[go: up one dir, main page]

JPS6243948B2 - - Google Patents

Info

Publication number
JPS6243948B2
JPS6243948B2 JP54137271A JP13727179A JPS6243948B2 JP S6243948 B2 JPS6243948 B2 JP S6243948B2 JP 54137271 A JP54137271 A JP 54137271A JP 13727179 A JP13727179 A JP 13727179A JP S6243948 B2 JPS6243948 B2 JP S6243948B2
Authority
JP
Japan
Prior art keywords
carbon
magnesia
alumina
bricks
spinel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54137271A
Other languages
Japanese (ja)
Other versions
JPS5663868A (en
Inventor
Tatsuo Matsumura
Kyohiro Hosokawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harima Refractories Co Ltd
Original Assignee
Harima Refractories Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harima Refractories Co Ltd filed Critical Harima Refractories Co Ltd
Priority to JP13727179A priority Critical patent/JPS5663868A/en
Publication of JPS5663868A publication Critical patent/JPS5663868A/en
Publication of JPS6243948B2 publication Critical patent/JPS6243948B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Ceramic Products (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は、特に製鋼炉の内張りとして好適な炭
素含有マグネシア−アルミナ質煉瓦の製造方法に
関するものである。 炭素含有の煉瓦は従来から混銑炉、混銑車、鋼
鍋、真空脱ガス装置等の内張りとして広く使用さ
れている。この種の煉瓦として主なものはマグネ
シア−炭素系、アルミナ−炭素系、スピネル−炭
素系であり、これらに使用されている酸化物はす
べて高耐火度で、しかもスラグ、溶鋼に対してヌ
レ性が悪い炭素との組合せであることから耐蝕
性・耐スポール性に優れたものとなつている。 しかしながら従来の炭素含有煉瓦は、それ自身
は耐蝕性・耐スポール性に優れているにもかかわ
らず、酸化物の焼結あるいは炭素と酸化物との熱
間膨張収縮差によつて残存膨張率が小さく、その
ため使用中に煉瓦積みの目地開きを生じて煉瓦の
脱落、あるいは目地部ヘスラグ・溶鋼が浸入して
溶損が進むという欠点があつた。 本発明は上記従来の欠点のない含炭素煉瓦を得
ることを目的とするもので、その特徴とするとこ
ろは重量で、マグネシア3〜94%、アルミナ3〜
94%、炭素3〜50%および結合剤からなる配合物
を混練、成形した後、1200℃以下で加熱処理する
炭素含有マグネシア−アルミナ質煉瓦の製造方法
である。 すなわち本発明によつて得られる耐火物は、組
成中のマグネシアと、アルミナが使用中の受熱で
1200℃以上になると次のような反応をおこす。 MgO+Al2O3→MgO・Al2O3(スピネル) マグネシアとAl2O3の比重はそれぞれ3.6、3.8
であるが、この反応で生じるスピネルは3.5であ
るため、本発明により得られる煉瓦はスピネルの
生成によつて残存膨張をおこす。 第1図のグラフは従来のマグネシア−炭素系、
スピネル−炭素系、アルミナ−炭素系の煉瓦と、
本発明より得られるマグネシア−アルミナ−炭素
系煉瓦の線膨張収縮曲線である。なお、酸化物と
炭素の割合は8:2とした。このグラフから明ら
かなように、従来のものはいずれも直線的な膨張
収縮を示すため残存膨張は殆んど見られず、残存
収縮を示すものすらある。 これに対し、本発明により得られるマグネシア
−アルミナ−炭素系煉瓦はマグネシアとアルミナ
との膨張に、1200℃以上になるとスピネル生成に
よる膨張が加わるため、冷却後は顕著な残存膨張
をし、煉瓦積みの目地開きに起因する煉瓦の脱
落、あるいは目地部へのスラグ・溶鋼の浸入を防
止することが出来る。 炭素は高耐火度で、かつヌレ性の悪いことによ
つて煉瓦の耐蝕性・耐スポーリング性の向上に寄
与するものであるが、本発明では他にマグネシア
とアルミナの反応によるスピネル生成の量および
速度を緩和する役割を果す。すなわち、マグネシ
アとアルミナとが直接全面にわたつて接触すると
1200℃以上になつた場合、スピネルが急速に生成
して煉瓦はそれに伴なう急激な体積膨張によつて
崩解するが、炭素によつてマグネシアとアルミナ
との間に部分的に遮断壁を作り、スピネルの生成
を抑制してこの問題を解決する。 次に本発明に使用する原料とその配合割合につ
いて詳述する。 マグネシアとしては例えば海水マグネシア、電
融マグネシア、天然マグネシアであり、またアル
ミナとしては例えば電融アルミナ、焼結アルミ
ナ、ボーキサイト、バン土頁岩が使用できる。 これら両者の配合割合はいずれも3〜94%と
し、好ましくは5〜90%である。3%以下、ある
いは94%以上ではスピネル生成量が少なく、残存
膨張が不十分なために本発明効果が得られない。
第2図のグラフはこの配合割合に決定するに至つ
た実験結果を示すもので、炭素を10%に保ち、ア
ルミナとマグネシアの割合を変化させ、1500℃で
加熱した場合の残存膨張率を示すもので、その測
定方法は後述する第1表に示した残存膨張率の場
合と同じである。 マグネシアとアルミナの粒度は従来の酸化物−
炭素系の耐火物と同様にすればよく、何んら限定
するものではない。しかし当然、粒度が小さくな
ればスピネルの生成量およびその反応速度が増
し、残存膨張率も大きくなり、それに伴つて耐ス
ポール性が低下するので粒度は適宜決定しなけれ
ばならない。 炭素としては例えば天然グラフアイト、人工グ
ラフアイト、石油コークス、石炭コークスが使用
でき、配合割合は3〜50%とし、好ましくは5〜
40%である。3%以下では炭素自体がもつ高耐蝕
性、ヌレ性の悪さによるスラグ・溶鋼の浸透防止
効果が期待できないと共に、マグネシアとアルミ
ナとの遮断が不充分であることから、前述したス
ピネル生成の抑制による効果が得られない。ま
た、50%以上ではマグネシアとアルミナとの接触
が殆んど阻止され、スピネルの生成が極めて少な
くなるため、本発明の目的が達せられない。第3
図はマグネシアとアルミナの配合量を1:1の比
にし、炭素の配合量のみを変化させ、1500℃で加
熱した場合の残存膨張を示すもので、後述する第
1表の配合例1−1〜1−10の残存膨張率をグラ
フ化したものである。 結合剤はリン酸塩、ケイ酸塩、ホウ酸塩、石油
ピツチ、石炭ピツチ、石炭タール、フエノール樹
脂、フラン樹脂等、通常用いられるものが使用で
きる。 本発明は煉瓦の加熱処理温度を1200℃以下に限
定する。1200℃以上では製造段階でスピネルが生
