[go: up one dir, main page]

JPH01176937A - Solid electrolyte enzyme sensor - Google Patents

Solid electrolyte enzyme sensor

Info

Publication number
JPH01176937A
JPH01176937A JP63000220A JP22088A JPH01176937A JP H01176937 A JPH01176937 A JP H01176937A JP 63000220 A JP63000220 A JP 63000220A JP 22088 A JP22088 A JP 22088A JP H01176937 A JPH01176937 A JP H01176937A
Authority
JP
Japan
Prior art keywords
gas
oxygen
solid electrolyte
measured
partial pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63000220A
Other languages
Japanese (ja)
Inventor
Yoshio Matsuda
松田 良夫
Keisuke Kobayashi
小林 啓佑
Fumio Yoshida
文男 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP63000220A priority Critical patent/JPH01176937A/en
Publication of JPH01176937A publication Critical patent/JPH01176937A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Oxygen Concentration In Cells (AREA)

Abstract

PURPOSE:To enhance the accuracy of measurement and to increase response speed by providing porous electrodes and fine particles of a solid electrolyte, etc., and operating the title sensor at a relatively low temp. CONSTITUTION:The electromotive force based on a difference between the oxygen partial pressures of a reference gas of a known oxygen partial pressure and a gas to be measured is generated between the porous electrodes 2 and 3 when the above-mentioned reference gas is introduced into the sensor from a reference gas introducing pipe 9 and the gas to be measured is introduced into an outside pipe 8. This electromotive force is, therefore, measured by an electromotive force meter 10 to determine the oxygen partial pressure of the gas to be measured. The gaseous oxygen in closed cells 7 is discharged by the oxygen pump effect of the fine particles 5 of the solid electrolyte or the gaseous oxygen is introduced therein from the contact gas even if the closed cells 7 exist in the electrodes 2, 3 and, therefore, the oxygen partial pressure of the gas in the cells 7 equilibrates rapidly with the oxygen partial pressure of the contact gas. The sensor is operated at the relatively low temp. in such a manner. The accuracy of the measurement is thus enhanced and the response speed is increased.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、酸素イオン伝導性を有する固体電解質を用
いた酸素センサに関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Application Field) The present invention relates to an oxygen sensor using a solid electrolyte having oxygen ion conductivity.

(従来の技術) 固体電解質酸素センサは、周知のように、高温で酸素イ
オン伝導性を有する固体電解質からなる隔壁の両壁面に
多孔質電極を設けてなるもので、隔壁を一定温度に加熱
した状態で一方の電極に酸素分圧が既知の基準ガスを接
触させ、他方の電極に酸素分圧が未知の被測定ガスを接
触させると、両電極間に両ガスの゛酸素分圧の差に対応
した起電力が現われることを利用したものである。しか
して、起電力の大きさは、よく知られているようにネル
ンスト(Nernst )の式で表され、隔壁の温度と
基準ガスの酸素分圧が既知であれば、起電力の大きざか
ら、被測定ガス中の酸素分圧、つまり酸素濃度を求める
ことができるものである。
(Prior art) As is well known, a solid electrolyte oxygen sensor is composed of a partition wall made of a solid electrolyte that has oxygen ion conductivity at high temperatures, and porous electrodes provided on both sides of the partition wall. When one electrode is brought into contact with a reference gas with a known oxygen partial pressure and the other electrode is brought into contact with a gas to be measured whose oxygen partial pressure is unknown, the difference in oxygen partial pressure between the two gases will be This takes advantage of the fact that a corresponding electromotive force appears. Therefore, the magnitude of the electromotive force is expressed by the well-known Nernst equation, and if the temperature of the partition wall and the oxygen partial pressure of the reference gas are known, then from the magnitude of the electromotive force, It is possible to determine the oxygen partial pressure in the gas to be measured, that is, the oxygen concentration.

ところで、そのような固体電解質酸素センサにおいては
、一般に、多孔質電極を、触媒活性や化学的安定性等の
面からPtで形成しているが、酸素センサは作動温度が
一般に800℃以上といった高温であるため、被測定ガ
スが発火点の低いCH4、Co、H2等を含んでいる場
合には、測定中にこれらの成分が燃焼し、その燃焼反応
に伴う酸素の消費が起こるため、精度の高い酸素濃度測
定ができなくなるという問題がある。
Incidentally, in such solid electrolyte oxygen sensors, the porous electrode is generally made of Pt from the viewpoint of catalytic activity and chemical stability, but oxygen sensors generally operate at high temperatures of 800°C or higher. Therefore, if the gas to be measured contains CH4, Co, H2, etc., which have low ignition points, these components will burn during the measurement, and the combustion reaction will consume oxygen, resulting in poor accuracy. There is a problem that high oxygen concentration cannot be measured.

このような問題を解決し、より低い、燃焼反応を伴わな
い温度で作動を可能とするために、特開昭50−91.
389号発明においては、多孔質電極を、酸素イオン伝
導性を有する固体電解質の粉体と、Pt、Pd、Pt−
Pd合金等の白金族金属の粉体または微粒子との混合物
を焼き付けることによって形成することを提案している
。しかしながら、白金族金属は極めて高価であるばかり
か、焼付温度が高いという問題がある。また、酸素の拡
散が比較的遅いために、低温度で作動可能であるとはい
っても、たとえば400℃における90%応答時間(起
電力が理論値の90%に達するまでの時間)が10分以
上と大変長いという問題がある。
In order to solve these problems and enable operation at lower temperatures that do not involve combustion reactions, Japanese Patent Laid-Open No. 50-91.
In the No. 389 invention, the porous electrode is made of solid electrolyte powder having oxygen ion conductivity and Pt, Pd, Pt-
It is proposed that the material be formed by baking a mixture with powder or fine particles of a platinum group metal such as a Pd alloy. However, platinum group metals are not only extremely expensive but also have a problem of high baking temperatures. Also, because oxygen diffusion is relatively slow, even though it can be operated at low temperatures, the 90% response time (the time it takes for the electromotive force to reach 90% of the theoretical value) at 400°C is, for example, 10 minutes. The problem is that it is extremely long.

