、コア部となるガ
ラス原料を火炎加水分解させるコア用バーナ1
と、クラツド部となるガラス原料を火炎加水分解
させるクラツド用バーナ2とをマツフル3の下端
部に位置決めし、回転しながら引き上げられて行
くミード棒4にコア部のスート5を棒状に付着堆
積させ、次いでその周囲にクラツド部のストー6
を付着堆積させたのち、キヤリアガス導入口7と
排気口8とが形成されたマツフル3内の焼結炉9
によつて透明ガラス化した光フアイバ用母材10
を製造するようにしている。このように、従来の
気相軸付け法ではコア用バーナ1とクラツド用バ
ーナ2とを隣接してマツフル3内に位置決めして
いるため、コア部の屈折率制御用ドーパントがク
ラツド部に混入してしまい、これらの境界が明瞭
なステツプ状とはならずにだれた状態になつてし
まうことが判明している。コア部とクラツド部と
の境界がだれてしまうと、特にコア部の径の小さ
な単一モード伝送用光フアイバにおいては大きな
損失となることを避けられず、今後改善すべき点
の一つとなつている。 Therefore, it is believed that the vapor phase axial method, in which the core and cladding parts are synthesized almost simultaneously, is the most suitable for producing optical fibers for single mode transmission in terms of quality and industry. As shown in Fig. 1, which shows the principle of this vapor phase axising method, a core burner 1 is used to flame-hydrolyze the glass raw material that will become the core.
A crud burner 2 for flame hydrolyzing the glass raw material that will become the crud is positioned at the lower end of the matsuful 3, and the core soot 5 is deposited in a rod shape on the mead rod 4 which is being pulled up while rotating. , and then the cladding section stow 6 is placed around it.
After depositing the gas, the sintering furnace 9 inside the Matsufuru 3 has a carrier gas inlet 7 and an exhaust port 8 formed therein.
Optical fiber base material 10 made into transparent glass by
We are trying to manufacture. In this way, in the conventional vapor phase axial mounting method, the core burner 1 and the cladding burner 2 are positioned adjacently in the muffle 3, so that the dopant for controlling the refractive index of the core part is not mixed into the cladding part. It has been found that, as a result, these boundaries do not form a clear step shape, but instead become sagging. If the boundary between the core and the cladding becomes sagging, it will inevitably cause a large loss, especially in single-mode transmission optical fibers with small core diameters, and this is one of the points that should be improved in the future. There is.
本発明はかかる知見に基づき、気相軸付け法の
長所を損なうことなくコア部とクラツド部との境
界を明確なステツプ状にしてだれのない光フアイ
バの製造方法を提供することを目的とするもので
ある。 Based on this knowledge, it is an object of the present invention to provide a method for manufacturing a smooth optical fiber in which the boundary between the core portion and the cladding portion is formed into a clear step shape without impairing the advantages of the vapor phase axial mounting method. It is something.
この目的を達成する本発明の光フアイバ用母材
の製造方法にかかる構成は、仕切板により上下二
分割されたマツフル内下部のコア部焼結室内にお
いて、コア部となるガラス原料を火炎加水分解
し、これによつて得られるスートを棒状に成長さ
せて脱水と同時に透明ガラス化する一方、仕切板
により上下二分割されたマツフル内上部のクラツ
ド部焼結室内において、クラツド部となるガラス
原料を火炎加水分解し、これによつて得られるス
ートを前記コア部の引上げ工程で透明ガラス化し
た棒状の前記コア部の周囲に連続して付着堆積さ
せ、このスートを脱水と同時に透明ガラス化する
ようにしたことを特徴とする。 The structure of the method for manufacturing an optical fiber base material of the present invention that achieves this objective is to flame-hydrolyze the glass raw material that will become the core in the core sintering chamber in the lower part of Matsufuru, which is divided into upper and lower parts by a partition plate. The soot thus obtained is grown into a rod shape and transformed into transparent glass at the same time as dehydration.The glass raw material that will become the cladding is grown in the cladding sintering chamber at the top of the matsufuru, which is divided into upper and lower halves by a partition plate. Flame hydrolysis is carried out, and the soot obtained thereby is continuously deposited around the rod-shaped core part which has been made into transparent vitrification in the core part pulling process, and this soot is dehydrated and made into transparent vitrification at the same time. It is characterized by the following.
