JP2007008793A - Carbon-containing conductive ceramics mainly composed of Al-Si-C compounds - Google Patents
Carbon-containing conductive ceramics mainly composed of Al-Si-C compounds Download PDFInfo
- Publication number
- JP2007008793A JP2007008793A JP2005221892A JP2005221892A JP2007008793A JP 2007008793 A JP2007008793 A JP 2007008793A JP 2005221892 A JP2005221892 A JP 2005221892A JP 2005221892 A JP2005221892 A JP 2005221892A JP 2007008793 A JP2007008793 A JP 2007008793A
- Authority
- JP
- Japan
- Prior art keywords
- carbon
- silicon
- aluminum
- atmosphere
- sintered body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract 5
- 229910052799 carbon Inorganic materials 0.000 title claims abstract 4
- 150000001875 compounds Chemical class 0.000 title claims abstract 4
- 239000000919 ceramic Substances 0.000 title claims abstract 3
- 229910010271 silicon carbide Inorganic materials 0.000 title abstract 2
- 229910018540 Si C Inorganic materials 0.000 title 1
- 229910052782 aluminium Inorganic materials 0.000 claims abstract 3
- 229910052710 silicon Inorganic materials 0.000 claims abstract 3
- 239000010703 silicon Substances 0.000 claims abstract 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims abstract 2
- -1 aluminum-silicon-carbon Chemical compound 0.000 claims abstract 2
- 238000010304 firing Methods 0.000 claims abstract 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 2
- 229910003923 SiC 4 Inorganic materials 0.000 claims 1
- 230000003647 oxidation Effects 0.000 abstract 2
- 238000007254 oxidation reaction Methods 0.000 abstract 2
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical compound [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 abstract 1
- 238000010438 heat treatment Methods 0.000 abstract 1
- 239000000463 material Substances 0.000 abstract 1
- 239000011812 mixed powder Substances 0.000 abstract 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 abstract 1
- 238000005245 sintering Methods 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
Landscapes
- Ceramic Products (AREA)
Abstract
【課題】耐酸化性にすぐれ、大気中の高温で使用可能な発熱体などの導電性セラミックス。
【解決手段】アルミニウム、珪素及び炭素粉末などからなる混合粉末を成形し、還元雰囲気で焼成することによって、炭素や炭化珪素などの導電性発熱物質がアルミニウム−珪素−炭素系化合から成る物焼結体中に存在することを特徴とする。この化合物焼結体は、大気中の加熱時に表面に酸化皮膜を形成し、これが焼結体内部に存在する導電性発熱物質の酸化防止することを特長とする。
【選択図】 なしConductive ceramics such as a heating element that has excellent oxidation resistance and can be used at high temperatures in the atmosphere.
Sintering a conductive exothermic material such as carbon or silicon carbide comprising an aluminum-silicon-carbon compound compound by forming a mixed powder composed of aluminum, silicon and carbon powder and firing in a reducing atmosphere. It is present in the body. This compound sintered body is characterized in that an oxide film is formed on the surface when heated in the atmosphere, and this prevents oxidation of the conductive heat-generating substance existing inside the sintered body.
[Selection figure] None
Description
本発明は、導電性セラミックスの提供の方法、詳しくは、高温大気中での耐酸化性を必要とする発熱体などの導電性セラミックスの提供の方法に関する。The present invention relates to a method for providing conductive ceramics, and more particularly, to a method for providing conductive ceramics such as a heating element that requires oxidation resistance in high-temperature air.
電気炉など通電加熱において、1600℃以下の酸化および還元雰囲気では炭化珪素(SiC)質の導電性セラミックス焼結体を発熱体として使用している。また、酸化雰囲気のときは二珪化モリブデン(MoSi2)質の導電性セラミックス焼結体を発熱体として使用して約1900℃の温度を得ることができる。また、還元雰囲気のときは炭素(C)質の導電性セラミックス焼結体を発熱体として使用して、約2300℃の温度を得ることができる。このように使用温度と雰囲気に合わせて導電性セラミックス焼結体の材質を選ぶことで適切な加熱が可能である。このように導電性セラミックス焼結体の材質は使用雰囲気と温度により組み合わせを選ぶ必要があり、不適切な組み合わせの場合は導電性セラミックス焼結体の損傷をまねく。In electric heating such as an electric furnace, a silicon carbide (SiC) conductive ceramic sintered body is used as a heating element in an oxidizing and reducing atmosphere of 1600 ° C. or lower. In an oxidizing atmosphere, a molybdenum disilicide (MoSi 2) conductive ceramic sintered body can be used as a heating element to obtain a temperature of about 1900 ° C. In the reducing atmosphere, a temperature of about 2300 ° C. can be obtained by using a carbon (C) conductive ceramic sintered body as a heating element. Thus, appropriate heating is possible by selecting the material of the conductive ceramic sintered body according to the operating temperature and atmosphere. As described above, it is necessary to select a combination of materials for the conductive ceramic sintered body depending on the use atmosphere and temperature, and an inappropriate combination may damage the conductive ceramic sintered body.