(発明が解決しようとする課題) この発明の目的は、従来の酸素センサの上述した問題点
を解決し、比較的低温度で作動し、測定精度が高いばか
りか、応答速度が大変速い固体電解質酸素センサを提供
するにある。
(Problems to be Solved by the Invention) The purpose of the present invention is to solve the above-mentioned problems of conventional oxygen sensors, and to provide a solid electrolyte that not only operates at a relatively low temperature and has high measurement accuracy but also has a very fast response speed. To provide oxygen sensors.

(課題を解決するための手段) 上述した目的を達成するためのこの発明は、酸素イオン
伝導性を有する固体電解質からなる隔壁と、その隔壁の
一方の壁面に設けた基準ガス側多孔質電極および他方の
壁面に設けた被測定ガス側多孔質電極とを有し、上記多
孔質電極は、その少なくとも被測定ガス側多孔質電極が
酸素イオン伝導性を有する固体電解質の微粒子と銀との
混合材料で構成され、かつ上記微粒子の量は5〜15重
量%である固体電解質酸素センサを特徴とするものであ
る。
(Means for Solving the Problems) This invention for achieving the above-mentioned object comprises a partition made of a solid electrolyte having oxygen ion conductivity, a reference gas side porous electrode provided on one wall of the partition, and and a porous electrode on the gas-to-be-measured side provided on the other wall, and at least the porous electrode on the gas-to-be-measured side is made of a mixed material of solid electrolyte fine particles having oxygen ion conductivity and silver. The solid electrolyte oxygen sensor is characterized in that the amount of the fine particles is 5 to 15% by weight.

この発明をざらに詳細に説明するに、この発明の酸素セ
ンサは、酸素イオン伝導性を有する固体電解質からなる
隔壁と、その隔壁の一方の壁面に設けた基準ガス側多孔
質電極および他方の壁面に設けた被測定ガス側多孔質電
極とを有している。
To roughly explain the invention in detail, the oxygen sensor of the invention includes a partition wall made of a solid electrolyte having oxygen ion conductivity, a reference gas side porous electrode provided on one wall surface of the partition wall, and a reference gas side porous electrode provided on one wall surface of the partition wall. and a porous electrode on the gas-to-be-measured side.

隔壁を構成している固体電解質は、いわゆる母材である
ZrO2、HfO2、B i 203、CeO等に、高
温で安定な酸素イオン伝導性結品溝造を室温下でも安定
させるために、安定化剤として+2価または+3価の陽
イオンをもつ酸化物、たとえばY2O3、cao、Mo
o、Yb2O3、SrO,5C203、Sm2O3、M
oo3、WO3を固溶させてなるものである。いわゆる
母材がZro2ヤHfO2である場合には、Y2O3、
GapSMQOSYb203が適している。また、Bi
2O:+にはY2O3、Moo3 、WO3が、CeO
にはY2O3が、それぞれ適している。これら安定化剤
の固溶量は、5〜45モル%程度でおる。このような固
体電解質は、酸化物混合法や、中和共沈法等の湿式合成
法などの周知の方法によって調製した粉末を焼成するこ
とによって得ることができる。
The solid electrolyte that makes up the partition walls is made of so-called base materials such as ZrO2, HfO2, B i 203, CeO, etc., in order to stabilize the oxygen ion conductive crystal structure that is stable at high temperatures even at room temperature. Oxides having +2 or +3 valence cations as agents, such as Y2O3, cao, Mo
o, Yb2O3, SrO, 5C203, Sm2O3, M
It is made by dissolving oo3 and WO3 in solid solution. When the so-called base material is Zro2 or HfO2, Y2O3,
GapSMQOSYb203 is suitable. Also, Bi
2O:+ is Y2O3, Moo3, WO3, CeO
Y2O3 is suitable for each. The solid solution amount of these stabilizers is about 5 to 45 mol%. Such a solid electrolyte can be obtained by firing a powder prepared by a well-known method such as an oxide mixing method or a wet synthesis method such as a neutralization coprecipitation method.

上述した固体電解質からなる隔壁は、板状、円筒状や、
一端が閉塞された、縦断面がU字形の管状等、周知の形
状を採ることができる。上述した、いわゆる原料粉末を
用いたそのような形状への成形は、周知の、たとえばホ
ットプレス法や熱間静水圧加圧処理法(HIP法)によ
って行うことができる。
The partition wall made of the solid electrolyte mentioned above can be plate-shaped, cylindrical, or
It can take a well-known shape, such as a tubular shape with one end closed and a U-shaped longitudinal section. The above-mentioned molding into such a shape using the so-called raw material powder can be performed by a well-known method such as a hot press method or a hot isostatic pressing method (HIP method).

