[go: up one dir, main page]

JPS609978B2 - Oxygen ion conductive solid electrolyte - Google Patents

Oxygen ion conductive solid electrolyte

Info

Publication number
JPS609978B2
JPS609978B2 JP52099531A JP9953177A JPS609978B2 JP S609978 B2 JPS609978 B2 JP S609978B2 JP 52099531 A JP52099531 A JP 52099531A JP 9953177 A JP9953177 A JP 9953177A JP S609978 B2 JPS609978 B2 JP S609978B2
Authority
JP
Japan
Prior art keywords
weight
solid electrolyte
mol
stabilizer
oxygen ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP52099531A
Other languages
Japanese (ja)
Other versions
JPS5434295A (en
Inventor
孝樹 正木
宏 桑嶌
泰治 長門
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP52099531A priority Critical patent/JPS609978B2/en
Publication of JPS5434295A publication Critical patent/JPS5434295A/en
Publication of JPS609978B2 publication Critical patent/JPS609978B2/en
Expired legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Investigating And Analyzing Materials By Characteristic Methods (AREA)

Description

【発明の詳細な説明】 この発明は酸素イオン伝導性固体電解質に関し、さらに
詳しくは、酸素濃淡電池に使用する固体電解質に関する
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to an oxygen ion conductive solid electrolyte, and more particularly to a solid electrolyte used in an oxygen concentration battery.

Ca0やMg○などのアルカリ士金属の酸化物や、Y2
03などの酸化物を安定化剤として固溶させたジルコニ
ア固体電解質は、酸素濃淡電池を構成することから、酸
素計として利用されている。
Oxides of alkali metals such as Ca0 and Mg○, Y2
A zirconia solid electrolyte in which an oxide such as 03 is dissolved as a stabilizer is used as an oxygen meter because it constitutes an oxygen concentration battery.

そのような酸素計の起電力Fは、酸素濃淡電池の両電極
側の酸素分圧の比P,/P2と両電極の絶対温度T‘こ
よって定まり、式F=(RT/岬)・ln(P,/P2
) によって与えられる。
The electromotive force F of such an oxygen meter is determined by the ratio P, /P2 of the oxygen partial pressures on both electrode sides of the oxygen concentration battery and the absolute temperature T' of both electrodes, and is determined by the formula F = (RT/Cape) · ln (P, /P2
) is given by.

ここで、Rは気体定数であり、Fはファラデー定数であ
る。上式から、いずれか一方の電極側の酸素分圧、たと
えばP,が知れていれば、起電力Fと絶対温度Tを測定
することによって未知の酸素分圧P2を求めるこことが
できるわけである。ところで、安定化剤の種類や量は、
たとえば酸素イオン伝導性、耐熱衝撃性、機械的抗折力
(寿命)など、酸素濃淡電池の諸特性に大きな影響を与
える。
Here, R is the gas constant and F is the Faraday constant. From the above equation, if the oxygen partial pressure on either electrode side, for example P, is known, the unknown oxygen partial pressure P2 can be found by measuring the electromotive force F and the absolute temperature T. be. By the way, the type and amount of stabilizer are
For example, it has a large effect on various properties of oxygen concentration batteries, such as oxygen ion conductivity, thermal shock resistance, and mechanical transverse rupture strength (life span).

たとえば「Ca0やM蚊を安定化剤とする固体電解質は
、耐熱衝撃性が優れているものの酸素イオン伝導性が劣
る。また、結晶の相変態が起こって酸素イオン伝導度が
経時的に変化するという欠点もある。一方、Y203は
安定化剤として最も優れているといわれており、他の安
定化剤を使用したものにくらべて酸素イオン伝導度が一
桁高く、応答速度も速い。また、機械的抗折力も高い。
しかしながら、耐熱衝撃性が低いという欠点がある。こ
の発明の目的は、従来の固体電解質の上記欠点を解決し
「高い酸素イオン伝導性、耐熱衝撃性を有し、しかも機
械的抗折力が大きくて寿命の長い酸素イオン伝導性固体
電解質を提供するにある。
For example, a solid electrolyte using Ca0 or M as a stabilizer has excellent thermal shock resistance but poor oxygen ion conductivity.Also, crystal phase transformation occurs and oxygen ion conductivity changes over time. On the other hand, Y203 is said to be the best stabilizer, and has an order of magnitude higher oxygen ion conductivity and faster response speed than those using other stabilizers. It also has high mechanical transverse rupture strength.
However, it has the disadvantage of low thermal shock resistance. The purpose of this invention is to solve the above-mentioned drawbacks of conventional solid electrolytes and to provide an oxygen ion conductive solid electrolyte that has high oxygen ion conductivity, thermal shock resistance, high mechanical rupture strength, and long life. There is something to do.