このような導電性セラミックス焼結体の損傷形態は各種類により異なる。炭化珪素質の導電性セラミックス焼結体では、大気中で約1600℃下での使用においては酸化皮膜として生成する酸化珪素(SiO2)が適切な保護膜として機能する。酸化珪素は融点1723℃であり、不純物を含むとさらに低い温度で溶融し、その結果、炭化珪素と酸化珪素の反応によって、界面で発生するSiO(g)やCO(g)などのガスにより、保護層が破壊される。このため、約1600℃以上の温度での大気中では、炭化珪素質は発熱体として安定に使用することは困難となる。The damage form of such a conductive ceramic sintered body varies depending on each type. In a silicon carbide based conductive ceramic sintered body, silicon oxide (SiO 2) generated as an oxide film functions as an appropriate protective film when used at about 1600 ° C. in the atmosphere. Silicon oxide has a melting point of 1723 ° C. and melts at a lower temperature when it contains impurities. As a result, due to the reaction between silicon carbide and silicon oxide, gas such as SiO (g) and CO (g) generated at the interface The protective layer is destroyed. For this reason, it is difficult to stably use silicon carbide as a heating element in the atmosphere at a temperature of about 1600 ° C. or higher.
また、炭素質の導電性セラミックス焼結体では酸素のない還元雰囲気で損耗は最小限に抑制され使用可能であるが、酸化雰囲気では炭素が酸化されることで激しく損耗する。In addition, in a carbonaceous conductive ceramic sintered body, wear can be minimized and used in a reducing atmosphere without oxygen. However, in an oxidizing atmosphere, carbon is oxidized and worn out violently.
さらに、二珪化モリブデン質の導電性セラミックス焼結体では酸化雰囲気では保護層ができて、発熱物質の損耗を抑制できるが、還元雰囲気では保護層が形成されずに、発熱材料自身が損耗する。Further, in the molybdenum disilicide conductive ceramic sintered body, a protective layer can be formed in an oxidizing atmosphere and wear of the heat generating material can be suppressed. However, in the reducing atmosphere, the protective layer is not formed, and the heat generating material itself is worn.
本発明は、黒鉛発熱体での酸化雰囲気での使用での損耗および二珪化モリブデン質の導電性セラミックスでの還元雰囲気での損耗の問題や炭化珪素質の導電性セラミックスでの大気中の1600℃以上の高温で使用する際の酸化防止皮膜の破壊する問題点を解消し、雰囲気や温度の制約をできるだけ小さくした緻密で耐久性に優れた導電性セラミックスの提供を目的とする。The present invention relates to the problem of wear when used in an oxidizing atmosphere in a graphite heating element and wear in a reducing atmosphere with molybdenum disilicide-based conductive ceramics, and 1600 ° C. in the atmosphere with silicon carbide-based conductive ceramics. An object of the present invention is to provide a conductive ceramic that is free from the problems of destruction of the antioxidation film when used at the above-mentioned high temperatures and that is dense and has excellent durability with as little restrictions on the atmosphere and temperature as possible.
