[go: up one dir, main page]

JPS609980B2 - Manufacturing method for carbon, silicon, and boron-based shaped sintered bodies - Google Patents

Manufacturing method for carbon, silicon, and boron-based shaped sintered bodies

Info

Publication number
JPS609980B2
JPS609980B2 JP52137298A JP13729877A JPS609980B2 JP S609980 B2 JPS609980 B2 JP S609980B2 JP 52137298 A JP52137298 A JP 52137298A JP 13729877 A JP13729877 A JP 13729877A JP S609980 B2 JPS609980 B2 JP S609980B2
Authority
JP
Japan
Prior art keywords
silicon
carbon
powder
boron
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52137298A
Other languages
Japanese (ja)
Other versions
JPS5471103A (en
Inventor
健美 川口
明 花田
叔介 宮野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Crucible Co Ltd
Original Assignee
Nippon Crucible Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Crucible Co Ltd filed Critical Nippon Crucible Co Ltd
Priority to JP52137298A priority Critical patent/JPS609980B2/en
Publication of JPS5471103A publication Critical patent/JPS5471103A/en
Publication of JPS609980B2 publication Critical patent/JPS609980B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)

Description

【発明の詳細な説明】 この発明は炭素、珪素、棚素の3元素の高密度でかつ高
強度の成形焼結体の製造法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for producing a high-density and high-strength shaped sintered body of the three elements carbon, silicon, and shelf elements.

非常な高温域において耐用性のある材料には、その高温
域において軟化しない、線変化が水さし・、熱衝撃に強
いなどの性質が要求される。これ等の要求を満し得る材
料として黒鉛・炭素質材料、炭化珪素質材料、炭化側素
質材料、窒化珪素質材料などが知られている。しかしな
がら150000以上の高温城にあっては黒鉛・炭素質
材料を除いて前記他の材料はいずれも機械的強度の劣化
が著しく十分なる耐用性を維持し得ない欠点を有してい
る。一方、黒鉛・炭素質材料は200000をこえる温
度においても機械的強度はむしろ増大する特性があるが
、その強度の絶対値は小であり、また腕さがあるため細
部の機械加工が行なえず、高温下での構造材料に用いる
ことができないという難点があった。発明者らは、炭素
材料が非酸化雰囲気においては最も高い融点を有し、か
つ耐化学薬品性を有する点並びに上述したように黒鉛・
炭素系材料が高温において機械的強度が漸増するという
有利な特性を有する点に着目し、黒鉛・炭素系材料の本
来の欠点である高温域における絶対的な機械的強度の不
足および脆さを改良すべ〈鋭意研究した結果、微粉砕し
た炭素粉末に、金属珪素粉末または炭化珪素粉末、ある
いはそれら両粉末混合物と、&03、日3803等の棚
素化学物とを混合し、その混合物を特定条件下で焼成す
ることによって、前記の目的を満足する良好な成形暁緒
体が得られることを見出した。
Materials that can withstand extremely high temperatures are required to have properties such as not softening in that high temperature range, having line deformation that is similar to that of water, and being resistant to thermal shock. Graphite/carbonaceous materials, silicon carbide materials, carbide-based materials, silicon nitride materials, and the like are known as materials that can meet these requirements. However, in the case of high-temperature steels of 150,000 or higher, all of the other materials except graphite and carbonaceous materials have the disadvantage that they cannot maintain sufficient durability due to significant deterioration in mechanical strength. On the other hand, graphite/carbonaceous materials have the characteristic that their mechanical strength increases even at temperatures exceeding 200,000°C, but the absolute value of this strength is small, and due to their dexterity, detailed machining cannot be performed. The drawback was that it could not be used as a structural material under high temperatures. The inventors discovered that the carbon material has the highest melting point in a non-oxidizing atmosphere and has chemical resistance, and as mentioned above, the carbon material has the highest melting point and chemical resistance.
Focusing on the fact that carbon-based materials have the advantageous property of gradually increasing mechanical strength at high temperatures, we have improved the inherent shortcomings of graphite and carbon-based materials, such as lack of absolute mechanical strength and brittleness in high-temperature ranges. As a result of extensive research, we have found that finely ground carbon powder is mixed with metallic silicon powder, silicon carbide powder, or a mixture of both powders, and shelving chemicals such as &03, 3803, etc., and the mixture is heated under specific conditions. It has been found that a molded cord body that satisfies the above-mentioned objectives can be obtained by firing the molded cord body.