隔壁の壁面に設けた多孔質電極は、高温で酸素イオン伝
導性を有する固体電解質の微粒子と、銀(Act>との
混合材料からなっている。そのような電極は、固体電解
質の微粒子と銀ペーストとの混合物を、壁面に、たとえ
ば塗布したり、噴き付【プたり、印刷したりした後、焼
き付けることによって形成することができる。この場合
、固体電解質の微粒子は、隔壁を構成している固体電解
質と同じ固体電解質からなるものであっても、異なる固
体電解質からなるものであっても、いずれでもよい。な
お、電極の厚みは、5〜10μm程度である。
The porous electrode provided on the wall of the partition is made of a mixed material of solid electrolyte fine particles that have oxygen ion conductivity at high temperatures and silver (Act>.Such an electrode is made of a mixture of solid electrolyte fine particles and silver The mixture with the paste can be formed on the wall surface, for example, by applying, spraying, printing, and then baking. In this case, the fine particles of the solid electrolyte constitute the partition wall. The electrode may be made of the same solid electrolyte as the solid electrolyte or a different solid electrolyte.The thickness of the electrode is about 5 to 10 μm.

固体電解質の微粒子の大きさは、0.1〜2μm程度が
適当である。0.1μm未満の微粒子は、凝集しやすい
ために、銀ペースト中に分散させにくい。また、眼中に
埋もれやすく、後述する酸素ポンプ作用を発現させにく
くなる。逆に、2μmを越えるようなものは、銀が分断
されやすく、集電機能が低下してくる。
The size of the fine particles of the solid electrolyte is suitably about 0.1 to 2 μm. Fine particles of less than 0.1 μm tend to aggregate and are therefore difficult to disperse in the silver paste. In addition, it is likely to be buried in the eye, making it difficult to exert the oxygen pumping effect described below. On the other hand, if the diameter exceeds 2 μm, the silver is likely to be fragmented and the current collecting function will deteriorate.

多孔質電極を形成している混合材料中にあける固体電解
質の微粒子の量は、5〜15重量%でなければならない
。すなわち、5重量%未満では電極が多孔質化しにくく
、15重量%を越えると集電機能が大きく低下してくる
。また、後述する実施例にも示すように、5重量%未満
でも、15重量%を越えても、いずれの場合も応答速度
が大きく低下してきて、この発明の目的を達成すること
、ができなくなる。
The amount of solid electrolyte fine particles in the mixed material forming the porous electrode should be 5 to 15% by weight. That is, if it is less than 5% by weight, the electrode will not easily become porous, and if it exceeds 15% by weight, the current collection function will be greatly reduced. Furthermore, as shown in the Examples described later, if the amount is less than 5% by weight or more than 15% by weight, the response speed will decrease significantly in either case, making it impossible to achieve the object of the present invention. .

多孔質電極は、基準ガス側および被測定ガス側N極のう
ち、被測定ガス側の電極のみを上述した混合材料で構成
することができる。というのは、基準ガスには、一般に
、空気や、酸素ガスと窒素ガス等の不活性ガスとの混合
ガスが用いられるため、基準ガス側においては、上述し
た、燃焼反応による酸素ガスの消費を考慮する必要がな
く、しかも、基準ガスの酸素分圧が常時一定に保たれる
ため、後述する、電極に存在する開気孔による応答速度
の遅れを考慮する必要がないからである。
In the porous electrode, of the reference gas side and the measurement gas side N electrodes, only the electrode on the measurement gas side can be made of the above-mentioned mixed material. This is because the reference gas is generally air or a mixture of oxygen gas and an inert gas such as nitrogen gas, so on the reference gas side, the consumption of oxygen gas due to the combustion reaction mentioned above is This is because there is no need to take this into consideration, and since the oxygen partial pressure of the reference gas is always kept constant, there is no need to take into account the delay in response speed due to open pores present in the electrode, which will be described later.

なお、被測定ガス側電極のみを上記混合材料で形成する
場合、基準ガス側の電極は、上述した、Pt等の従来の
材料で形成する。
Note that when only the electrode on the gas to be measured side is formed of the above-mentioned mixed material, the electrode on the reference gas side is formed of the conventional material such as Pt mentioned above.

この発明の酸素センサを用いて、酸素濃度測定装置を構
成することができる。すなわち、この発明の酸素センサ
は、それを、隔壁を一定温度に維持するための、たとえ
ば電気炉に入れ、隔壁の一方の側に基準ガスを導入し、
また、他方の側に被測定ガスを導入し、そのとき基準ガ
ス側および被測定ガス側多孔質電極間に発生する起電力
を測定するようにすれば、基準ガスの酸素分圧、つまり
酸素濃度を測定することができる。
An oxygen concentration measuring device can be constructed using the oxygen sensor of the present invention. That is, the oxygen sensor of the present invention is constructed by placing it in, for example, an electric furnace to maintain the partition wall at a constant temperature, introducing a reference gas to one side of the partition wall, and
In addition, by introducing the gas to be measured on the other side and measuring the electromotive force generated between the porous electrodes on the reference gas side and the gas to be measured side, it is possible to measure the oxygen partial pressure of the reference gas, that is, the oxygen concentration. can be measured.