以上目的を達成するために、この発明においてはZr0
2、Ce02およびTho2から選ばれた1種の酸化物
を含み、かつその酸化物の安定化剤を5〜15モル%含
んでいる酸素濃淡電池用酸素イオン伝導性固体電解質で
あって、前記安定化剤は、50〜70重量%のY203
と、希±顔元素の酸化物からなり、前記希土類元素の酸
化物はFr203、YQ03およびDy203を含み、
かつこれら各希±頚元素の酸化物は安定化剤全体に対し
て3重量%以上含まれていることを特徴とする酸素イオ
ン伝導性固体電解質が提供される。
In order to achieve the above object, in this invention, Zr0
2. An oxygen ion conductive solid electrolyte for an oxygen concentration battery containing one kind of oxide selected from Ce02 and Tho2 and 5 to 15 mol% of a stabilizer for the oxide, the stable The curing agent is 50-70% by weight of Y203.
and an oxide of a rare earth element, the oxide of the rare earth element containing Fr203, YQ03 and Dy203,
Further, there is provided an oxygen ion conductive solid electrolyte characterized in that the oxides of each of these rare elements are contained in an amount of 3% by weight or more based on the entire stabilizer.

次に、この発明を詳細に説明する。Next, this invention will be explained in detail.

この発明に係る酸素イオン伝導性固体電解質は、Zr0
2、Ce02およびTho2から選ばれた1種の酸化物
と、5〜15モル%のt上記酸化物の安定化剤とを含ん
でいる。
The oxygen ion conductive solid electrolyte according to the present invention is made of Zr0
2, one kind of oxide selected from Ce02 and Tho2, and 5 to 15 mol% of a stabilizer of the above oxide.

上記酸化物は、2種以上を混合して使用することであっ
てもよい。安定化剤の量を5〜15モル%としているの
は、5モル%未満では高い酸素イオン伝導性や機械的抗
折力が得られず、また15モル%を越えると安定化が進
みすぎてやはり酸素イオン伝導性や機械的抗折力が低く
なり、また耐熱衝撃性が低くなるからである。安定化剤
としては、従釆から最も好ましいとされているY203
のほかに、3種類の希±額元素の酸化物を使用する。か
かる希士類元素の酸化物はFr203、Yb203およ
びDy203である。そして、高い酸素イオン伝導性を
得るために、上記Y203は安定化剤の50〜7の重量
%を占めていなければならない。また、耐熱衝撃性や機
械的抗折力は希士類元素の酸化物の種類や量に関連する
ので、この発明においては、上記3種類の希土類元素の
酸化物を、同時に、かつ安定化剤全体に対する各酸化物
の量が3重量%以上になるように使用する。もっとも、
上記Y203や3種類の希士類元素の酸化物のほかに、
少量の、他の希土類元素の酸化物を含んでいてもよいも
のである。上述したようなこの発明の固体電解質は、い
ろいろな方法によって製造することができる。
Two or more of the above oxides may be used in combination. The reason why the amount of the stabilizer is 5 to 15 mol% is that if it is less than 5 mol%, high oxygen ion conductivity and mechanical transverse rupture strength cannot be obtained, and if it exceeds 15 mol%, stabilization is too advanced. This is because the oxygen ion conductivity and mechanical transverse rupture strength are low, and the thermal shock resistance is also low. As a stabilizer, Y203, which is considered to be the most preferable by experts, is used.
In addition, oxides of three types of rare elements are used. Such rare element oxides are Fr203, Yb203 and Dy203. And in order to obtain high oxygen ion conductivity, the above Y203 should account for 50-7% by weight of the stabilizer. In addition, since thermal shock resistance and mechanical transverse rupture strength are related to the type and amount of rare earth element oxides, in this invention, the above three types of rare earth element oxides are simultaneously added and stabilized. Each oxide is used in an amount of 3% by weight or more based on the total amount. However,
In addition to the above Y203 and three types of rare element oxides,
It may also contain small amounts of oxides of other rare earth elements. The solid electrolyte of the present invention as described above can be manufactured by various methods.