本発明は上記の知見に基し「て完成されたものであって
、その要旨は、炭素粉末50〜9亀重量%に、金属珪素
粉末および/または炭化珪素粉末を、珪素に換算して2
〜4の重量%と焼結助剤として棚素化合物を、酸化棚素
に換算して5〜3の重量%を添加混合し、この混合粉末
を100kg′の以上の加圧下で1600qo以上の温
度に加熱することを特徴とする炭素・珪素・棚素系成形
焼結体の製造法にある。
The present invention has been completed based on the above findings, and the gist thereof is to add 50 to 9 weight percent of carbon powder and 2% of silicon metal powder and/or silicon carbide powder in terms of silicon.
~ 4% by weight and a shelving compound as a sintering aid, 5 to 3% by weight converted to shelatomic oxides are added and mixed, and this mixed powder is heated at a temperature of 1600 qo or more under a pressure of 100 kg' or more. The present invention relates to a method for producing a shaped sintered body based on carbon, silicon, and shelving elements, which is characterized by heating to .

以下、本発明の使用原料の条件及び配合割合について説
明する。炭素粉末には炭素分97%以上のコークス、カ
ーボンブラックなどの無定形炭素を好ましくは平均粒蓬
が5〃m以下になるように粉砕して用いる。炭素粉末は
5の重量%未満では、黒鉛・炭素系材料の高温における
機械的強度の漸増特性等を維持できず、9丸重量%を超
えると、高強度を発現することができないからである。
金属珪素は純度95%以上のものを、炭化珪素は純度9
2%以上のものを用いる。
The conditions and blending ratio of the raw materials used in the present invention will be explained below. As the carbon powder, amorphous carbon such as coke or carbon black having a carbon content of 97% or more is preferably pulverized to an average grain size of 5 mm or less. This is because if the carbon powder is less than 5% by weight, it will not be possible to maintain the gradual increase in mechanical strength at high temperatures of graphite/carbon-based materials, and if it exceeds 9% by weight, high strength will not be exhibited.
Metallic silicon should have a purity of 95% or higher, and silicon carbide should have a purity of 9.
Use 2% or more.

金属珪素は加熱中に融解あるいは気化するので74仏の
以下に粉砕されていれば使用可能であるが、炭化珪素は
限定的事項ではないが、平均粒径が5山肌以下になるよ
うに粉砕した粉末を用いることが好ましい。金属珪素は
加熱中にそのほとんどが炭素と反応して炭化珪素を生成
すると見られる。金属珪素または炭化珪素、あるいはそ
の混合物の添加量は珪素に換算して2〜4の重量%の範
囲にすべきである。すなわち換算した珪素の添加量が2
重量%未満では機械的強度の向上に明らかな効果が見ら
れず、また40重量%を超えると黒鉛質としての特性が
減ずるうえ加工性も低下するので好ましくないからであ
る。使用原料の炭素粉末、金属珪素ならびに炭化珪素に
ついてそれぞれ純度を定めたのは、使用原料に含有され
る不純物が炭素、珪素であれば計算して原料使用量の補
正も可能であるが、酸化物が含有される場合、酸素元素
が炭素と反応してガス化*して製品密度を低下させる原
因になり、、また珪素以外の金属原素があれば炭化物を
形成するとか、あるいは溶融して集合体になりいわゆる
ハードスポットを形成して機械加工性を減殺するからで
ある。
Metallic silicon melts or vaporizes during heating, so it can be used if it is crushed to 74 grains or less, but silicon carbide can be used if it is crushed so that the average particle size is 5 grains or less, although this is not a limitation. Preferably, powder is used. It appears that most of metallic silicon reacts with carbon during heating to produce silicon carbide. The amount of silicon metal or silicon carbide, or a mixture thereof, should be in the range of 2 to 4% by weight, calculated as silicon. In other words, the converted amount of added silicon is 2
This is because if it is less than 40% by weight, no clear effect on improving mechanical strength is observed, and if it exceeds 40% by weight, the properties of graphite are reduced and workability is also reduced, which is not preferable. The purity of the raw materials used, carbon powder, metallic silicon, and silicon carbide, was determined individually because if the impurities contained in the raw materials used are carbon or silicon, it is possible to calculate and correct the amount of raw materials used. If silicon is contained, the oxygen element reacts with carbon and becomes gasified*, causing a reduction in product density.Also, if metal elements other than silicon are present, they may form carbides or melt and aggregate. This is because the material becomes hard and forms so-called hard spots, which impairs machinability.