成してしまい、使用中にスピネルが生成すること
によつて奏する本発明効果が得られない。 なお、本発明により得られる煉瓦は炭素を含有
しているため、使用中の炭素の酸化を防止する目
的として各種の金属、炭化物、窒化物、リン化合
物、塩化物から選ばれる酸化防止剤を必要によつ
ては添加してもよい。 第1〜3表に本発明実施例と比較例およびそれ
らから得られる煉瓦の物性値を示す。
The present invention relates to a method for manufacturing carbon-containing magnesia-alumina bricks, which are particularly suitable as linings for steelmaking furnaces. BACKGROUND OF THE INVENTION Carbon-containing bricks have been widely used as linings for pig iron mixers, pig iron mixers, steel pots, vacuum degassing equipment, and the like. The main types of bricks of this type are magnesia-carbon, alumina-carbon, and spinel-carbon. Because it is combined with carbon, which has a high carbon content, it has excellent corrosion resistance and spalling resistance. However, although conventional carbon-containing bricks have excellent corrosion and spalling resistance, they have a residual expansion coefficient due to sintering of oxides or the difference in thermal expansion and contraction between carbon and oxides. Because of their small size, they had the disadvantage that the joints in the brickwork would open during use, causing the bricks to fall off, or that slag and molten steel would enter the joints, leading to further melting and damage. The purpose of the present invention is to obtain a carbon-containing brick that does not have the above-mentioned conventional drawbacks, and is characterized by weight: 3-94% magnesia, 3-94% alumina.
This is a method for producing a carbon-containing magnesia-alumina brick, in which a compound consisting of 94% carbon, 3 to 50% carbon, and a binder is kneaded and molded, and then heat-treated at 1200°C or less. In other words, the refractory obtained by the present invention has magnesia in its composition and alumina that absorb heat during use.
When the temperature exceeds 1200℃, the following reaction occurs. MgO+Al 2 O 3 →MgO・Al 2 O 3 (spinel) The specific gravity of magnesia and Al 2 O 3 is 3.6 and 3.8, respectively.
However, since the spinel produced in this reaction is 3.5, the brick obtained by the present invention causes residual expansion due to the formation of spinel. The graph in Figure 1 shows the conventional magnesia-carbon system.
spinel-carbon-based, alumina-carbon-based bricks,
It is a linear expansion/contraction curve of a magnesia-alumina-carbon based brick obtained by the present invention. Note that the ratio of oxide to carbon was 8:2. As is clear from this graph, all of the conventional products show linear expansion and contraction, so there is almost no residual expansion, and some even show residual contraction. On the other hand, in the magnesia-alumina-carbon brick obtained by the present invention, expansion due to spinel formation is added at temperatures above 1200°C to the expansion of magnesia and alumina. It is possible to prevent bricks from falling off due to openings in the joints, and slag and molten steel from entering the joints. Carbon contributes to improving the corrosion resistance and spalling resistance of bricks due to its high refractoriness and poor wettability. and play a role in moderating the speed. In other words, when magnesia and alumina come into direct contact over the entire surface,