次に、その好ましい一例を示す。まず、主成分になるZ
r02、Ce02、Tho2の粉末を単独で使用するか
、またはこれらの混合粉末に、安定化剤たるY203お
よび3種類の希土類元素の酸化物粉末、すなわちFR2
03、Yb203およびDy203の粉末を所望の割合
で加え、よく混合する。
Next, a preferable example thereof will be shown. First, the main component Z
Either the r02, Ce02, and Tho2 powders are used alone, or the stabilizer Y203 and three kinds of rare earth element oxide powders, that is, FR2 are added to the powder mixture.
Add powders of 03, Yb203 and Dy203 in desired proportions and mix well.

次に、上記混合物を1000〜1200COで数時間加
熱して仮焼成する。
Next, the above mixture is heated at 1000 to 1200 CO for several hours to pre-calcinate.

次に、得られた仮焼成体を粉砕し、再び粉末とする。Next, the obtained calcined body is crushed to powder again.

次に、上記粉末を加圧成形型に入れ、所望の形に成形す
る。
Next, the powder is placed in a pressure mold and molded into a desired shape.

このとき、必要に応じて上記粉末にバインダを加える。
次に、上記成形体を1500〜170000に加熱して
焼結し、固体電解質を得る。
At this time, a binder is added to the powder as necessary.
Next, the molded body is heated to 1,500 to 170,000 and sintered to obtain a solid electrolyte.

酸素濃淡電池の構成は、上記固体電解質を機械加工して
仕上げ、その両面に電極を取り付ければよい。
The structure of the oxygen concentration battery can be achieved by machining and finishing the solid electrolyte, and attaching electrodes to both sides of the solid electrolyte.

この発明の固体電解質を使用した酸素濃淡電池は、酸素
濃度の測定が必要ないろいろな用途に使用することがで
きるが、特に耐熱衝撃性が優れていることから、溶鋼中
の酸素濃度や、自動車などの排ガス中の酸素濃度を測定
するような場合に好適である。
The oxygen concentration battery using the solid electrolyte of this invention can be used in various applications that require the measurement of oxygen concentration, but because it has particularly excellent thermal shock resistance, it can be used to measure the oxygen concentration in molten steel, as well as in automobiles. It is suitable for measuring the oxygen concentration in exhaust gas such as.

以下、具体例に基いてこの発明をさらに詳細に説明する
Hereinafter, this invention will be explained in more detail based on specific examples.

[試料の製造] A 純度99.9%のZの2粉末とY203粉末を、Z
の2が92モル%、Y203が8モル%(約14重量%
)になるように混合した。
[Production of samples] A Two powders of Z and Y203 powder with a purity of 99.9% were
2 is 92 mol%, Y203 is 8 mol% (approximately 14% by weight)
).

次に、上記混合物をボールミルで粉砕した後12000
0で2時間仮焼成しし さらに仮焼成体を粉砕して安定
化ジルコニア粉末を得た。
Next, after grinding the above mixture with a ball mill,
The calcined body was calcined at 0 for 2 hours, and the calcined body was further crushed to obtain stabilized zirconia powder.

次に、上記安定化ジルコニァ粉末をラバープレス法を用
いて円板状に成形した後これをプロパンガス炉に入れ、
1700q0で2時間加熱して焼結し、厚み3柳の円仮
状で、安定化剤としてのY203を8モル%(約14重
量%)含む固体電解質を得た。
Next, the stabilized zirconia powder was molded into a disk shape using a rubber press method, and then placed in a propane gas furnace.
The solid electrolyte was heated and sintered at 1,700 q0 for 2 hours to obtain a solid electrolyte in the shape of a 3 willow thick circle containing 8 mol% (approximately 14% by weight) of Y203 as a stabilizer.

以下、この固体電解質を試料■といつoB 上記Aで使
用したZr02粉末に、Ca○粉末、Mg○粉末および
Y203粉末をそれぞれ6モル%(約2.り重量%)、
6モル%(約2.の重量%)「 8モル%(約15重量
%)になるように加えてZr02−Ca○−Mg○−Y
203混合粉末を作り、以下上記Aと同様にして、安定
化剤を20モル%(約19.0重量%)含み、かつ安定
化剤全体に対してCa○が約13.7重量%、Mg0が
約10.2重量%、Y203が約76.1重量%含まれ
ている固体電解質を得た。
Hereinafter, this solid electrolyte was used as sample ① and sample oB. Ca○ powder, Mg○ powder and Y203 powder were each added at 6 mol% (approximately 2% by weight) to the Zr02 powder used in A above.
6 mol% (approximately 2.0% by weight) and 8 mol% (approximately 15% by weight) and Zr02-Ca○-Mg○-Y.
203 mixed powder was prepared in the same manner as in A above, containing 20 mol% (approximately 19.0% by weight) of a stabilizer, and approximately 13.7% by weight of Ca○ and Mg0 of the entire stabilizer. A solid electrolyte containing approximately 10.2% by weight of Y203 and approximately 76.1% by weight of Y203 was obtained.