使用しうる棚素化合物としてはB203、日3803な
どがあげられる。
Examples of shelving compounds that can be used include B203 and Hi-3803.

添加量は&03に換算して5重量%未満では、炭素と前
記配合された炭化珪素あるいは金属珪素と炭素とが反応
して生じた炭化珪素とが容易に焼結し難く、また&03
に禍算して3の重量%を超えると反応生成した炭化棚日
素の量が多くなり黒鉛質の特性を滅するため、棚素化合
物の添加量は&03に換算して5〜3の重量%の範囲に
すべきである。本発明の原料粉体の配合条件は以上述べ
た通りであるが、特に好ましい配合領域を炭素、珪素及
び酸化剛素の3成分系で図示すると添付図の斜線を施こ
した範囲のものである。
If the amount added is less than 5% by weight calculated as &03, the silicon carbide produced by the reaction between carbon and the blended silicon carbide or metal silicon and carbon will not easily sinter, and &03
If the amount exceeds 3% by weight, the amount of carbonized carbonized carbonized chloride produced by the reaction increases and the characteristics of graphite are lost. should be within the range of The blending conditions for the raw material powder of the present invention are as described above, and a particularly preferred blending range for a three-component system of carbon, silicon, and rigid oxide is the shaded range in the attached diagram. .

図において、点Aは(C;55%、Sj:40%「B0
3:5%)、点Bは(C:50%、Si:40%、B2
03:10%)、点Cは(C:50%、S言ミ20%、
B203:30%)、点Dは(C:68%、Si;2%
、B203:30%)、点Eは(C;93%、Si;2
%、&03:5%)の組成をあらわす点である。以下に
配合実施例を示す。
In the figure, point A is (C; 55%, Sj: 40% "B0
3:5%), point B is (C: 50%, Si: 40%, B2
03:10%), point C is (C:50%, S word 20%,
B203: 30%), point D is (C: 68%, Si; 2%
, B203: 30%), point E is (C; 93%, Si; 2
%, &03:5%). Examples of formulations are shown below.

第 1 表 配 合 表 本発明品 原料名 1 2 3 4 5 6 7 8重重量%) 石炭ピッチコークス 84.5 81 67
62.5 56 61.6 64
.3カーボンブラック
81金 属 珪 素 66 6
26 24.5 − 6 13
」 19.6炭 化 珪 素
37.3 18.
6 94無 水 棚 素 90 13
70 13.0 6.7 13 6
7 67使用した原料の純度及び粒度は次表の通り
である。
Table 1 Mixture Name of raw materials for the invention product 1 2 3 4 5 6 7 8% by weight) Coal pitch coke 84.5 81 67
62.5 56 61.6 64
.. 3 carbon black
81 Metal Silicon 66 6
26 24.5 - 6 13
19.6 Silicon carbide
37.3 18.
6 94 Anhydrous Shelf Element 90 13
70 13.0 6.7 13 6
7 67 The purity and particle size of the raw materials used are shown in the table below.

純度 粒度 石炭ピッチコークス 99.6% 平均粒度5仏m以下
カーボンブラック 99.8発金属珪素 96
多 74〃m以下炭 化珪 素 96.5%
平均粒度5〃m以下無水側素 96.6%前記配合
表に従って配合された原料粉末をよく混合した後t内径
25肋の人造黒鉛製成形型に充填し、200k9′c虎
の加圧下で2200〜225000に40分間で昇温し
、「30分間前記温度に保持して成形焼結した。
Purity Particle size Coal pitch coke 99.6% Average particle size 5 m or less Carbon black 99.8 Metallic silicon 96
Poly 74〃m or less Silicon carbide 96.5%
Average particle size: 5〃m or less Anhydrous element 96.6% After thoroughly mixing the raw material powders blended according to the above recipe, it was filled into an artificial graphite mold with an inner diameter of 25 ribs, and the mixture was heated to 2200 mm under pressure using a 200K9'C tiger. The temperature was raised to ~225,000 in 40 minutes, and the temperature was maintained for 30 minutes for shaping and sintering.