(作 用) 隔壁を、一定の、たとえば300〜850℃に加熱した
状態で、基準ガス側多孔質電極に酸素分圧が既知の基準
ガスを接触させ、一方、被測定ガス側多孔質電極に酸素
分圧が未知の被測定ガスを接触させる。すると、両電極
間に両ガスの酸素分圧の差に対応した起電力が現われる
。この起電力Eの大きさは、よく知られたネルンストの
式、すなわち、 E =(RT / 4 F > I n (P m /
 P s )ただし、R:気体定数 丁:隔壁の絶対温度 F:ファラデ一定数 Pm:被測定ガスの酸素分圧 PS:基準ガスの酸素分圧 で表される。ここで、隔壁の温度と基準ガスの酸素分圧
は測定中一定に保たれるから、起電力E7’J1ら、被
測定ガスの酸素分圧、つまり酸素濃度を求めることがで
きる。
(Function) With the partition wall heated to a certain temperature, for example, 300 to 850°C, a reference gas with a known oxygen partial pressure is brought into contact with the porous electrode on the reference gas side, while a porous electrode on the gas to be measured side is brought into contact with the reference gas. A gas to be measured with an unknown oxygen partial pressure is brought into contact. Then, an electromotive force corresponding to the difference in oxygen partial pressure between the two gases appears between the two electrodes. The magnitude of this electromotive force E is determined by the well-known Nernst equation, that is, E = (RT / 4 F > I n (P m /
Ps) However, R: Gas constant d: Absolute temperature of the partition wall F: Faraday constant Pm: Oxygen partial pressure of the measured gas PS: Expressed as the oxygen partial pressure of the reference gas. Here, since the temperature of the partition wall and the oxygen partial pressure of the reference gas are kept constant during the measurement, the electromotive force E7'J1 and the like can be used to determine the oxygen partial pressure of the gas to be measured, that is, the oxygen concentration.

このとき、多孔質電極においては、固体電解質の微粒子
が、酸素センサとは逆の作用、すなわち酸素ポンプとし
て作用し、隔壁と多孔質電極との界面におけるガスの置
換が速やかに行われる。酸素ポンプ作用は、上述したネ
ルンストの式が、よく知られているように可逆的で必る
ために起こる作用である。したがって、たとえ多孔質電
極に閉気孔が存在していても、酸素ポンプ作用によって
、閉気孔内のガスの酸素分圧は接触ガスのそれと速やか
に平衡する。
At this time, in the porous electrode, the fine particles of the solid electrolyte act in the opposite manner to that of an oxygen sensor, that is, act as an oxygen pump, and the gas at the interface between the partition wall and the porous electrode is quickly replaced. The oxygen pumping action is an action that occurs because the above-mentioned Nernst equation is reversible as is well known. Therefore, even if closed pores exist in the porous electrode, the oxygen partial pressure of the gas in the closed pores quickly equilibrates with that of the contact gas due to the oxygen pumping action.

(実施態様) 第1図において、一端が閉塞された、横断面がU字形の
固体電解質からなる隔壁1の閉塞端側の一方の壁面には
、基準ガス側多孔質電極2が形成されている。同様に、
隔壁1の他方の壁面には、基準ガス側多孔質電極3が形
成され、酸素センサ4が構成されている。
(Embodiment) In FIG. 1, a reference gas side porous electrode 2 is formed on one wall surface on the closed end side of a partition wall 1 made of a solid electrolyte having a U-shaped cross section and having one end closed. . Similarly,
A reference gas side porous electrode 3 is formed on the other wall surface of the partition wall 1, and an oxygen sensor 4 is configured.

第2図を参照するに、上記多孔質電極2(3)は、固体
電解質の微粒子5と銀6との混合材料からなっている。
Referring to FIG. 2, the porous electrode 2 (3) is made of a mixed material of solid electrolyte fine particles 5 and silver 6. As shown in FIG.

しかして、電極2(3)は、全体として見ると多孔質で
あるが、閉気孔7が存在している部分もある。
Thus, although the electrode 2 (3) is porous when viewed as a whole, there are portions where closed pores 7 are present.

上述した酸素センサは、たとえば次のようにして酸素濃
度測定装置を構成する。すなわち、第1図に示すように
、酸素センサ4を外管8内に収容するとともに、隔壁1
の内部に、基準ガス導入管9を、その先端が隔壁1の閉
塞端付近になるように挿通し、さ、らに上記多孔質電極
2.3にリード線を介して起電力計10を接続する。一
方、炉11によって、隔壁11を300〜850℃の一
定温度に加熱することができるようにする。
The oxygen sensor described above constitutes an oxygen concentration measuring device, for example, as follows. That is, as shown in FIG.
Insert the reference gas introduction pipe 9 into the inside of the cell so that its tip is near the closed end of the partition wall 1, and further connect the electromotive force meter 10 to the porous electrode 2.3 via a lead wire. do. On the other hand, the partition wall 11 can be heated to a constant temperature of 300 to 850°C using the furnace 11.

第1図に示す状態で、基準ガス導入管9から矢視するよ
うに酸素分圧既知の基準ガスを導入し、一方、外管8内
に矢視するように被測定ガスを導入すると、多孔質電極
2.3間に両ガスの酸素分圧の差に基く起電力が発生す
るので、それを起電力計10で測定し、上)ホしたネル
ンストの式から被測定ガスの酸素分圧(酸素濃度)を求
める。このとき、多孔質電極2(3)に第2図に示した
ような閉気孔7が存在していても、固体電解質5の酸素
ポンプ作用によって閉気孔7内の酸素ガスが排出され、
あるいはその中に接触ガスから酸素ガスが導入されるの
で、閉気孔7内のガスの酸素分圧は速やかに接触ガスの
酸素分圧と平衡する。
In the state shown in FIG. 1, a reference gas with a known oxygen partial pressure is introduced from the reference gas introduction tube 9 as shown by the arrow, and a gas to be measured is introduced into the outer tube 8 as shown by the arrow. An electromotive force is generated between the electrodes 2 and 3 based on the difference in the oxygen partial pressures of both gases, so this is measured with an electromotive force meter 10, and from the Nernst equation (above), the oxygen partial pressure of the gas to be measured ( Oxygen concentration). At this time, even if the porous electrode 2 (3) has closed pores 7 as shown in FIG. 2, the oxygen gas in the closed pores 7 is exhausted by the oxygen pumping action of the solid electrolyte 5.
Alternatively, since oxygen gas is introduced therein from the contact gas, the oxygen partial pressure of the gas in the closed pores 7 quickly equilibrates with the oxygen partial pressure of the contact gas.