When the temperature exceeds 1200℃, spinel is rapidly formed and the brick collapses due to the accompanying rapid volumetric expansion, but carbon creates a partial barrier between magnesia and alumina. to solve this problem by suppressing the formation of spinel. Next, the raw materials used in the present invention and their blending ratios will be explained in detail. Examples of magnesia that can be used include seawater magnesia, fused magnesia, and natural magnesia, and examples of alumina that can be used include fused alumina, sintered alumina, bauxite, and aluminum shale. The blending ratio of both of these is 3 to 94%, preferably 5 to 90%. If it is less than 3% or more than 94%, the amount of spinel produced is small and residual expansion is insufficient, so that the effects of the present invention cannot be obtained.
The graph in Figure 2 shows the experimental results that led to this blending ratio.It shows the residual expansion coefficient when heated at 1500℃ while keeping carbon at 10% and varying the ratio of alumina and magnesia. The measurement method is the same as that for the residual expansion coefficient shown in Table 1, which will be described later. The particle size of magnesia and alumina is similar to that of conventional oxides.
It may be used in the same manner as carbon-based refractories, and is not limited in any way. However, as the particle size becomes smaller, the amount of spinel produced and its reaction rate increase, the residual expansion coefficient also increases, and the spalling resistance decreases accordingly, so the particle size must be determined appropriately. As the carbon, for example, natural graphite, artificial graphite, petroleum coke, coal coke can be used, and the blending ratio is 3 to 50%, preferably 5 to 50%.
It is 40%. If it is less than 3%, the effect of preventing penetration of slag and molten steel cannot be expected due to the high corrosion resistance and poor wettability of carbon itself, and the barrier between magnesia and alumina is insufficient, so it is difficult to prevent spinel formation as described above. No effect is obtained. Moreover, if it is more than 50%, the contact between magnesia and alumina is almost prevented, and the formation of spinel becomes extremely small, so that the object of the present invention cannot be achieved. Third
The figure shows the residual expansion when the ratio of magnesia and alumina is set to 1:1, only the carbon content is changed, and heating is performed at 1500℃. This is a graph of the residual expansion coefficient of ~1-10. As the binder, commonly used binders such as phosphates, silicates, borates, petroleum pitch, coal pitch, coal tar, phenolic resins, furan resins, etc. can be used. The present invention limits the heat treatment temperature of bricks to 1200°C or less. If the temperature is 1200° C. or higher, spinel will be generated during the manufacturing stage, and the effects of the present invention, which are produced by spinel generated during use, cannot be obtained. In addition, since the brick obtained by the present invention contains carbon, an antioxidant selected from various metals, carbides, nitrides, phosphorus compounds, and chlorides is required to prevent the oxidation of carbon during use. It may be added depending on the situation. Tables 1 to 3 show examples of the present invention, comparative examples, and physical property values of bricks obtained from them.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】 物性値の測定方法は下記のとおりである。 (1) 気孔率 JIS:R2205にもとずく。 (2) 1500℃還元加熱後の気孔率 窒素雰囲気の電気炉で1500℃×2hr加熱後、