加熱には高周波誘導加熱方式を用いた。冷却後「径約2
5柳高さ約25柳の成形焼給体について物理的性質等を
測定した。結果を第3表に示す。比較の為従来の黒鉛・
炭素質材料及び炭化珪素質材料の測定値を併記した。第
3 表(庄1,2) 電気抵抗及び圧縮強さは成形時
の加圧方向に測定した。
A high frequency induction heating method was used for heating. After cooling, the diameter is about 2
5 willows The physical properties etc. of the shaped burning bodies of approximately 25 willows in height were measured. The results are shown in Table 3. For comparison, conventional graphite
Measured values for carbonaceous materials and silicon carbide materials are also listed. Table 3 (Sho 1, 2) Electrical resistance and compressive strength were measured in the pressing direction during molding.

(任3) 黒鉛・炭素質材料は高品位の天然黒鉛及び
高品位の石油コ−クスに結合材として夕‐‐ルピッチを
加え.加熱下で混練.成形して1300℃に空気を断っ
て焼成L/をもので化学成分は○:97%、Si02:
i協.Aそ20s:0.2発のもの(任4) 炭化
珪素質材料は粒度調整上/72炭化珪素に結合材として
少量の粘土を加え.成形焼成したもので化学成分はSi
o:90%.Si02:6.6%.Aそ202:1.3
%のもの本発明品3の成形暁結体を径15柳高さ2仇肌
こ加工し、内径25柳の黒鉛製型内におき、1000k
g′地の加圧下で高周波誘導加熱を行った結果、160
0ooでは全く変化がなく、1800ooで1%のちぢ
み、1900qoでは高さ方向に3%のちぢみと径万向
に1.5%のふくらみをそれぞれ生じたに過ぎなかった
。以上の通り本発明による成形焼縞体は、棚素が一部は
炭化棚素、一部は黒鉛との固溶体を形成して含有され、
棚素は大部分が炭化珪素の形態で含有される為に、従来
の黒鉛を主成分とする黒鉛・炭素質材料が圧縮強さ54
0kg/c熱こ対し、本発明品はいずれも1000k9
′c虎以上と大きくすこぶる機械的強度にすぐれた黒鉛
・炭素系成形体といえる。
(Part 3) The graphite/carbonaceous material is made by adding lupitch as a binder to high-grade natural graphite and high-grade petroleum coke. Knead under heat. Molded and baked at 1300℃ with no air allowed, chemical composition: ○: 97%, Si02:
i-kyo. A-20s: 0.2 shot (Rin 4) Silicon carbide material is made by adding a small amount of clay as a binder to 72 silicon carbide to adjust the particle size. Molded and fired, chemical composition is Si
o: 90%. Si02: 6.6%. Aso202:1.3
% The molded body of the invention product 3 was processed to have a diameter of 15 willow and height of 2. It was placed in a graphite mold with an inner diameter of 25 willow and heated to 1000 k.
As a result of high-frequency induction heating under pressure of g' ground, 160
At 0oo there was no change at all, at 1800oo there was a 1% shrinkage, and at 1900qo there was only a 3% shrinkage in the height direction and a 1.5% bulge in the radial direction. As described above, the shaped burnt striped body according to the present invention contains shelf elements partially forming a solid solution with carbonized shelf elements and partially with graphite,
Most of the shelf elements are contained in the form of silicon carbide, so conventional graphite/carbonaceous materials whose main component is graphite have a compressive strength of 54.
0kg/c heat resistance, all the products of this invention are 1000k9
It can be said that it is a graphite/carbon-based molded product that is larger than a 'c tiger and has excellent mechanical strength.

更に旋盤等による機械加工を行うことができるので、耐
磨耗性の要求される沼勤部村、高速回転機器のシール材
や軸受、また棚素、珪素を含んでいるこことから酸化抵
抗性を備えており酸化雰囲気下で比較的高温に晒される
熱交換磯部材に使用することができ非酸化雰囲気中にあ
っては超高温下に晒される高強度機械部材、熱あるいは
電気伝導用高強度部材等に本発明による成形焼結体は使
用することができる。
Furthermore, since it can be machined using a lathe, etc., it can be used in applications such as sealing materials and bearings for high-speed rotating equipment, which require wear resistance, and oxidation resistance due to the fact that they contain shelf elements and silicon. It can be used for heat exchange parts that are exposed to relatively high temperatures in an oxidizing atmosphere, and high strength mechanical parts that are exposed to extremely high temperatures in a non-oxidizing atmosphere, and high strength for thermal or electrical conduction. The shaped sintered body according to the present invention can be used for members and the like.