(実施例1) 純度が99.9%であるZrOCl2水溶液と、純度が
99.9%であるYCl3水溶液から、周知の中和共沈
法により、Y2O3の固溶量が8モル%である粉末とし
た俊、その粉末を1000℃で2時間焼成して原料粉末
を得た。
(Example 1) Powder with a solid solution amount of Y2O3 of 8 mol% was prepared by a well-known neutralization coprecipitation method from a ZrOCl2 aqueous solution with a purity of 99.9% and a YCl3 aqueous solution with a purity of 99.9%. The powder was fired at 1000°C for 2 hours to obtain a raw material powder.

次に、上記原料粉末とエチルアルコールとを重量比で2
=1になるように計り取り、ボールミルで24時間粉砕
して平均粒子径を約0.3μmとした後、乾燥し、さら
にバンイダとしてポリビニルアルコールを加え、ラバー
プレス成形法を用いて、横断面がU字形で、かつ一端が
閉塞された成形体を得た。このとき、成形圧力は100
0K(1/Cm2とした。
Next, the raw material powder and ethyl alcohol were mixed in a weight ratio of 2.
= 1, crushed in a ball mill for 24 hours to give an average particle size of about 0.3 μm, dried, added polyvinyl alcohol as a binder, and molded using a rubber press to obtain a cross-sectional shape. A molded article having a U-shape and one end closed was obtained. At this time, the molding pressure is 100
0K (1/Cm2).

次に、上記成形体を電気炉に入れ、1700’Cで2時
間焼結して、第1図に示したような、固体電解質の隔壁
を得た。この隔壁は、外径が約Bmm。
Next, the molded body was placed in an electric furnace and sintered at 1700'C for 2 hours to obtain solid electrolyte partition walls as shown in FIG. This partition wall has an outer diameter of approximately Bmm.

内径が約5mm、長さが約’110mmでめった。The inner diameter was about 5mm and the length was about 110mm.

次に、上記隔壁の各壁面に、上述した、ボールミルで粉
砕、乾燥した後の固体電解質微粒子と銀ペーストとを固
体電解質微粒子が2.5重量%になるように混合して刷
毛で塗り、それを700’Cで1時間焼き付けて多孔質
電極を形成し、第1図に示したような酸素センサを得た
。全く同様にして、固体電解質の微粒子の量が5.0重
量%、7゜5重量%、10.0重量%、12.5重量%
、15.0重量%、17.5重量%、20.0重量%に
なるように混合したものを用い、合わせて8種類の酸素
センサを1qだ。比較のため、固体電解質の微粒子を含
まない、銀ペーストのみを焼き付けることによって多孔
質電極を形成してなる酸素センサも得た。
Next, on each wall surface of the partition wall, mix the solid electrolyte fine particles that have been ground and dried in a ball mill and silver paste so that the solid electrolyte fine particles are 2.5% by weight, and apply the mixture with a brush. was baked at 700'C for 1 hour to form a porous electrode, and an oxygen sensor as shown in FIG. 1 was obtained. In exactly the same way, the amount of solid electrolyte fine particles was 5.0% by weight, 7°5% by weight, 10.0% by weight, and 12.5% by weight.
, 15.0% by weight, 17.5% by weight, and 20.0% by weight, and a total of 8 types of oxygen sensors are used for 1 q. For comparison, an oxygen sensor was also obtained in which a porous electrode was formed by baking only silver paste, which did not contain fine particles of solid electrolyte.

次に、これら合計9種類の酸素センサを用いて第1図に
示した装置を構成し、空気を基準ガスとし、1容量%の
酸素ガスを含む窒素ガスを被測定ガスとして、500 
’Cにおける起電カー時間曲線から、応答速度、すなわ
ち、起電力が理論値の90%および95%に達するまで
の時間を測定した。
Next, the apparatus shown in Fig. 1 was constructed using these nine types of oxygen sensors in total, and air was used as the reference gas, and nitrogen gas containing 1% by volume of oxygen gas was used as the gas to be measured.
The response speed, that is, the time required for the electromotive force to reach 90% and 95% of the theoretical value, was measured from the electromotive Kerr time curve at 'C.

測定結果を第3図に示す。第3図において、横軸のCは
固体電解質微粒子の量(重量%)であり、縦軸の↑は時
間(秒)である。また、実線は起電力が理論値の90%
に達するまでの時間を示し、点線は同じく95%に達す
るまでの時間を示している。なお、基準ガスと被測定ガ
スの流量はいずれも200m1/分とした。また、リー
ド線には銀線を用いた。
The measurement results are shown in Figure 3. In FIG. 3, C on the horizontal axis is the amount of solid electrolyte fine particles (% by weight), and ↑ on the vertical axis is time (seconds). Also, the solid line indicates that the electromotive force is 90% of the theoretical value.
The dotted line also shows the time required to reach 95%. Note that the flow rates of both the reference gas and the gas to be measured were 200 m1/min. Furthermore, a silver wire was used for the lead wire.

第3図から明らかなように、固体電解質微粒子の川が5
〜15重♀%の範囲において、応答速度が著しく速い。
As is clear from Figure 3, there are 5 rivers of solid electrolyte particles.
The response speed is extremely fast in the range of ~15% by weight.