以下、この固体電解質を試料■という。C 上記AのZ
r02粉末に、2モル%(約5.7重量%)のYb20
3粉末と8モル%(約13.2重量%)のY203粉末
を加え、以下上記Aと同様にして、安定化剤を10モル
%(約18.9重量%)含み、かつ安定化剤全体に対す
るYb203の量が約30.2重量%であり、Y203
のそれが約69.母重量%であるZぬ2−YQ03−Y
203系の固体電解質を得た。
Hereinafter, this solid electrolyte will be referred to as sample ■. C Z of A above
2 mol% (approximately 5.7% by weight) of Yb20 in r02 powder
3 powder and 8 mol% (approximately 13.2 weight %) of Y203 powder, and then in the same manner as in A above, containing 10 mol % (approximately 18.9 weight %) of the stabilizer and the entire stabilizer. The amount of Yb203 is about 30.2% by weight, and Y203
That is about 69. Mother weight% Z2-YQ03-Y
A 203-based solid electrolyte was obtained.

以下、この固体電解質を試料■という。D 上記Cで使
用した酸化物粉末のほかに純度99%のCe02、Th
o2、Fの3およびDy203粉末を用意し、以下上記
Aと同様にして次の3種類のこの発明の固体電解質(試
料■〜■)を得た。■ Zの2が89モル%、YQ03
が1モル%(約2.8重量%)、Fr203が1モル%
(約2.7重量%)Dy203が1モル%(約2.7重
量%)、Y203が8モル%(約1$重量%)であり、
安定化剤を11モル%含み、かつ安定化剤全体に対して
YQ03を約35.7重量%、Fr203を約12.7
重量%、Dy203を約12.0重量%、Y2Qを約6
1.3重量%含む固体電解質。■ Ce02が89モル
%、Yb203が1モル%(約2.1重量%)、Fr2
03が1モル%(約2.1重量%)、Dy20が1モル
%(約2.の重量%)、Y203が8モル%(約9.9
重量%)であり、安定化剤を11モル%含み、かつ安定
化剤全体に対してYb203を約13.0重量%「 F
r203を約13.0重量%、Dy203を約12.4
重量%、Y203を約61.5重量%含む固体電解質。
Hereinafter, this solid electrolyte will be referred to as sample ■. D In addition to the oxide powder used in C above, Ce02 with a purity of 99%, Th
O2, F3, and Dy203 powders were prepared, and the following three types of solid electrolytes of the present invention (samples ① to ①) were obtained in the same manner as in A above. ■ 2 of Z is 89 mol%, YQ03
is 1 mol% (approximately 2.8 weight%), Fr203 is 1 mol%
(about 2.7% by weight) Dy203 is 1 mol% (about 2.7% by weight), Y203 is 8 mol% (about 1 $ weight%),
Contains 11 mol% of stabilizer, and contains about 35.7% by weight of YQ03 and about 12.7% of Fr203 based on the entire stabilizer.
Weight%, approximately 12.0% by weight of Dy203, approximately 6% of Y2Q
Solid electrolyte containing 1.3% by weight. ■ Ce02 is 89 mol%, Yb203 is 1 mol% (approximately 2.1% by weight), Fr2
03 is 1 mol% (approximately 2.1% by weight), Dy20 is 1 mol% (approximately 2.0% by weight), and Y203 is 8 mol% (approximately 9.9% by weight).
% by weight), contains 11 mol% of stabilizer, and contains about 13.0% by weight of Yb203 based on the entire stabilizer.
Approximately 13.0% by weight of r203, approximately 12.4% by weight of Dy203
A solid electrolyte containing approximately 61.5% by weight of Y203.