あとはJIS:R2205もとずき行なつた。 (3) 1500℃還元加熱後の残存膨張率 前記(2)と同様の条件で加熱後、JIS R2208で
測定した。 第1表は天然鱗片状黒鉛を10%と一定にし、電
融マグネシアと電融アルミナとの比率を変化させ
たもので、いずれも114×230×65mmの寸法に1000
Kg/cm2で成形し、200℃×保定16hrで加熱処理を
行なつて煉瓦を得た。 同表から明らかな如く、本発明実施例より得ら
れる煉瓦は、電融アルミナの組合せのない比較例
1−1および電融マグネシアの組合せのない比較
例1−3、あるいは電融マグネシアの配合割合が
本発明外である比較例1−2に比べ残存膨張率が
著しく大きい。 第2表は焼結マグネシア、焼結アルミナ、キツ
シユグラフアイトそしてこれにアルミニウムを組
合せたもので、同表から明らかなようにキツシユ
グラフアイトの添加が全くない比較例2−1は炭
素成分が含有されていないために耐蝕性が劣ると
共に残存膨張率が大きく使用中に崩解する。また
比較例2−2は炭素成分の含有が少ないために残
存膨張性は殆んど認められない。これに対して、
本発明の実施例は適度な残存膨張性を示した。 第3表はいずれも本発明の実施例である。 以上に述べたとおり、本発明により得られる含
炭素煉瓦は使用中にスピネルの生成によつて顕著
な残存膨張を示すため、煉瓦積した場合に目地開
きがない優れた効果を有する。したがつて煉瓦の
抜け落ち、あるいは目地部へのスラグ・溶鋼等の
浸入がないことから、含炭素煉瓦のもつ高耐蝕性
を十分発揮することが出来、しいてはその煉瓦で
内張りする各種窯炉の炉寿命を大巾に延長する有
利な特徴を有するものである。
[Table] The method for measuring physical property values is as follows. (1) Porosity Based on JIS: R2205. (2) Porosity after reduction heating at 1500°C After heating at 1500°C for 2 hours in an electric furnace in a nitrogen atmosphere,
The rest was JIS: R2205. (3) Residual expansion coefficient after reduction heating at 1500°C Measured according to JIS R2208 after heating under the same conditions as in (2) above. Table 1 shows natural flaky graphite kept constant at 10% and the ratio of fused magnesia and fused alumina varied.
Kg/cm 2 and heat treated at 200°C for 16 hours to obtain bricks. As is clear from the same table, the bricks obtained from the examples of the present invention are Comparative Example 1-1 without the combination of fused alumina, Comparative Example 1-3 without the combination of fused magnesia, or the blending ratio of fused magnesia. The residual expansion coefficient is significantly larger than that of Comparative Example 1-2, which is outside the scope of the present invention. Table 2 shows a combination of sintered magnesia, sintered alumina, Kitsuyu graphite, and aluminum.As is clear from the table, Comparative Example 2-1, in which no Kitsuyu graphite is added, has a carbon component. Because it does not contain any In addition, in Comparative Example 2-2, almost no residual expansibility was observed because the content of carbon components was small. On the contrary,
Examples of the present invention exhibited moderate residual expansion. All of Table 3 are examples of the present invention. As described above, the carbon-containing brick obtained by the present invention exhibits significant residual expansion during use due to the formation of spinel, so it has an excellent effect of not having any joints when bricked up. Therefore, since there is no falling of bricks or infiltration of slag, molten steel, etc. into the joints, the high corrosion resistance of carbon-containing bricks can be fully utilized, and various types of kilns lined with these bricks can be used. It has advantageous features that greatly extend the life of the furnace.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は各種含炭素煉瓦の熱間線膨張収縮曲線
図、第2図はマグネシア−アルミナ比と残存膨張
率を示す図、第3図は炭素含有量と残存膨張率を
示す図である。
FIG. 1 is a diagram showing hot linear expansion and contraction curves of various carbon-containing bricks, FIG. 2 is a diagram showing the magnesia-alumina ratio and residual expansion coefficient, and FIG. 3 is a diagram showing carbon content and residual expansion coefficient.