以下、本発明による光フアイバ用母材の製造方
法の一実施例について、その原理を表わす第2図
を参照しながら詳細に説明する。マツフル11は
仕切り板12により上下に二分割され、クラツド
部焼結室13及びコア部焼結室14となつてい
る。コア部焼結室14内にはコア部となるガラス
原料を火炎加水分解するコア用バーナ15と棒状
に成長したコア部のスート16を透明ガラス化さ
せるコア用焼結炉17とが設置されており、更に
平衡用給気管18と排気管19とがこのコア部焼
結室14に接続している。一方、クラツド部焼結
室13内にはクラツド部となるガラス原料を火炎
加水分解するクラツド用バーナ20と透明ガラス
化したコア部21の周囲に付着堆積するクラツド
部のスート22を透明ガラス化させるクラツド用
焼結炉23とが設置されており、更に平衡用給気
管24と排気管25とがこのクラツド用焼結室1
3に接続している。なお、仕切り板12の中央部
にはコア部21のスート16及びクラツド部のス
ート22の成長に伴い回転しながら上昇して行く
ミード棒26が貫通し得る貫通孔27が突設され
ている。ミード棒26の上昇速度は、棒状に成長
するコア部のスート16下端とコア用バーナ15
との間隔及びクラツド用バーナ20とこれに対向
するコア部21に付着したクラツド部のスート2
2との間隔が常に一定となるような速度にしなけ
ればならない。従つて、コア用バーナ15及びク
ラツド用バーナ20からのガラス原料の噴出量を
相互に関連させて制御する必要がある。 Hereinafter, an embodiment of the method for manufacturing an optical fiber base material according to the present invention will be described in detail with reference to FIG. 2 showing the principle thereof. The pine full 11 is divided into upper and lower halves by a partition plate 12, forming a clad sintering chamber 13 and a core sintering chamber 14. Inside the core sintering chamber 14, there are installed a core burner 15 for flame hydrolyzing the glass raw material that will become the core, and a core sintering furnace 17 for converting the soot 16 of the core that has grown into a rod shape into transparent vitrification. Further, a balancing air supply pipe 18 and an exhaust pipe 19 are connected to the core sintering chamber 14. On the other hand, in the cladding part sintering chamber 13, there is a cladding burner 20 for flame hydrolyzing the glass raw material that will become the cladding part, and a cladding burner 20 for flame-hydrolyzing the glass raw material that will become the cladding part, and a soot 22 of the cladding part deposited around the transparent vitrified core part 21 to be made into transparent vitrification. A sintering furnace 23 for the cladding is installed, and an air supply pipe 24 for balancing and an exhaust pipe 25 are connected to the sintering chamber 1 for the cladding.
Connected to 3. A through hole 27 is provided in the center of the partition plate 12 to allow a mead rod 26, which rotates and rises as the soot 16 of the core portion 21 and the soot 22 of the cladding portion grow, to pass through. The rising speed of the mead rod 26 is determined by the lower end of the core soot 16 growing into a rod shape and the core burner 15.
and the soot 2 of the cladding part adhering to the cladding burner 20 and the core part 21 facing it.
The speed must be set so that the distance between the two is always constant. Therefore, it is necessary to control the amount of glass raw material ejected from the core burner 15 and the cladding burner 20 in relation to each other.
コア用バーナ15からは火炎加水分解反応によ
つて二酸化硅素及びその屈折率を高めるドーパン
トとして二酸化ゲルマニウム等が生成するよう
に、四塩化硅素や四塩化ゲルマニウム、酸素、水
素等を所定の割合で噴出させる一方、貫通孔27
からクラツド用焼結室13へドーパント等が流入
しないように、平衡用給気管18からコア用焼結
室14内へキヤリアガスとして窒素等の他に酸素
を吹き込むようにするとよい。このような観点か
ら、平衡用給気管18の開口端をコア部焼結炉1
7の直上で下向きに位置させ、ここから噴出する
キヤリアガスがコア用焼結炉17の内側を下側に
流れて排気管19へ流出するようなガス流を形成
することにより、コア用バーナ15で生成した反
応物が貫通孔27からクラツド用焼結室13内に
流入する虞がほとんどなくなり、従つてドーパン
トがクラツド部のスート22に混入することもな
い。この場合には仕切り板12を設けなくてもよ
い。 Silicon tetrachloride, germanium tetrachloride, oxygen, hydrogen, etc. are ejected from the core burner 15 at a predetermined ratio so that silicon dioxide and germanium dioxide as a dopant that increases its refractive index are generated by a flame hydrolysis reaction. On the other hand, through hole 27
In order to prevent dopants and the like from flowing into the cladding sintering chamber 13, it is preferable to blow oxygen in addition to nitrogen as a carrier gas into the core sintering chamber 14 from the equilibrium air supply pipe 18. From this point of view, the open end of the balancing air supply pipe 18 is connected to the core sintering furnace 1.
The core burner 15 There is almost no possibility that the generated reactants will flow into the cladding sintering chamber 13 from the through hole 27, and therefore the dopant will not mix into the soot 22 in the cladding portion. In this case, the partition plate 12 may not be provided.