本発明による導電性セラミックスの作製方法は、アルミニウム、珪素および炭素からなる混合組成でアルミニウムの割合が20重量%以上66重量%未満、珪素の割合が8重量%以上52重量%未満、炭素の比が26重量%以上63重量%未満とした構成で原料粉末を反応焼結させて行う。この焼結によりアルミニウム−珪素−炭素系化合物としてAl8SiC7、Al4SiC4、Al4Si2C5、Al4Si3C6またはAl4Si4C7などからなる緻密焼結体を生成するが、これが酸化時に焼結体表面に酸化アルミニウム、酸化珪素および酸化珪素アルミニウムからなる耐酸化性保護層を形成し、内部の炭素または炭化珪素などの導電性発熱物質の酸化を抑制する。The method for producing a conductive ceramic according to the present invention comprises a mixed composition comprising aluminum, silicon and carbon, wherein the proportion of aluminum is 20 wt% or more and less than 66 wt%, the proportion of silicon is 8 wt% or more and less than 52 wt%, and the ratio of carbon Is carried out by reactive sintering of the raw material powder with a composition of 26 wt% or more and less than 63 wt%. By this sintering, a dense sintered body made of Al 8 SiC 7 , Al 4 SiC 4 , Al 4 Si 2 C 5 , Al 4 Si 3 C 6, Al 4 Si 4 C 7 or the like as an aluminum-silicon-carbon-based compound is obtained. Although formed, an oxidation-resistant protective layer made of aluminum oxide, silicon oxide, and silicon aluminum oxide is formed on the surface of the sintered body during oxidation, and the oxidation of the conductive heat-generating substance such as carbon or silicon carbide inside is suppressed.
作製に使用する原料としてアルミニウム、珪素、炭素の各粉末を使用する。アルミニウム粉末は大きい粒子でもかまわないが、平均粒径が数μm程度のできるだけ小さいものが好ましい。また、珪素粉末は大きい粒子でもかまわないが、平均粒径が数μm程度のできるだけ小さいものが好ましい。また、炭素粉末は、黒鉛など結晶化しているものでもかまわないが、例えばカーボンブラックのような非晶質のものが反応性が高く良好である。Aluminum, silicon, and carbon powders are used as raw materials for the production. The aluminum powder may be large particles, but it is preferable that the average particle size is as small as possible, such as several μm. Further, the silicon powder may be large particles, but it is preferable that the average particle size is as small as possible, about several μm. The carbon powder may be a crystallized material such as graphite, but an amorphous material such as carbon black is highly reactive and good.
アルミニウム粉末の割合が20重量%以上66重量%未満、珪素粉末の比が8重量%以上52重量%未満、炭素粉末の比が26重量%以上63重量%未満として混合成形して焼成、反応焼結させることでアルミニウム−珪素−炭素系化合物から化合物中に炭素あるいは炭化珪素導電性セラミックスが存在する状態とし、化合物は高温酸化時に酸化皮膜を形成し、これが焼結体の耐酸化性保護物質となる。この範囲は図1に示される。尚、より好ましくは、アルミニウム粉末の割合が35重量%以上66重量%未満、珪素の比が8重量%以上35重量%未満、炭素の比が26重量%以上50重量%未満とした構成である。アルミニウム−珪素−炭素系化合物から成る焼結体中に存在する炭素または炭化珪素は通電発熱を付与することができる。アルミニウム−珪素−炭素系化合物はAl4SiC4をはじめAl4Si2C5、Al4Si3C6、Al4Si4C7、Al8SiC7がある。炭素または炭化珪素は、この化合物の粒界にあって、焼結体の周囲に形成される酸化性保護物質により,大気中や還元雰囲気の影響を受けずに安定した加熱が可能となる。Firing and reaction firing are performed by mixing and forming aluminum powder at a ratio of 20 wt% or more and less than 66 wt%, a silicon powder ratio of 8 wt% or more and less than 52 wt%, and a carbon powder ratio of 26 wt% or more and less than 63 wt%. By bonding, an aluminum-silicon-carbon-based compound is brought into a state in which carbon or silicon carbide conductive ceramic exists in the compound, and the compound forms an oxide film during high-temperature oxidation, which is an oxidation-resistant protective substance for the sintered body. Become. This range is shown in FIG. More preferably, the proportion of aluminum powder is 35 wt% or more and less than 66 wt%, the silicon ratio is 8 wt% or more and less than 35 wt%, and the carbon ratio is 26 wt% or more and less than 50 wt%. . Carbon or silicon carbide present in a sintered body made of an aluminum-silicon-carbon compound can impart heat generated by energization. Aluminum-silicon-carbon-based compounds include Al 4 SiC 4 , Al 4 Si 2 C 5 , Al 4 Si 3 C 6 , Al 4 Si 4 C 7 , and Al 8 SiC 7 . Carbon or silicon carbide is at the grain boundary of this compound, and can be stably heated without being affected by the atmosphere or a reducing atmosphere by the oxidizing protective material formed around the sintered body.