(実施例2) 実施例1において、被測定ガスを10容量%の酸素ガス
を含む窒素ガスに代えた。測定結果を第4図に示す。
(Example 2) In Example 1, the gas to be measured was replaced with nitrogen gas containing 10% by volume of oxygen gas. The measurement results are shown in Figure 4.

(実施例3) 純度が99.9%でおるZrOCl2水溶液と、純度が
99.9%であるcac l 2水溶液から、周知の中
和共沈法により、CaOの固溶量が12モル%である粉
末とした後、その粉末を1000°Cで2時間焼成して
原料粉末を得た。
(Example 3) From a ZrOCl2 aqueous solution with a purity of 99.9% and a CaCl2 aqueous solution with a purity of 99.9%, a solid solution amount of CaO of 12 mol% was obtained by a well-known neutralization coprecipitation method. After forming a certain powder, the powder was fired at 1000°C for 2 hours to obtain a raw material powder.

次に、上記原料粉末とエチルアルコールとを重量比で2
:1になるように計り取り、ボールミルで24時間粉砕
して平均粒子径を約0.3μmとし、乾燥し、さらにバ
ンイダとしてポリビニルアルコールを加えた後、ラバー
プレス成形法を用いて、横断面がU字形で、かつ一端が
閉塞された成形体を得た。このとき、成形圧力は100
0KMCm2とした。
Next, the raw material powder and ethyl alcohol were mixed in a weight ratio of 2.
: 1, milled in a ball mill for 24 hours to give an average particle diameter of about 0.3 μm, dried, added polyvinyl alcohol as a binder, and then molded the cross section using a rubber press method. A molded article having a U-shape and one end closed was obtained. At this time, the molding pressure is 100
It was set to 0KMCm2.

次に、上記成形体を電気炉に入れ、1600℃で2時間
焼結して、第1図に示したような、固体電解質の隔壁を
)qだ。この隔壁は、外径が約8IIIIIl、内径が
約6mm、長さが約110mmであった。
Next, the above molded body was placed in an electric furnace and sintered at 1600° C. for 2 hours to form solid electrolyte partition walls as shown in FIG. This partition had an outer diameter of about 8III1, an inner diameter of about 6 mm, and a length of about 110 mm.

以下、実施例1と同様に合計9種類の酸素センサを作り
、各酸素センサについて実施例1と同様の測定をした。
Hereinafter, a total of nine types of oxygen sensors were made in the same manner as in Example 1, and the same measurements as in Example 1 were carried out for each oxygen sensor.

測定結果を第5図に示す。The measurement results are shown in FIG.

(実施例4) 実施例3において、被測定ガスを10容量%の酸素ガス
を含む窒素ガスに代えた。測定結果を第6図に示す。
(Example 4) In Example 3, the gas to be measured was replaced with nitrogen gas containing 10% by volume of oxygen gas. The measurement results are shown in Figure 6.

(実施例5) 純度が99.9%であるBizO3粉末と、純度が99
.9%であるY2O3粉末とをY2O3粉末の固溶量が
25モル%になるように秤量し、これにエチルアルコー
ルを加えてアルミナ乳鉢で30分分間式混合した後、9
0’Cのオイルバスでエチルアルコールを揮発させ、さ
らに700 ’Cで3時間焼成して原料粉末を得た。
(Example 5) BizO3 powder with a purity of 99.9% and a powder with a purity of 99.9%
.. 9% Y2O3 powder was weighed so that the solid solution amount of Y2O3 powder was 25 mol%, ethyl alcohol was added thereto, and mixed for 30 minutes in an alumina mortar.
Ethyl alcohol was volatilized in an oil bath at 0'C, and the mixture was further calcined at 700'C for 3 hours to obtain a raw material powder.

次に、上記原料粉末をアルミナ乳鉢で30分間仮粉砕し
、実施例1と同様にボールミルによる粉砕、ラバープレ
ス法による成形を行い、その成形体を900℃で20時
間焼結して、第1図に示したような隔壁を得た。ボール
ミルによる粉砕後の粒子径は0.5μmであった。
Next, the above raw material powder was pre-pulverized in an alumina mortar for 30 minutes, crushed in a ball mill and molded by a rubber press method in the same manner as in Example 1, and the molded body was sintered at 900°C for 20 hours. A partition wall as shown in the figure was obtained. The particle size after pulverization using a ball mill was 0.5 μm.

以下、上記隔壁と、ボールミルによる粉砕後の固体電解
質微粒子および銀ペーストとを用い、実施例1と同様に
合計9種類の酸素センサを作り、各酸素センサについて
実施例1と同様の測定をした。測定結果を第7図に示す
Hereinafter, a total of nine types of oxygen sensors were made in the same manner as in Example 1 using the above-mentioned partition wall, solid electrolyte fine particles after being ground by a ball mill, and silver paste, and the same measurements as in Example 1 were carried out for each oxygen sensor. The measurement results are shown in Figure 7.

(実施例6) 実施例5において、被測定ガスを10容量%の酸素ガス
を含む窒素ガスに代えた。測定結果を第8図に示す。
(Example 6) In Example 5, the gas to be measured was replaced with nitrogen gas containing 10% by volume of oxygen gas. The measurement results are shown in FIG.

(実施例7) 純度が99.9%であるCeO粉末と、純度が99.9
%でおるY2O3粉末とをY2O3粉末の固溶量が5モ
ル%になるように秤量し、これにエチルアルコールを加
えてアルミナ乳鉢で30分間混合した後、90℃のオイ
ルバスでエチルアルコールを揮発させ、ざらに1000
℃で2時間焼成して原料粉末を得た。
(Example 7) CeO powder with a purity of 99.9% and a purity of 99.9%
% Y2O3 powder so that the solid solution amount of Y2O3 powder is 5 mol%, add ethyl alcohol to this, mix in an alumina mortar for 30 minutes, and then volatilize the ethyl alcohol in an oil bath at 90 ° C. Let's make it 1000
The raw material powder was obtained by firing at ℃ for 2 hours.