■ Tho2が89モル%、Yb203が1モル%(約
2.1重量%)、Fr203が1モル%(約2.1重量
%)、Dy203が1モル%(約2.0重量%)、Y2
03が8モル%(約9.0重量%)であり、安定化剤を
11モル%含み、かつ安定化剤全体に対してYQ03を
約13.2重量%、Fr203を約13.な重量%、D
y203を約12.6重量%、Y203を約61.の重
量%含む固体電解質。
■ 89 mol% of Tho2, 1 mol% of Yb203 (about 2.1% by weight), 1 mol% of Fr203 (about 2.1% by weight), 1 mol% of Dy203 (about 2.0% by weight), Y2
03 is 8 mol% (approximately 9.0% by weight), contains 11 mol% of the stabilizer, and with respect to the entire stabilizer, YQ03 is approximately 13.2% by weight and Fr203 is approximately 13.0% by weight. weight%, D
About 12.6% by weight of Y203, about 61% by weight of Y203. Solid electrolyte containing % by weight of.

E Zの2の安定化剤として、次の組成からなるゼノタ
イム鉱物粉末をY203が8モル%になるように混合し
、以下上記Aと同様にして固体電解質を得た。
As a stabilizer in EZ2, xenotime mineral powder having the following composition was mixed so that Y203 was 8 mol %, and a solid electrolyte was obtained in the same manner as in A above.

以下、この固体電解質を試料■という。Y203
62〜63重量%Dy203
7重量%Fr203
6〜7重量%YQ03
6重量%その他の希±競酸化物
13〜14重量%その他(不純物)
残部[試料の評価]上記試料■〜■につい
て、機械的強度の指標になる気孔率と、機械的抗折力と
、耐熱衝撃性と、酸素イオン伝導度を測定した。
Hereinafter, this solid electrolyte will be referred to as sample ■. Y203
62-63% by weight Dy203
7wt% Fr203
6-7% by weight YQ03
6% by weight Other dilute competitive oxides 13-14% by weight Others (impurities)
Remainder [Evaluation of Samples] The porosity, which is an index of mechanical strength, mechanical transverse rupture strength, thermal shock resistance, and oxygen ion conductivity were measured for the above samples ① to ②.

測定結果を次表に示す。気孔率は、試料の体積と重量か
ら求めたかさ密度と、理論密度から計算した。
The measurement results are shown in the table below. The porosity was calculated from the bulk density determined from the volume and weight of the sample and the theoretical density.

また、機械的抗折力は、JIS日5501の方法によっ
て測定した。
Further, the mechanical transverse rupture strength was measured according to the method of JIS Day 5501.

耐熱衝撃性は、試料を1600q○、1200午○の溶
鋼中に1町段間浸債する操作を繰り返し行い、破壊に至
るまでの回数として求めた。
Thermal shock resistance was determined by repeatedly immersing the sample in molten steel at 1,600 q○ and 1,200 pm for one step, and determining the number of times it took to break.

また、酸素イオン伝導度は、試料を直径1仇肋の円板状
に切り出し、その両面に白金ペーストを塗布した後焼成
して電極を形成し、その両電極間に交流ブリッジを接続
し、周波数IK舷におけるインピーダンスを求めて計算
した。
Oxygen ion conductivity can be measured by cutting a sample into a disk shape with a diameter of 1 rib, applying platinum paste on both sides and firing it to form electrodes, and connecting an AC bridge between the two electrodes. The impedance at the IK side was determined and calculated.

表 上表から、この発明に係る固体電解質(試料■〜■)は
、そうでない従来の固体電解質(試料■〜■)にくらべ
て機械的抗折力や耐熱衝撃性に優れ、しかも酸素イオン
伝導性の点においても従来のものにくらべて優るとも劣
らず、極めて安定した特徴を有することがわかる。
From the above table, it can be seen that the solid electrolyte according to the present invention (Samples ■ to ■) has superior mechanical transverse rupture strength and thermal shock resistance, and is superior in oxygen ion conductivity compared to conventional solid electrolytes (Samples ■ to ■). It can be seen that it is superior to conventional products in terms of properties and has extremely stable characteristics.

Claims (1)