アルミニウム−珪素−炭素系化合物からなるセラミックスは、大気中で高温にさらされると、表面は酸化して酸化アルミニウム、酸化珪素および酸化珪素アルミニウムからなる層を形成する。原料のアルミニウム粉末の割合が13重量%以上50重量%未満、珪素の比が3重量%以上38重量%未満であるとき、形成する酸化皮膜の共融点は1850℃であり、この温度までは、1800℃以上の高温でも安定して皮膜を保持する。原料の混合比率が上記範囲を超えて、アルミニウムが過剰となるときは酸化皮膜に亀裂が生じ、酸化反応が進行する。また、原料の混合比率が上記範囲より珪素粉末が過剰になると、1600℃以上では、皮膜の一部が溶融し、組織が順に劣化していく。When a ceramic made of an aluminum-silicon-carbon compound is exposed to a high temperature in the atmosphere, the surface is oxidized to form a layer made of aluminum oxide, silicon oxide, and silicon aluminum oxide. When the ratio of the raw material aluminum powder is 13 wt% or more and less than 50 wt% and the silicon ratio is 3 wt% or more and less than 38 wt%, the eutectic point of the oxide film to be formed is 1850 ° C., and up to this temperature, A film is stably maintained even at a high temperature of 1800 ° C. or higher. When the mixing ratio of the raw materials exceeds the above range and the aluminum becomes excessive, the oxide film cracks and the oxidation reaction proceeds. Further, when the mixing ratio of the raw materials exceeds the above range and the silicon powder is excessive, at 1600 ° C. or higher, a part of the film melts and the structure deteriorates in order.
原料のアルミニウム粉末の割合が20重量%以上66重量%未満、珪素の比が8重量%以上52重量%未満であるとき、炭素の比が26重量%以上63重量%未満となるが、炭素の比がこの範囲より過剰となるときは耐酸化性保護物質が取り囲む範囲が狭くなり、大気雰囲気の加熱では露出した炭素が酸化し、ガスとなって組織外へ放出されるため、組織は劣化する。When the ratio of the raw material aluminum powder is 20 wt% or more and less than 66 wt% and the silicon ratio is 8 wt% or more and less than 52 wt%, the carbon ratio is 26 wt% or more and less than 63 wt%. When the ratio exceeds this range, the range surrounded by the oxidation-resistant protective substance becomes narrow, and the exposed carbon is oxidized and released into the gas as a gas when heated in the atmosphere, and the tissue deteriorates. .
これら範囲で構成されたアルミニウム粉末、珪素粉末および炭素粉末からなる混合粉末を乾式ボールミルなどで混合し、黒鉛るつぼにこの粉末を装てんし、窒素およびアルゴンなどの非酸化性雰囲気中で1150℃〜1700℃の焼成(仮焼)を行ない、さらにボールミルなどで粉砕する。この粉砕物に成形用バインダーを添加し、金型とプレスなどで約50MPa以上で加圧成形する。成形体を窒素およびアルゴンなどの非酸化性雰囲気中で1700℃〜1850℃に約3hの保持時間を焼成することで、導電性セラミックスが得られる。尚、焼結にホットプレスや放電プラズマなど焼結方法を用いる場合には、仮焼を行わない混合粉末からでも導電性セラミックスが得られる。仮焼をした粉末でホットプレスや放電プラズマによる焼結を行ってもよい。仮焼した粉末を用いてホットプレスで焼結を行う場合、1750℃に1hの保持で、放電プラズマで焼結を行う場合1750℃に約20分の昇温で保持時間20分程度で相対密度98%以上の導電性セラミックスが得られる。A mixed powder consisting of aluminum powder, silicon powder and carbon powder composed in these ranges is mixed with a dry ball mill or the like, and this powder is loaded into a graphite crucible, and 1150 to 1700 in a non-oxidizing atmosphere such as nitrogen and argon. Calcination (calcination) at 0 ° C. is performed and further pulverized with a ball mill or the like. A molding binder is added to the pulverized product, and pressure molding is performed at about 50 MPa or more with a mold and a press. By firing the compact in a non-oxidizing atmosphere such as nitrogen and argon at 1700 ° C. to 1850 ° C. for about 3 hours, a conductive ceramic can be obtained. When a sintering method such as hot pressing or discharge plasma is used for sintering, conductive ceramics can be obtained even from a mixed powder that is not calcined. Sintering by hot pressing or discharge plasma may be performed with the calcined powder. When sintering by hot pressing using calcined powder, holding at 1750 ° C. for 1 h, and sintering by discharge plasma at 1750 ° C. with a temperature increase of about 20 minutes and a holding time of about 20 minutes 98% or more of conductive ceramics can be obtained.