次に、上記原料粉末をアルミナ乳鉢で15分間仮粉砕し
、実施例1と同様にボールミルによる粉砕、ラバープレ
ス法による成形を行い、その成形体を1500℃で2時
間焼結して、第1図に示したような隔壁を得た。ボール
ミルによる粉砕後の粒子径は0.5μmであった。
Next, the above raw material powder was pre-pulverized in an alumina mortar for 15 minutes, crushed in a ball mill and molded by a rubber press method in the same manner as in Example 1, and the molded body was sintered at 1500°C for 2 hours. A partition wall as shown in the figure was obtained. The particle size after pulverization using a ball mill was 0.5 μm.

以下、上記隔壁と、ボールミルによる粉砕後の固体電解
質微粒子および銀ペーストとを用い、実施例1と同様に
合計9種類の酸素センサを作り、各酸素センサについて
実施例1と同様の測定をした。測定結果を第9図に示す
。なお、固体電解質微粒子が20.0重量%のものは、
測定開始後4時間を経過しても、起電力が理論値の95
%に達しなかった。
Hereinafter, a total of nine types of oxygen sensors were made in the same manner as in Example 1 using the above-mentioned partition wall, solid electrolyte fine particles after being ground by a ball mill, and silver paste, and the same measurements as in Example 1 were carried out for each oxygen sensor. The measurement results are shown in Figure 9. In addition, the solid electrolyte fine particles containing 20.0% by weight are as follows:
Even after 4 hours have passed since the start of measurement, the electromotive force remains at the theoretical value of 95.
% was not reached.

(実施例8) 実施例7において、被測定ガスを10容量%の酸素ガス
を含む窒素ガスに代えた。測定結果を第10図に示す。
(Example 8) In Example 7, the gas to be measured was replaced with nitrogen gas containing 10% by volume of oxygen gas. The measurement results are shown in FIG.

なお、固体電解質微粒子が20゜0重量%のものは、測
定開始後4時間経過しても、起電力が理論値の95%に
達しなかった。
In addition, in the case where the solid electrolyte fine particles were 20.0% by weight, the electromotive force did not reach 95% of the theoretical value even after 4 hours had passed from the start of the measurement.

(実施例9) 実施例5で使用した焼結体と、実施例1で得た混合材料
とを用い、実施例1と同様にして合計9種類の酸素セン
サを作り、各酸素センサについて実施例1と同様の測定
をした。測定結果を第11図に示す。
(Example 9) Using the sintered body used in Example 5 and the mixed material obtained in Example 1, a total of nine types of oxygen sensors were made in the same manner as in Example 1, and an example was prepared for each oxygen sensor. The same measurements as in 1 were made. The measurement results are shown in FIG.

(実施例10) 実施例9において、被測定ガスを10容量%の酸素ガス
を含む窒素ガスに代えた。測定結果を第12図に示す。
(Example 10) In Example 9, the gas to be measured was replaced with nitrogen gas containing 10% by volume of oxygen gas. The measurement results are shown in FIG.

(発明の効果) この発明の酸素センサは、少なくとも被測定ガス側多孔
質電極を酸素イオン伝導性を有する固体電解質の微粒子
と銀との混合材料で構成し、しかも上記微粒子の量を5
〜15重量%とするものであるから、実施例にも示した
ように、比較的低い温度でも十分に作動し、被測定ガス
が発火点の低いCH4、Co、H2等を含んでいる場合
でも、測定中にこれらの成分が燃焼することによる酸素
の消費を防止することができるようになり、測定精度が
大きく向上する。また、多孔質電極に閉気孔が存在して
いる場合でも、それに5〜15重量%含まれている固体
電解質の微粒子の酸素ポンプ作用によって隔壁と電極と
の界面におけるガスの酸素分圧が接触ガスのそれと速や
かに平衡するようになるので、実施例にも示したように
応答速度が大きく向上する。
(Effects of the Invention) In the oxygen sensor of the present invention, at least the porous electrode on the side of the gas to be measured is made of a mixed material of solid electrolyte fine particles having oxygen ion conductivity and silver, and the amount of the fine particles is 5.
~15% by weight, so as shown in the example, it operates satisfactorily even at relatively low temperatures, even when the gas to be measured contains CH4, Co, H2, etc., which have low ignition points. , it becomes possible to prevent the consumption of oxygen due to the combustion of these components during measurement, and the measurement accuracy is greatly improved. In addition, even if closed pores exist in the porous electrode, the oxygen partial pressure of the gas at the interface between the partition wall and the electrode increases due to the oxygen pumping action of the fine particles of the solid electrolyte contained in the solid electrolyte in an amount of 5 to 15% by weight. Since the response speed quickly comes to balance with that of , the response speed is greatly improved as shown in the embodiment.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、この発明の一実施態様に係る酸素センサなら
びにその酸素センサを使用した酸素濃度測定装置を示す
概略縦断面図、第2図は、上記第1図に示した酸素セン
サの多孔質電極をモデル的に示す概略縦断面図、第3図
〜第12図は、この発明の一実施態様に係る酸素センサ
と、この発明の範囲外にある酸素センサの応答特性を示
すグラフである。 1:固体電解質の隔壁 2:多孔質電極 3:多孔質電極 4:酸素センサ 5:固体電解質の微粒子 6:銀 7:閉気孔 8:外管 9:基準ガス導入管 10:起電力計
FIG. 1 is a schematic vertical cross-sectional view showing an oxygen sensor according to an embodiment of the present invention and an oxygen concentration measuring device using the oxygen sensor, and FIG. 3 to 12, which are schematic vertical cross-sectional views showing model electrodes, are graphs showing response characteristics of an oxygen sensor according to an embodiment of the present invention and an oxygen sensor outside the scope of the present invention. 1: Solid electrolyte partition 2: Porous electrode 3: Porous electrode 4: Oxygen sensor 5: Solid electrolyte fine particles 6: Silver 7: Closed pores 8: Outer tube 9: Reference gas introduction tube 10: Electromotive force meter