Claims (1)

【特許請求の範囲】[Claims] 1 重量割合で、マグネシア3〜94%、アルミナ
3〜94%、炭素3〜50%および結合剤からなる配
合物を混練、成形した後、1200℃以下で加熱処理
することを特徴とする炭素含有マグネシア−アル
ミナ質煉瓦の製造方法。
1. A carbon-containing material characterized by kneading and molding a compound consisting of 3 to 94% magnesia, 3 to 94% alumina, 3 to 50% carbon, and a binder in weight proportions, and then heat-treating the mixture at 1200°C or less. A method for producing magnesia-alumina bricks.
JP13727179A 1979-10-24 1979-10-24 Manufacture of carbonncontaining magnesiaaalumina brick Granted JPS5663868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13727179A JPS5663868A (en) 1979-10-24 1979-10-24 Manufacture of carbonncontaining magnesiaaalumina brick

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13727179A JPS5663868A (en) 1979-10-24 1979-10-24 Manufacture of carbonncontaining magnesiaaalumina brick

Publications (2)

Publication Number Publication Date
JPS5663868A JPS5663868A (en) 1981-05-30
JPS6243948B2 true JPS6243948B2 (en) 1987-09-17

Family

ID=15194764

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13727179A Granted JPS5663868A (en) 1979-10-24 1979-10-24 Manufacture of carbonncontaining magnesiaaalumina brick

Country Status (1)

Country Link
JP (1) JPS5663868A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5692160A (en) * 1979-12-24 1981-07-25 Kyushu Refractories Magnesiaaaluminaacarbon brick
JPS5935061A (en) * 1982-08-19 1984-02-25 大同特殊鋼株式会社 Refractories
JPH0676252B2 (en) * 1986-12-15 1994-09-28 川崎製鉄株式会社 Unfired alumina / magnesia brick
JP5073791B2 (en) * 2010-08-02 2012-11-14 品川リフラクトリーズ株式会社 Alumina-magnesia refractory brick and method for producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917809A (en) * 1972-06-07 1974-02-16
JPS507A (en) * 1973-04-30 1975-01-06
JPS507611A (en) * 1973-05-24 1975-01-27
JPS526713A (en) * 1975-07-05 1977-01-19 Kyushu Refractories Spinel refractories
JPS54125209A (en) * 1978-03-24 1979-09-28 Asahi Glass Co Ltd Spinnel carbon type brick
JPS55107749A (en) * 1979-02-09 1980-08-19 Kyushu Refract Co Ltd Carbon-containing fire brick

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917809A (en) * 1972-06-07 1974-02-16
JPS507A (en) * 1973-04-30 1975-01-06
JPS507611A (en) * 1973-05-24 1975-01-27
JPS526713A (en) * 1975-07-05 1977-01-19 Kyushu Refractories Spinel refractories
JPS54125209A (en) * 1978-03-24 1979-09-28 Asahi Glass Co Ltd Spinnel carbon type brick
JPS55107749A (en) * 1979-02-09 1980-08-19 Kyushu Refract Co Ltd Carbon-containing fire brick

Also Published As

Publication number Publication date
JPS5663868A (en) 1981-05-30

Similar Documents

Publication Publication Date Title
JP7557328B2 (en) Manufacturing method of mag-carbon bricks for LF pots
JPS6343342B2 (en)
KR20140007009A (en) Refractory for an inner lining of a blast furnace, obtained by semi-graphitization of a mixture comprising c and si
JPS6243948B2 (en)
JP3053225B2 (en) Magnesia carbon refractory brick
KR100569209B1 (en) Magnesia-Spinel-Carbon Basic Refractories
JP6266968B2 (en) Blast furnace hearth lining structure
JP3197680B2 (en) Method for producing unburned MgO-C brick
JPH01305849A (en) Magnesia-carbon brick
JP2950622B2 (en) Carbon containing refractories
JPS5815072A (en) Magnesia-carbon low temperature baking refractory brick
JPS629553B2 (en)
JPH05301772A (en) Carbon-containing brick
JPS593069A (en) Alumina-silicon carbide-carbon refractories
JP2018015763A (en) Lined refractories for continuous casting tundish
JPH0421625B2 (en)
JPS63166751A (en) Carbon-containing basic refractory brick
JP2765458B2 (en) Magnesia-carbon refractories
JPH04342454A (en) Magnesia-containing unburned refractory
JPH0475184B2 (en)
JPH078738B2 (en) Refractory brick for refining molten metal containing graphite
JPS62212259A (en) Blast furnace lining refractories
JP2687214B2 (en) Carbon containing refractories
JP3025511B2 (en) High spalling resistant carbon-containing refractory
JPH0551247A (en) Carbon-containing unfired refractory