以下、本発明の実施例を比較例と対比して具体的に説明するが、これらの実施例は本発明の一実施態様を示すものであり、本発明がこれに限定されるものではない。Examples of the present invention will be specifically described below in comparison with comparative examples, but these examples show one embodiment of the present invention, and the present invention is not limited thereto.
実施例1〜4では平均粒径15μm,純度99.99%の金属Al粉と平均粒径15μm,純度99.99%のSi粉と平均粒径28nmのカーボンブラック粉を表1の組合わせに全量100gとして乾式混合し、得られた混合粉体を黒鉛るつぼに充填してアルゴン雰囲気で1300℃で3hの仮焼成を行った。仮焼成後の粉末を内径Φ50mmの黒鉛型に充填し1750℃20分の加熱と50MPaの加圧の条件のパルス通電加圧焼結を行い、Φ50×厚み6mmのセラミックス焼結体を製造した。In Examples 1 to 4, a metal Al powder having an average particle diameter of 15 μm and a purity of 99.99%, an Si powder having an average particle diameter of 15 μm and a purity of 99.99%, and a carbon black powder having an average particle diameter of 28 nm are combined in Table 1. A total amount of 100 g was dry-mixed, and the obtained mixed powder was filled in a graphite crucible and pre-baked at 1300 ° C. for 3 h in an argon atmosphere. The pre-fired powder was filled into a graphite mold having an inner diameter of Φ50 mm, and pulsed current pressure sintering was carried out under the conditions of heating at 1750 ° C. for 20 minutes and pressing at 50 MPa to produce a ceramic sintered body having Φ50 × thickness 6 mm.
この焼結体から、幅10mm×厚み5mm×長さ40mm、幅4mm×厚み3mm×長さ40mmおよび幅4mm×厚み3mm×長さ15mmの棒状体を切り出した。A rod-shaped body having a width of 10 mm, a thickness of 5 mm, a length of 40 mm, a width of 4 mm, a thickness of 3 mm, a length of 40 mm, and a width of 4 mm, a thickness of 3 mm, and a length of 15 mm was cut out from the sintered body.
幅10mm×厚み5mm×長さ40mmの棒状体は40kgfの一定荷重で取付できる加圧電極により挟み込んで約10Vの電圧を印加し通電加熱を行い、発熱の状態を確認した。また、幅4mm×厚み3mm×長さ15mmの棒状体は大気雰囲気で1750℃で1hの焼成を1回および5回行い、重量の変化を確認した。それらの結果を表1に示す。A rod-shaped body having a width of 10 mm, a thickness of 5 mm, and a length of 40 mm was sandwiched between pressurizing electrodes that can be attached with a constant load of 40 kgf, and a voltage of about 10 V was applied to conduct current heating to confirm the state of heat generation. Further, the rod-shaped body having a width of 4 mm, a thickness of 3 mm, and a length of 15 mm was fired at 1750 ° C. for 1 h once and five times in an air atmosphere, and a change in weight was confirmed. The results are shown in Table 1.
以上のとおり、アルミニウム−珪素−炭素系の化学組成を有する混合粉末成形体を焼成すると、炭素および炭化珪素の導電性物質がアルミニウム−珪素−炭素系化合物の粒界に存在する微構造を有する焼結体が作製される。この焼結体は還元雰囲気下では安定であり、他方、酸化雰囲気下では表面に酸化皮膜が形成されることによって酸化が阻止される。すなわち、いずれの雰囲気下でも内部の導電性物質は安定に保持され、耐久性に優れた特性を有する導電性セラミックス焼結体を得ることが可能となる。As described above, when a mixed powder molded body having an aluminum-silicon-carbon based chemical composition is fired, the sintered body having a microstructure in which the conductive materials of carbon and silicon carbide exist at the grain boundaries of the aluminum-silicon-carbon based compound. A knot is produced. This sintered body is stable in a reducing atmosphere, and on the other hand, in an oxidizing atmosphere, oxidation is prevented by forming an oxide film on the surface. That is, it is possible to obtain a conductive ceramic sintered body having a property excellent in durability, in which the internal conductive material is stably held in any atmosphere.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005221892A JP2007008793A (en) | 2005-07-01 | 2005-07-01 | Carbon-containing conductive ceramics mainly composed of Al-Si-C compounds |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005221892A JP2007008793A (en) | 2005-07-01 | 2005-07-01 | Carbon-containing conductive ceramics mainly composed of Al-Si-C compounds |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2007008793A true JP2007008793A (en) | 2007-01-18 |
Family
ID=37747760
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005221892A Pending JP2007008793A (en) | 2005-07-01 | 2005-07-01 | Carbon-containing conductive ceramics mainly composed of Al-Si-C compounds |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2007008793A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102320848A (en) * | 2011-08-17 | 2012-01-18 | 武汉科技大学 | A kind of Al4SiC4-Al8SiC7 refractory material and its preparation method |