Claims (2)

【特許請求の範囲】[Claims] (1)酸素イオン伝導性を有する固体電解質からなる隔
壁と、その隔壁の一方の壁面に設けた基準ガス側多孔質
電極および他方の壁面に設けた被測定ガス側多孔質電極
とを有し、前記多孔質電極は、その少なくとも被測定ガ
ス側多孔質電極が酸素イオン伝導性を有する固体電解質
の微粒子と銀との混合材料で構成され、かつ前記微粒子
の量は5〜15重量%であることを特徴とする固体電解
質酸素センサ。
(1) having a partition wall made of a solid electrolyte having oxygen ion conductivity, a reference gas side porous electrode provided on one wall surface of the partition wall, and a measured gas side porous electrode provided on the other wall surface of the partition wall; The porous electrode, at least the porous electrode on the gas-to-be-measured side, is composed of a mixed material of silver and solid electrolyte fine particles having oxygen ion conductivity, and the amount of the fine particles is 5 to 15% by weight. A solid electrolyte oxygen sensor featuring:
(2)請求項(1)記載の固体電解質酸素センサを備え
た酸素濃度測定装置。
(2) An oxygen concentration measuring device comprising the solid electrolyte oxygen sensor according to claim (1).
JP63000220A 1988-01-04 1988-01-04 Solid electrolyte enzyme sensor Pending JPH01176937A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63000220A JPH01176937A (en) 1988-01-04 1988-01-04 Solid electrolyte enzyme sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63000220A JPH01176937A (en) 1988-01-04 1988-01-04 Solid electrolyte enzyme sensor

Publications (1)

Publication Number Publication Date
JPH01176937A true JPH01176937A (en) 1989-07-13

Family

ID=11467881

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63000220A Pending JPH01176937A (en) 1988-01-04 1988-01-04 Solid electrolyte enzyme sensor

Country Status (1)

Country Link
JP (1) JPH01176937A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036929A (en) * 2011-08-10 2013-02-21 Toyota Motor Corp Manufacturing method of oxygen sensor
JP5189705B1 (en) * 2012-09-25 2013-04-24 田中貴金属工業株式会社 Sensor electrode, manufacturing method thereof, and metal paste for electrode formation

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013036929A (en) * 2011-08-10 2013-02-21 Toyota Motor Corp Manufacturing method of oxygen sensor
JP5189705B1 (en) * 2012-09-25 2013-04-24 田中貴金属工業株式会社 Sensor electrode, manufacturing method thereof, and metal paste for electrode formation
WO2014050624A1 (en) * 2012-09-25 2014-04-03 田中貴金属工業株式会社 Sensor electrode, manufacturing method thereof, and metal paste for electrode formation
US9784709B2 (en) 2012-09-25 2017-10-10 Tanaka Kikinzoku Kogyo K.K. Sensor electrode, manufacturing method thereof, and metal paste for electrode formation

Similar Documents

Publication Publication Date Title
US5322612A (en) Carbon dioxide gas detection element
CN103257161B (en) Buried NASICON-based H2 sensor with compound metal oxide as passivation reference electrode and preparation method thereof
JP3934750B2 (en) Oxide ion conductive ceramics and method for producing the same
CN107860808A (en) With SrMnO3For the CeO of sensitive electrode2Benzylacetone sensor, preparation method and applications
JPS6126621B2 (en)
JPS62502064A (en) Electrochemical sensor, method of making and using the electrochemical sensor
US4792752A (en) Sensor for measuring partial pressures of gases
JPH01176937A (en) Solid electrolyte enzyme sensor
JPS6138413B2 (en)
JP2951887B2 (en) Mixed ionic conductor
Jiang et al. A nitrite sodalite-based NO2 gas sensor
Kale et al. Planar SOx sensor incorporating a bi-electrolyte couple
JPS609978B2 (en) Oxygen ion conductive solid electrolyte
Wang et al. Potentiometric SO 2 gas sensor based on a thick film of Ca 2+ ion conducting solid electrolyte
CN210982308U (en) Novel tubular sensing element and tubular oxygen sensor using same
JPS58201057A (en) Sensing element of gas
CN108132291B (en) Utilize the method for impedance spectrum calibration oxygen concentration
Wang et al. Potentiometric SO2 gas sensor based on Ca2+ conducting solid electrolyte
JPS5919074B2 (en) Porcelain sintered body for oxygen sensor
松井光彦 Carbon dioxide gas sensor with Li2TiSiO5 solid electrolyte and NiO-Li2CO3 as sensing electrode
JPH10213563A (en) Solid electrolyte element and oxygen concentration measuring device
JP2844721B2 (en) Carbon dioxide concentration measurement sensor
JPH07167829A (en) Gas sensor
JPH07248312A (en) Carbon dioxide sensor and manufacture thereof
JP2000235013A (en) Production of electrode for sensor for measuring oxygen concentration in gas mixture