【特許請求の範囲】[Claims] 1 ZrO_2、CeO_2およびThO_2から選ば
れた1種の酸化物を含み、かつその酸化物の安定化剤を
5〜15モル%含んでいる酸素濃淡電池用酸素イオン伝
導性固体電解質であつて、前記安定化剤は、50〜70
重量%のY_2O_3と、希土類元素の酸化物からなり
、前記希土類元素の酸化物はEr_2O_3、Yb_2
O_3およびDy_2O_3を含み、かつこれら各希土
類元素の酸化物は安定化剤全体に対して3重量%以上含
まれていることを特徴とする酸素イオン伝導性固体電解
質。
1 An oxygen ion conductive solid electrolyte for an oxygen concentration battery containing one kind of oxide selected from ZrO_2, CeO_2 and ThO_2 and containing 5 to 15 mol% of a stabilizer of the oxide, The stabilizer is 50-70
% by weight of Y_2O_3 and an oxide of a rare earth element, and the oxide of the rare earth element is Er_2O_3, Yb_2.
An oxygen ion conductive solid electrolyte comprising O_3 and Dy_2O_3 and containing oxides of these rare earth elements in an amount of 3% by weight or more based on the entire stabilizer.
JP52099531A 1977-08-22 1977-08-22 Oxygen ion conductive solid electrolyte Expired JPS609978B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP52099531A JPS609978B2 (en) 1977-08-22 1977-08-22 Oxygen ion conductive solid electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP52099531A JPS609978B2 (en) 1977-08-22 1977-08-22 Oxygen ion conductive solid electrolyte

Publications (2)

Publication Number Publication Date
JPS5434295A JPS5434295A (en) 1979-03-13
JPS609978B2 true JPS609978B2 (en) 1985-03-14

Family

ID=14249791

Family Applications (1)

Application Number Title Priority Date Filing Date
JP52099531A Expired JPS609978B2 (en) 1977-08-22 1977-08-22 Oxygen ion conductive solid electrolyte

Country Status (1)

Country Link
JP (1) JPS609978B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07504354A (en) * 1992-02-28 1995-05-18 レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロアターション・デ・プロセデ・ジョルジュ・クロード Compositions, methods, and apparatus for separating oxygen from gas mixtures

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5855373A (en) * 1981-09-24 1983-04-01 日本碍子株式会社 Zirconia ceramic and manufacture
NL8105116A (en) * 1981-11-12 1983-06-01 Philips Nv SENSOR FOR DETERMINING THE OXYGEN CONTENT IN A FLUIDUM.
JPS59138758U (en) * 1983-03-08 1984-09-17 株式会社トクヤマ oxygen detection device
FR2584388B1 (en) * 1985-07-03 1991-02-15 Rhone Poulenc Spec Chim COMPOSITION BASED ON CERIC OXIDE, ITS PREPARATION AND USES THEREOF
EP0949220A1 (en) * 1997-09-24 1999-10-13 Nippon Shokubai Co., Ltd. Zirconia sinter for solid electrolite and process for producing the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07504354A (en) * 1992-02-28 1995-05-18 レール・リキード・ソシエテ・アノニム・プール・レテュード・エ・レクスプロアターション・デ・プロセデ・ジョルジュ・クロード Compositions, methods, and apparatus for separating oxygen from gas mixtures

Also Published As

Publication number Publication date
JPS5434295A (en) 1979-03-13

Similar Documents

Publication Publication Date Title
US4283441A (en) Method of making an ion conductive gas sensor body with a cermet electrode thereon
US4221650A (en) Solid electrolyte oxygen sensors
JPH0244785B2 (en)
JPS6116125B2 (en)
JP3934750B2 (en) Oxide ion conductive ceramics and method for producing the same
Viswanathan et al. Transfomation toughening of β ″-alumina by incorporation of zirconia
JPS6121184B2 (en)
JPS6038350B2 (en) Solid electrolyte for oxygen sensor
JPS609978B2 (en) Oxygen ion conductive solid electrolyte
JPH01275467A (en) Solid electrolyte
JPS62502064A (en) Electrochemical sensor, method of making and using the electrochemical sensor
US4786374A (en) Electro-chemical sensors and methods for their manufacture and use
CN116981649B (en) Lithium ion conductive materials
CA1139370A (en) Oxygen sensors
JPS62140061A (en) Gas partial pressure measurement sensor and its manufacturing method
AU619264B2 (en) Solid electrolytic substance
JPH09511573A (en) Reference electrode for batteries with ion-conducting solid electrolyte
Badwal Kinetics of the oxygen transfer reaction at the (U0. 5Sc0. 5) O2±x/YSZ interface by impedance spectroscopy
JPH07126061A (en) Magnesia-based sintered body and method for producing the same
JPS5919074B2 (en) Porcelain sintered body for oxygen sensor
JPH01157072A (en) Oxygen concentration cell
JP3021652B2 (en) Method of manufacturing a layer system for a gas sensor
Skarmoutsos et al. Titania doped YSZ for SOFC anode Ni-cermet
JPH07138065A (en) Fiber reinforced β-Al2O3 solid electrolyte
JPH01176937A (en) Solid electrolyte enzyme sensor