JP2013067548A (en) * | 2011-09-22 | 2013-04-18 | Okayama Ceramics Gijutsu Shinko Zaidan | Monolithic refractory |
JPWO2017073115A1 (en) * | 2015-10-27 | 2017-12-14 | 株式会社Inui | Coating liquid and method for producing refractory having coating layer |
CN111635233A (en) * | 2020-06-09 | 2020-09-08 | 武汉科技大学 | In-situ generation of AlN/SiC bonded C composites and preparation method thereof |
WO2020230707A1 (en) * | 2019-05-13 | 2020-11-19 | タテホ化学工業株式会社 | Microwave absorbing composition, microwave absorbing body and microwave heating body |
-
2005
- 2005-07-01 JP JP2005221892A patent/JP2007008793A/en active Pending
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102320848A (en) * | 2011-08-17 | 2012-01-18 | 武汉科技大学 | A kind of Al4SiC4-Al8SiC7 refractory material and its preparation method |
JP2013067548A (en) * | 2011-09-22 | 2013-04-18 | Okayama Ceramics Gijutsu Shinko Zaidan | Monolithic refractory |
JPWO2017073115A1 (en) * | 2015-10-27 | 2017-12-14 | 株式会社Inui | Coating liquid and method for producing refractory having coating layer |
WO2020230707A1 (en) * | 2019-05-13 | 2020-11-19 | タテホ化学工業株式会社 | Microwave absorbing composition, microwave absorbing body and microwave heating body |
CN111635233A (en) * | 2020-06-09 | 2020-09-08 | 武汉科技大学 | In-situ generation of AlN/SiC bonded C composites and preparation method thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7723247B2 (en) | Method for pressurelessly sintering zirconium diboride/silicon carbide composite bodies to high densities | |
US8097548B2 (en) | High-density pressurelessly sintered zirconium diboride/silicon carbide composite bodies and a method for producing the same | |
EP2138474A1 (en) | SIC material | |
KR940011452B1 (en) | Silicon carbide refractories having modified silicon nitride bond | |
CN102317233A (en) | Carbonaceous refractory material, process for producing same, and furnace bottom or side wall of blast furnace | |
JP2007008793A (en) | Carbon-containing conductive ceramics mainly composed of Al-Si-C compounds | |
JP4845112B2 (en) | AlN-SiC-TiB2 composite sintered body manufacturing method | |
JP2012246172A (en) | Joined body of metal material and ceramics-carbon composite material, and method for producing the same | |
JP2005075720A (en) | SiC-COATED CARBON NANOTUBE, MANUFACTURING METHOD THEREFOR AND COMPOSITE MATERIAL THEREOF | |
JP4171916B2 (en) | Heat-resistant covering material | |
CN104911384A (en) | Low-temperature preparation method of tungsten-based infusible carbide composite | |
JP4872290B2 (en) | SiC-A1N solid solution sintered body having nanostructure and manufacturing method thereof | |
CN109485422A (en) | A kind of in-situ preparation SiC lath activeness and quietness tantalum carbide hafnium diphase ceramic material and preparation method thereof | |
JPH0910922A (en) | Carbonaceous refractory member for nonferrous molten metal | |
KR100308922B1 (en) | Method of Manufacturing Silicon Nitride Bonded Silicon Carbide Composites by Silicon Nitriding Reaction | |
JPH025711B2 (en) | ||
JP3853438B2 (en) | Method for producing sintered silicon nitride | |
JP2738596B2 (en) | Ceramic composite sintered body and its manufacturing method | |
JP2564857B2 (en) | Nickel-Morbuden compound boride sintered body | |
JPS6337069B2 (en) | ||
JPS609980B2 (en) | Manufacturing method for carbon, silicon, and boron-based shaped sintered bodies | |
JP2001110553A (en) | Dense SiC heating element and method for producing the same | |
JP2004026517A (en) | Silicon carbide conductive sintered body and method for producing the same | |
JP2687214B2 (en) | Carbon containing refractories | |
JP3030888B2 (en) | Ceramic composite powder and method for producing the same |