【図面の簡単な説明】[Brief explanation of the drawing]

添付図は本発明方法で使用される配合材料の好ましい配
合範囲を、炭素、珪素、酸化棚素の3成分系であらわし
たものである。
The attached figure shows the preferred blending range of the compounding materials used in the method of the present invention in terms of a three-component system of carbon, silicon, and shelium oxide.

Claims (1)

【特許請求の範囲】[Claims] 1 炭素粉末50〜93重量%に、金属珪素粉末および
/または炭化珪素粉末を、珪素に換算して2〜40重量
%と焼結助剤として硼素化合物を、酸化硼素に換算して
5〜30重量%を添加混合し、この混合粉末を100k
g/cm^2以上の加圧下で1600℃以上の温度に加
熱することを特徴とする炭素、珪素、硼素系成形焼結体
の製造法。
1 50 to 93% by weight of carbon powder, 2 to 40% by weight of metallic silicon powder and/or silicon carbide powder in terms of silicon, and 5 to 30% of boron compound in terms of boron oxide as a sintering aid. % by weight and mix this mixed powder to 100k
A method for producing a carbon-, silicon-, or boron-based shaped sintered body, which comprises heating to a temperature of 1600° C. or higher under a pressure of g/cm^2 or higher.
JP52137298A 1977-11-17 1977-11-17 Manufacturing method for carbon, silicon, and boron-based shaped sintered bodies Expired JPS609980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52137298A JPS609980B2 (en) 1977-11-17 1977-11-17 Manufacturing method for carbon, silicon, and boron-based shaped sintered bodies

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52137298A JPS609980B2 (en) 1977-11-17 1977-11-17 Manufacturing method for carbon, silicon, and boron-based shaped sintered bodies

Publications (2)

Publication Number Publication Date
JPS5471103A JPS5471103A (en) 1979-06-07
JPS609980B2 true JPS609980B2 (en) 1985-03-14

Family

ID=15195406

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52137298A Expired JPS609980B2 (en) 1977-11-17 1977-11-17 Manufacturing method for carbon, silicon, and boron-based shaped sintered bodies

Country Status (1)

Country Link
JP (1) JPS609980B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55144472A (en) * 1979-04-24 1980-11-11 Atomic Energy Authority Uk Silicon carbide and its manufacture
JPS5823344B2 (en) * 1980-01-16 1983-05-14 科学技術庁無機材質研究所長 Manufacturing method of silicon carbide sintered body
JPS58208174A (en) * 1982-05-28 1983-12-03 株式会社ヤマザキ電機 Heat treating tool for sintering
US4518702A (en) * 1983-01-19 1985-05-21 Director-General Of The Agency Of Industrial Science And Technology Silicon carbide-boron carbide carbonaceous body

Also Published As

Publication number Publication date
JPS5471103A (en) 1979-06-07

Similar Documents

Publication Publication Date Title
US4320204A (en) Sintered high density boron carbide
CA1226303A (en) Silicon carbide refractories having modified silicon nitride bond
JPS6343342B2 (en)
JPS609980B2 (en) Manufacturing method for carbon, silicon, and boron-based shaped sintered bodies
GB2567660A (en) Refractory material
US3329514A (en) Refractory body and method of making same
JPS6141862B2 (en)
EP0116194A1 (en) A carbon-containing refractory
JP3053225B2 (en) Magnesia carbon refractory brick
JPS632913B2 (en)
JPH1149568A (en) Graphite-silicon carbide crucible for nonferrous molten metal and its production
JPS605550B2 (en) Manufacturing method of silicon carbide sintered body
JPH01242465A (en) Production of silicon carbide sintered body and sliding member thereof
JPS6253473B2 (en)
JP2007008793A (en) Carbon-containing conductive ceramics mainly composed of Al-Si-C compounds
JPS6243948B2 (en)
JPS5855110B2 (en) Manufacturing method of carbide heat-resistant ceramics
SU1039925A1 (en) Method for roasting ceramic products from silicon carbide
JPH03205362A (en) Graphite-silicon carbide refractory brick and production thereof
JPH107463A (en) Free-cutting silicon carbide sintered compact and its production
JPH04193759A (en) Carbon-containing basic refractory
RU2279413C2 (en) Phosphate binder for production of high-melting compositions
JPH078738B2 (en) Refractory brick for refining molten metal containing graphite
JPH0733512A (en) Carbon-containing refractory manufacturing method
JPS5843352B2 (en) Boride-based high-strength hard heat-resistant material