クラツド用バーナ20からは火炎加水分解反応
によつて二酸化硅素が生成するように四塩化硅素
や酸素、水素等の所定の割合で噴出させる一方、
平衡用給気管24から通常のキヤリアガスをクラ
ツド用焼結室13内へ送り込む。これによつて、
コア用焼結室14内で透明ガラス化したコア部2
1の周囲にクラツド部となるスート22が所定の
厚みで付着堆積するが、このクラツド用焼結室1
3内には屈折率を変えるドーパントが存在してい
ないため、純枠の二酸化硅素がクラツド部とな
り、スート22をクラツド用焼結炉23で透明ガ
ラス化することにより得られる光フアイバ用母材
28のコア部21とクラツド部29との境界付近
の屈折率分布は、明確なステツプ形となつてしま
う。 Silicon tetrachloride, oxygen, hydrogen, etc. are ejected from the cladding burner 20 at a predetermined ratio so that silicon dioxide is produced by a flame hydrolysis reaction,
A normal carrier gas is fed into the cladding sintering chamber 13 from the balancing air supply pipe 24. By this,
Core part 2 made into transparent glass in core sintering chamber 14
A soot 22, which will become a cladding part, is deposited around the cladding chamber 1 with a predetermined thickness.
Since there is no dopant that changes the refractive index in 3, the pure frame silicon dioxide becomes the clad part, and the optical fiber base material 28 is obtained by converting the soot 22 into transparent glass in the cladding sintering furnace 23. The refractive index distribution near the boundary between the core portion 21 and the cladding portion 29 has a distinct step shape.
なお、本実施例ではステツプ形光フアイバ用母
材の製造方法について説明したが、例えばグレー
デツド形光フアイバ用母材にジヤケツト管を嵌合
して一体化するような場合にも本発明を応用して
より高品質のものを製造することができる。 In this example, a method for manufacturing a base material for a step-type optical fiber has been described, but the present invention can also be applied to cases where, for example, a jacket tube is fitted and integrated into a base material for a graded-type optical fiber. can produce higher quality products.
このように本発明の光フアイバ用母材の製造方
法によると、コア部のスートを成長させる際にそ
のドーパントがクラツド部へ混入しないように配
慮してクラツド部のスートを透明ガラス化したコ
ア部に堆積させ、透明ガラス化して光フアイバ用
母材を製造するようにしたため、コア部とクラツ
ド部との境界部分に屈折率のだれが発生せず、明
確なステツプ形とすることができる。このため、
伝送損失の極めて少ない長尺の単一モード伝送用
光フアイバの生産が可能となつた。 As described above, according to the method for manufacturing an optical fiber base material of the present invention, the soot in the cladding part is made into transparent glass in order to prevent the dopant from entering the cladding part when growing the soot in the core part. Since the base material for the optical fiber is manufactured by depositing it on the glass and turning it into transparent glass, there is no drop in the refractive index at the boundary between the core part and the cladding part, and a clear step shape can be obtained. For this reason,
It has become possible to produce long single-mode transmission optical fibers with extremely low transmission loss.
第1図は従来の気相軸付け法の概念を表わす作
業原理図、第2図は本発明によるステツプ形光フ
アイバ用母材の製造概念を表わす作業原理図であ
り、図中の符号で
11はマツフル、12は仕切板、13はクラツ
ド用焼結室、14はコア用焼結室、15はコア用
バーナ、16はコア部となるスート、17はコア
用バーナ、18は平衡用給気管、20はクラツド
用バーナ、21は透明ガラス化したコア部、22
はクラツド部となるスート、23はクラツド用焼
結炉、26はミード棒、28は光フアイバ用母
材、29は透明ガラス化したクラツド部である。
Fig. 1 is a working principle diagram showing the concept of the conventional vapor phase shafting method, and Fig. 2 is a working principle diagram showing the manufacturing concept of the step type optical fiber base material according to the present invention. 12 is a partition plate, 13 is a sintering chamber for the cladding, 14 is a sintering chamber for the core, 15 is a burner for the core, 16 is a soot that becomes the core part, 17 is a burner for the core, and 18 is an air supply pipe for balance. , 20 is a burner for the cladding, 21 is a transparent vitrified core part, 22
23 is a sintering furnace for the cladding, 26 is a mead rod, 28 is a base material for an optical fiber, and 29 is a transparent vitrified cladding portion.
Claims (1)
部のコア部焼結室内において、コア部となるガラ
ス原料を火炎加水分解し、これによつて得られる
スートを棒状に成長させて脱水と同時に透明ガラ
ス化する一方、仕切板により上下二分割されたマ
ツフル内上部のクラツド部焼結室内において、ク
ラツド部となるガラス原料を火炎加水分解し、こ
れによつて得られるスートを前記コア部の引上げ
工程の途中で透明ガラス化した棒状の前記コア部
の周囲に連続して付着堆積させ、このスートを脱
水と同時に透明ガラス化するようにしたことを特
徴とする光フアイバ用母材の製造方法。1 In the core sintering chamber at the bottom of Matsufuru, which is divided into upper and lower parts by a partition plate, the glass raw material that will become the core is flame-hydrolyzed, and the resulting soot is grown into a rod shape and dehydrated and made into transparent glass at the same time. In the cladding section sintering chamber at the upper part of the matsuful, which is divided into upper and lower parts by a partition plate, the glass raw material that will become the cladding section is flame-hydrolyzed, and the soot obtained thereby is used in the core section pulling process. A method for manufacturing an optical fiber base material, characterized in that the soot is continuously deposited around the rod-shaped core part which has been transparently vitrified in the middle, and the soot is dehydrated and transparently vitrified at the same time.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11360781A JPS5820744A (en) | 1981-07-22 | 1981-07-22 | Method for manufacturing base material for optical fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP11360781A JPS5820744A (en) | 1981-07-22 | 1981-07-22 | Method for manufacturing base material for optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS5820744A JPS5820744A (en) | 1983-02-07 |
JPH0239458B2 true JPH0239458B2 (en) | 1990-09-05 |
Family
ID=14616498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP11360781A Granted JPS5820744A (en) | 1981-07-22 | 1981-07-22 | Method for manufacturing base material for optical fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS5820744A (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59152234A (en) * | 1983-02-14 | 1984-08-30 | Nippon Telegr & Teleph Corp <Ntt> | Preparation of parent material for optical fiber |
JPS6065742A (en) * | 1983-09-16 | 1985-04-15 | Furukawa Electric Co Ltd:The | Production of porous glass base material for optical fiber by vad method |
JPS60141634A (en) * | 1983-12-28 | 1985-07-26 | Shin Etsu Chem Co Ltd | Parent material for optical fiber and its preparation |
KR950000588A (en) * | 1993-06-18 | 1995-01-03 | 쿠라우찌 노리타카 | Manufacturing method of single mode optical fiber base material |
JP4993337B2 (en) * | 2006-02-09 | 2012-08-08 | 信越化学工業株式会社 | Porous glass base material manufacturing equipment |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55154336A (en) * | 1979-05-22 | 1980-12-01 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of optical fiber raw material |
-
1981
- 1981-07-22 JP JP11360781A patent/JPS5820744A/en active Granted
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS55154336A (en) * | 1979-05-22 | 1980-12-01 | Nippon Telegr & Teleph Corp <Ntt> | Manufacture of optical fiber raw material |
Also Published As
Publication number | Publication date |
---|---|
JPS5820744A (en) | 1983-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4224046A (en) | Method for manufacturing an optical fiber preform | |
US4367085A (en) | Method of fabricating multi-mode optical fiber preforms | |
US4406684A (en) | Core torch for fabricating single-mode optical fiber preforms | |
US5055121A (en) | Method for producing glass preform for optical fiber | |
CA1179214A (en) | Process for producing optical fiber preform and apparatus therefor | |
GB2128981A (en) | Fabrication method of optical fiber preforms | |
GB2314077A (en) | Making optical fibres by drawing rod-in-tube preforms | |
WO2019142878A1 (en) | Method for manufacturing optical fiber preform, optical fiber preform, method for manufacturing optical fiber, and optical fiber | |
JPH0239458B2 (en) | ||
US5238479A (en) | Method for producing porous glass preform for optical fiber | |
JPH07230015A (en) | Dispersion shift type single-mode optical fiber, and preform for the same and its manufacture | |
JPS635334B2 (en) | ||
JPH0463018B2 (en) | ||
CN113461322A (en) | Optical fiber and method for manufacturing optical fiber preform | |
JP3343079B2 (en) | Optical fiber core member, optical fiber preform, and method of manufacturing the same | |
JPH0820574B2 (en) | Dispersion shift fiber and manufacturing method thereof | |
JPH0460930B2 (en) | ||
CN100999381A (en) | Apparatus for fabricating optical fiber preform and method for fabricating low water peak fiber using the same | |
JPH01100034A (en) | Optical fiber base material manufacturing equipment | |
US4804393A (en) | Methods for producing optical fiber preform and optical fiber | |
JP3569910B2 (en) | Optical fiber manufacturing method | |
CN100999382B (en) | Method for fabricating optical fiber preform and method for fabricating optical fiber using the same | |
EP0415341A1 (en) | Method for producing porous glass preform for optical fiber | |
JPH0662312B2 (en) | Method for manufacturing base material for optical fiber | |
JPS62162639A (en) | Production of preform for w-type single mode optical fiber |